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Classical Euclidean field configurations and charge confinement
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The possibility of the confinement of external charge in a pure Yang-Mills theory is discussed. Only field

configurations which almost obey the classical field equations are considered. The two- and three-dimensional

models of Callan, Dashen, and Gross and of Polyakov are reviewed. If confinement occurs in a four-

dimensional pure Yang-Mills theory it is concluded that field configurations which are far from obeying the

Euclidean classical equations of motion must be predominant.

I. INTRODUCTION

There are two very interesting models of con-
finement wherein confinement of charge comes
about predominantly through semiclassical field
configurations of a vector potential in Minkowski
space or through classical configurations in the
corresponding Euclidean theory. In such cases
confinement can be found in weak coupling, and
a linear force law emerges. The above two mod-
els are the two-dimensional vortex of Callan,
Dashen, and Gross' and the three-dimensional
monopole plasma of Polyakov. ' The possibility ex-
ists that the same is true in a more realistic four-
dimensional non-Abelian gauge theory. The analog
of the vortices and monopoles might be instantons'
or merons. '

The purpose of this paper is to analyze such a
possibility without actually attempting to exhibit
the detailed mechanism of confinement. The
model considered is a pure SU(2) Yang-Mills theory
without scalar mesons of any sort. The Euclidean
theory is considered in a classical approximation,
where only configurations which "almost" obey the
classical Yang-Mills equations are considered.
The present paper has nothing to say about con-
finement in situations where quantum effects play
an important role in the Euclidean theory. In ad-
dition, the assumption is made that a Lorentz
gauge exists where the momentum-space Green's
functions, at nonzero momentum, exist in the in-
finite-volume limit. Whether this is a trivial or
an important assumption is not completely clear
yet.

In Sec. II the two- and three-dimensional models
are discussed in terms of the field configurations
which are important in causing confinement. In
each of these cases the confining field configura-
tions obey the classical field equations in the low-
density limit. In each case the momentum-space
Green's functions are well-defined and confinement
comes about through strong singularities in A(k)
as k-0.

In Sec. III the types of configurations of A',(x) in

a four-dimensional non-Abelian gauge theory which
are necessary for confinement are discussed. It
is then shown that such field configurations do not

obey the classical Yang-Mills equations. In fact,
in the low-k part of A(k), the violation of the equa-
tion of motion is as large as can be for the magni-
tude of A(i,). Such configurations must be con-
sidered strongly quantum mechanical.

Finally, there is nothing in the present paper
which forbids one from obtaining confinement from
special A„configurations, as for example from
merons. All that is being said is that such config-
urations, at least in their long-wavelength struc-
ture, do not obey classical Euclidean field equa-
tions.

II. TWO- AND THREE-DIMENSIONAL MODELS

OF CONFINEMENT

In this section a brief review of two- and three-
dimensional models of confinement will be given.
The object of this discussion is to compare and
contrast the mechanism causing confinement in
these two cases. In Sec. III it will then be argued
that mechanisms like that which causes confine-
ment in the two- or three-dimensional models can-
not be the cause of confinement in a four-dimen-
sional Yang-Mills theory.

A. Two4imensional model

This model has been discussed by Callan, Dash-
en, and Gross. ' The model is a two-dimensional
Euclidean electrodynamics of a scalar field with
Lagrangian density

&=(& +igA„)p*(8 igA„)p+-m'p*p
—X(P *P)' 'Il—

The sign of the m'P*P term has be'en taken to cor-
respond to spontaneous symmetry breaking for
m'&0, which is assumed in the following. The
classical minima of —S(P,A) = fZ(x)dx correspond
to P~ =(m'/X)'~'=v. g may be chosen to be real.
The classical zero mode corresponding to changes
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of phase of (t) becomes a, massive mode of A„with
mass'= 2g'v' quantum mechanically. The P field
has a mode of mass'= 2m'.

In addition to the quantum mechanics generated
perturbatively, there are quantum effects corre-
sponding to nonminimal, but classically stable,
configurations of A and P. Such configuration are
instantons, and in two-dimensional scalar electro-
dynamics they are formally identical to the Niel-
sen-Olesen' vortices. For large x and y, in the
Lorentz gauge, these vortices look like

A„(x) =a—,y', =(A„,A„),gx +g

&P(x) = ve"'

with 8= tan '( y/x). This corresponds to a vortex
located at x=(x, y) =0. As shown by Callan, Dash-
en, and Gross the dominant semiclassical config-

urations contributing to fX)[A]K)[(t)]e '"e~' cor-
respond to simple superpositions of vortices when
g is small. Callan, Dashen, and Gross then show
that these semiclassical configurations correspond
to A fields which confine charges that are not in-
tegral multiples of g. A variant of this argument
will now be given which will be in a form to illus-
trate the general discussion to be given in Sec.
III.

