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A newcompact form of a multipseudoparticle configuration is obtained. It has all its singularities located at
points diferent from those of the known solution and related to the latter by a gauge transformation. The
two together may be used with advantage in the calculation of winding number. We discuss also the classical
solutions of X$' theory, which are relevant to the problem at hand, by using the method of characteristic
equations.

I. INTRODUCTION F,„=s,A„-s„A,—fg[A„A„] . (2)

Classical solutions with finite action of SU(2)
Yang-Mills theory have recently drawn much in-
terest. Belavin, Polyakov, Schwartz, and
Tyupkin' (BPST) have constructed a regular one-
pseudoparticle solution in Euclidean four-space.
Subsequently, multipseudoparticle solutions with
increasing degrees of genera1. ity were given by
Witten, ' 't Hooft, ' and Jackiw, Nohl, and Hebbi. 4

We present here an alternative compact form
for the multipseudoparticle configuration, obtained
by making use of a single singular gauge trans-
formation of the solutions in Hefs. 3 and 4. The
new form has all its singularities at locations dif-
ferent from those of the solutions just cited, and
at infinity it behaves as a "pure gauge" term- UB„U ', vanishing like -1/x. The two forms
together may be used to advantage in the calcula-
tion of the winding number (Sec. III).

We give in Sec. IV a simple treatment for ob-
taining classical solutions of massless XQ' theory,
which is relevant for obtaining solutions of the
problem at hand, by using the method of char-
acteristic equations. We find a new solution in
closed form. We also discuss briefly how the
form invariant under conformal transformations
may be used to generate, starting from a simple
solution, a family of solutions dependent on many
more parameters.

II. YANG-MILLS EQUATIONS: NOTATION

The SU(2) Yang-Mills fields' over Euclidean
four-space E4 are given by

where A„' are gauge potentials, i=1,2, 3 are SU(2)
indices, and p, , v= 1,2, 3, 4 are E, indices. Intro-
ducing the matrices F „=4E„'„I, and A
= 4A'I. „where I., =a', /2 are SU(2) generators, we
obtain

A —UA U '+ —UB„U
Z

E „UE„„U
(4)

The potentials A. are gauge connections ap-
pearing in the covariant derivative D = (8, —igA, ),
and the gauge curvature tensor E„„satisfies

I

Bianchi identities e „~,D,E „=0, which are inte-
grability conditions for the existence of the poten-
tial. They may be reexpressed as

9 F —ig [A, , F ]=0,
where F,„=—2&,„„F„is the dual of F~„. Thus a
field configuration for which E„„and F„„arepro-
portional provides a solution of the equations of
motion. Of special interest are the solutions which
correspond to finite action, the so-called pseudo-
particle solutions. They give rise to local minima
of the action functional different from that of the
trivial case corresponding to vanishing field
strengths and are relevant for the structure of
quantum theory. ' lt is woi. th mentioning that solu-
tions with infinite action in Euclidean space may
have finite action in Minkowski space.

It is convenient to introduce the generators M ~,
where o. , P =1,2, 3, 4, of the O(4)' group, which sat-.
isfy the Lie algebra

and define two sets of SU(2) generators M' corre-
sponding to the two SU(2) subgroups of O(4) by

The equations of motion for the sourceless case
are

8, F,„i@[A„,—F„]=0, (3)

as derived from the action density S(A) = —,'F', F,'„. —

Under an SU(2) gauge transformation U(x), the
potential and the field strengths transform as
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We may give a representation for them in terms of
Pauli matrices,

where

and 6~234 = 1

and 7. Substituting it in Eq. (3}we are led to the
dif ferential equation

[u „,+2g(u „}&] —4g[u, „+2@(u„)']u =0,
(13)

while

They also satisfy Eq. (6) while the anticommutator
is given by

—4igu „u &[M'„,M&,] (14)

(7)

where 6,~ =(6 bz, —5, 5a ). For any SU(2) vector

(8)

The Chem-Pontryagin topological or winding
number is defined by

S*d4x,

where

S*= -,
' Tr(F F ) .

At the points where the potential and the field are
regular we have

(10)

III. POSSIBLE SOLUTIONS: NEW COMPACT FORM

OF MULTIPSEUDOPARTICLE CONFIGURATION

We make now the ansatz that the 0(4) gauge
indices a, P, . . . behave like tensor indices
p, , v, . . . of Euclidean four-space. We may then,
for example, introduce four-vector fields
a (x), b, (x) at each point of E, and seek, having
in view Eq. (8), solutions of the form

where E'„(E „) corresponds to the solution with
upper (lower) sign in Eq. (12).

We find easily; say by considering E,, =-+E'„,
that for the field to satisfy E'„„=+E;„requires
that

u, „+2g(u „)3= 0 . (16)

This equation takes the form' ( &f&/Q) =0 if we
write u = (1/2g) In/ + const . Equation (13) leads to

(16)

The self-duality conditions E„'„=+E„'„require, in
addition to Eq. (16), that &f&8 (8„&f&/Q') = 6 f where
f(x) is arbitrary. This equation can easily be
solved' to give the one-pseudoparticle solution
with finite action; the other simple solutions carry
inf inite action.

To fix our. notation, we rederive the multipseudo-
particle solution'4 corresponding to Eq. (15}. In-
troduce the invariant z =Z";,(X,.'/y, .'), where

(y,.) =x —(a,.) and X, , a, are constants with
all distinct. We set u =u(z) so that u =f(z)rI
where 2q = Bz/Sx . Equation (15) then gives

/

(17)

Here f'(z) = Bf/&z and z = —2m'QX, .'5~(y,.). For
xta, , i =1,2, . . . , N we obtain f( )-z1/( +zb). This
form for f(z) also makes the second term in Eq.
(17) vanish when x approaches the singular point
a, We thus obtain for the multipseudoparticle
solution'4

A' z= ——'(6 8 +e )atj 4 IJ r &mr r
A.,= 2f(z)q. M:„, (18)

+ (6„,~ ~ e „z„,)b„e,b, + ~ ~ ~ . (11)

The simplest ansatz' is obtained if we retain only
the first term. Nonlinearity of equations of motion
makes it difficult to handle the general case. The
potential then takes the form A.,=a M', . Further
simplification is obtained by assuming that a is
irrotational' so that

where

and

r"- ~. (y;)„

A =2u (x)M' , (12)

where u(x) is a scalar superpotential and &, A„=O.
This form for the potential was used in Refs. 3, 4,

For x approaching a, , the solution takes the form
of a pure gauge term Ue U '. The singularities
may be shifted to other locations by gauge trans-
for'mations. The existence of a regular form for
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the multipseudoparticle solution obtained by a
product of successive gauge transformations was
shown. by Giambiagi and Rothe" and independently
by Sciuto. ' The topological interpretation of
winding number is then restored. The resulting
form, though, is not compact for practial calcula-
tions.

We may, however, obtain" an alternative com-
pact form which has all of its singularities dis-
placed to points other than x =a,. by using a single
singular gauge transformation. The new form and
the solution in Eq. (18) may be used together to
advantage, for example, ,in the calculation of
winding number. We define two overlapping re-
gions R and R' in which A„and A,' are regular,
respectively, excluding the pertinent singular
points. Following the prescription of Wu and
Yang, "whenever the integration point approaches
a singularity of the solution, say A.„, we pass from
one region to another by a gauge transformation
and use A.„'. An appropriate gauge transformation
is found to be

S'~d'x = lim $ f+d4x
0 V- Ca&

Ilm
(f) ~=0) gj~ 0

(23)

Here ~~ indicates an infinitesimal spherical region
of radius && in E~ with three-dimensional surface
$3 enclosing a zero of g' = 0 . S, indicates a large
spherical surface of radius R, and the directed
surface element, say on S„has the form do„
=x,x2dQ, where dQ =sin'y sin&dyd8dg with
0 & X, & ~ v and 0 ~Q & 2v. From the asymptotic
behavior of Ap discussed above, we conclude that
we may in Eq. (23) replace I„' by I„~, the contribu-
tion coming from the second (pure gauge} term
A,~ of A.„'. From the fact that a potent'ial of the
form UB U ', U(x) c SU(2), gives vanishing field
strength at the points where it is regular, we
deduce that

1
2x112 (}4+2 } +)

(0 j
(19)

0= S~~d'x
6 ~

where the upper (lower) sign corresponds to the
upper (lower) sign in Eq. (18). The new form thus
obtained is given by

lim
S3

lim
(g) .-. 0) gg

—+ 0 SP

A' = —2f(r. )q Id „———1} l}
21

tÃfl g g2 X 4L P XP (20)

N

lim I„do'
i~1 6 ~ ~0 S3

i

(24)

where

n = ~ X''
5 4(y'). (y')

PP ~ (y 2)2 ixP
y

2

In deriving it we made use of the identity
d

Ug.M'. ,U-' =- q„M:„.

(21)

(22)

I

Here ~,. is the spherical region with surface S,'
enclosing the point x =a, , and $* is the Pontryagin
density calculated from the pure gauge term A.~

and 4'. In deriving Eq. (24) we have used the fact
that A~, S~~, and I~ are singular not only at the
points where g' =. 0 but also at the point x = a,. as
shown from the Eqs. (10) and (20). From Eqs.
(23) and (24) it follows that

The form in Eq. (20) could not be obtained with the
simple ansatz used above, and in this context
M'z and M z play complementary roles. We
readily verify that A' is no longer singular at
x=a,.; in fact, it vanishes there, simplifying cal-
culations. The field strengths F„"„areshown to
be finite, continuous, and self-dual at these points.
The new form is now singular at the points where
q =0, but at these locations the first term in Eq.
(20) drops out. For ~x~-~ the first term, which
falls as 1/x' is small compared to the second term
which vanishes as 1/x. The latter, moreover,
takes a "pure gauge" form UB„U '.

For the purpose of illustration we calculate the
winding number using the form A'. The two
alternative forms show that the Pontryagin density
S~ is regular everywhere. Hence we may write,
making use of Eq. (10}and Gauss's theorem,

N

'*d'x = g lim I~ do
=3. 6 ~ 0 S3

(25)

The right-hand side is ea.sily calculated to give
the winding number, say, for b g 0 in f(z) of Eq.
(18}, the value q =wN. The calculation using the
expression in Eq. (18) is also straightforward.
Using arguments similar to the above we find that

5' x= iimd—Q iim f I,dx,
R~~ S3 g ~ ~o Ss

(28)

The right-hand side then may be easily calculated.
An essentially similar procedure was used, though
in a different way, in the first calculation in Ref.
4.
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IV. CLASSICAL SOLUTIONS OF MASSLESS XP THEORY

The simple ansatz made above permits still
other solutions corresponding to Eq. (16) which
for X 4 0 reads

This leads clearly to the parameter-independent
solution" v =+ (1/4X)'~' or

This nonlinear equation has been studied by many
authors". An alternative simpler treatment using
the method of characteristic equations will be
presented here. We find a new closed solution.
We remark that Eq. (27) is form invariant under
special conformal transformations x„=(x„
—c,x')o ' with P(x) =of(x), where o(x}
=1- 2 c x+ c x as well as under dilatations
x=e'x with Q(x) =e 'Q(x). This symmetry allows
us to find, from a particular simple solution, a
corresponding family of solutions which involve .

more parameters. It also allows us to use the
method of characteristic equations. '4

For simplicity we consider only the case p
= @z), where z = (x —a)'. Writing z&f&(z) =y(z) we
obtain

From Eq. (33) for b =0 we find easily that

y(z) =B[1+-', B'~z] -', (35)

which contains the BPST solution. We mention
another closed solution (b = 1/32K)

p(z) =+ 4~ tan in(B ~z) . (36)
1'"1 -1 .

—4X

For arbitrary b we have in general an elliptic
integral which can be cast in canonical form by
substitutions t = —,'lnz aind y =e'h(t}. This case" was
discussed in detail by Cervero, Jacobs, and
Nohl. "

We now illustrate by considering the solution in
Eq. (35), i.e. , how the form invariant mentioned
above may be used to generate solutions with more
parameters. It is clear that

F—= y "+A.(y/z)', =0, (28) y(x) = o(x)y(x) =—
where E is form invariant under scale transforma-
tion z = a'z, y = ny. For infinitesimal transforma-
tions this implies that

gives, in view of conformal covariance, a solu-
tion of Eq. (27}. This may be written as

BI' BE,BE „BE
6z —+ 5y —+ 6y' + 5y" =0,

Bg By Byl By Pf (29}
1 B

o(x) 1+ ,'B'X[c(a—)/o(x)](x —a)' '

where 6z =2&x, 5y =ay, 5y' = —&y', y" = any"
=3k.&(y/z)'. Hence the characteristic equations
to be solved are

where

o(a) = 1+2 a ~ c+ a'c'

and
0z dy dy
2z

(30) a =(a„+c a')o(a) ' .

Cke ~zv —Xv'

dv SU —gv

which leads to the first integral u' —uv+-,'XV4

=const=-b, that is,

(31)

2w =2v z y'=v+ $v' —4[b+(X/2)v'] j'~', (32)

which is also scale invariant. From dv/v =. dy/y
——,'-(dz/z) we find

2zdv =+ (v' —4[b+(A/2)v4])'i'dz, (33)

whose solution gives a solution of the problem.
Before discussing this equation we note that Eq.

(28) may be written in terms of v as follows:

v z v" + —— (1 —4Xv') =0 .ir
z 4z z

(34)

From the first and the second arid the first and the
third equalities we find v(z, y) =y/Mz = const and

w(z, y, y') =v~gy'=-const. Working now with the
scale-invariant variables v and u we obtain

Since a„and c, are arbitrary, we may write the
solution in the form

B[(u —v)']' t'
(x —u)'+ —,

' XB'(x —v) ' ' (37)
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where u, v, , and B are constant parameters. As
for the gauge potential, nothing significantly new
is obtained by using this solution. Treating simi-
larly the parameter independent solution de-
scribed above we find that

v}2

4X (x —u)'(x —v)'„

which was used in Ref. 16 to show that it leads to
gauge field having finite action in Minkowski space.
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