Consider the quantity

fr[A]n[(t)]exp[ S(-A, (t)) iqg f+ dx]

15) [A ]X) [(!)]exp [-S(A, p) ]

where P is a square path in the (x, y) plane of side
length l. E is assumed to be large compared to
both vortex sizes and intervortex spacings. In the
thermodynamic limit one may break the (x, y)
plane into two parts corresponding to the. interior
and exterior of the square path P. Then we ob-
tain

Z= a[A]$[([)]e-s(~,e)

ll ~[&(x)]~[p(x)]e *'""J,.[ ~I&(x)]~[p(x)l"'""
xCP zap

while

ZPZP ~

Z'= n[A]D[p]exp(-S+(qq 4 qx)
P

ll x![x(x)]xi]q!!(x)]exp( qeiqq w ~ qp) ll xi[six)lq)]p(x)]e'=z'x~.
PxEP x l[r. p

Thus, we obtain

ZPIP=-
Zp

and

Z ~ e-(n +t? )$0 grn++n

t? +tt?»-0

and also

gq Q e2!piq()
p ( P)

with

Then we obtain

g7t? + tl
0'y t?~ tl

jl(o P) e ()qq e)q )sp
f S ~

t? +) ?? "-0

P
e"&t?++t? )$0

t5+ q 8~ ~

t? ~t? =0

AN&-NSD

[(X+o)/2]! [(X—o)/2]!

g7t? ~ +t? e2tt? Q(t?+ t? )

n, (n ) is the number of vortices (antivortices).
8, is the action of one vortex, and W=(l/$)' is a
two-dimensional volume normalized to the size of
the vortex, g.

Now write

If N= 2We o is the average number of vortices in

P, then

!"(& P) - 212N

Z (2]]X)'~'

for ~o/N~ small, while for )[o/N~ large we obtain
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Then we find that

p, (o Q) e2« e~= e. -n- cos 2))a)7r
P

0' a OQ

as found by Callan, Dashen, and Gross.
The rapid decrease of IP comes about because

p(o, P) is an entire function of o which decreases
with real o on a scale set by WN. In terms of po-
tentials this is equivalent to saying that essentially
all configurations that are important in evaluating
Z have a coherence length of l or longer. This lat-
ter statement can be seen directly by computing
the two-point function in the presence of vortices.
The 1/g' contribution is'

where y and y' label vortices. (s)„ tells whether
a vortex or antivortex is present, and x„ is the
position of the vortex y. It is assumed that
(x -x')' is much greater than the typical intervor-
tex spacing. Then

&„( )„( .
)&

*n'~e g ( — .4 (

Suppose all vortices are limited to a volume V with
an average density p. Then Qz-p fd' ~x, and

)A' ( )) 2p d2 6$))&j (x xy)y(x xy)

In summary, then, confinement comes about be-
cause every important &, configuration has'

A dx = O(w'i 2)
+ -P

whre zv is the area enclosed by P.

B. Three-dimensional model

The three-dimensional model of confinement dis-
cussed by Polyakov' is a three-Euclidean-dimen-
sional Georgi-Glashow' model. The Lagrangian
density is

yyl2
&(x) = [(s t)„+g&.,pAQA']'+

2
4'@'

where the sign is chosen so that m'&0 corresponds
to spontaneous symmetry breaking. Choose &p')

= q~„, then 4'„remains a massless vector meson.
The instantons of this theory are th~ 't Hooft'-
Polyakov' monopoles. In the gauge where &P') re-
mains oriented in the a= 3 direction there is a
singularity in A' and in V x A' parallel to the z ax-
is. In order to calculate Euclidean Green's func-
tions in the weak-coupling limit one must include
field configurations involving monopoles and anti-
monopoles much as in the two-dimensional model.

However, there is an essential difference from
the two-dimensional model: In the two-dimension-
al model the large field fIuctuations causing
&A(x) A(x'))- p ln[V/(x —x')'], for example, come
about from a statistical placement of vortex and
antivortex positions. Indeed, in a volume V= I'
an estimate, missing only the logarithm, for
&A(x)A(x')) can be made. Consider a typical con-
figuration. In this typical configuration the ex-
cess of vortices over antivortices is ~X
='+O((pV)'~'). Then A(x) is equal to AN divided by
the distance of x from a typical vortex. Thus we
obtain A(x) =O(op), and A(x')A(x') =O(p). In the
three-dimensional model a random placement of
monopole and antimonopole positions would give
a typical excess of monopoles over antimonopoles
as LN=+0((pV)~~~), and typical long geavelength
values of H=V&A' as

III = o()) v)'& —,= o))AIL)'&').I 2

However, now these long-wavelength contributions
carry action, and the typical action in the long-
wavelength part of the fluctuation is

aS=O((p/L)V) =O(pL').

This ~S is too large to allow such fluctuations. In
fact monopole density and H-field fluctuations are
both short-range correlated. This is just the state-
ment that the Polyakov model really is a plasma
while the vortex model has a random distribution of
vortices.

One can see roughly, how confinement comes about
by the following argument: (A little later a precise
calculation will be outlined. ) Take the gauge where
a monopole at the origin has the form

(A A A) —( y"
x'+) ' (x'+) '+ z')'")

Consider g f~A„(x)dx", where I' is a square path
of side length l centered about the origin in the
x-y plane. Only those monopoles or anti~onopoles
lying in or near the cube of side length l centered
about the origin contribute to exp(ig f~A 'dx).
(Note that monopoles lying far down on the nega-
tive z axis give a contribution of e "=1.) We must
then estimate the excess of monopoles, over anti-
monopoles in this cube. Call this excess 4N. Then
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hN= H dS,
8

where the integral goes over the surface of the
cube mentioned above, and where the string-like
singularities of V x A are ignored in computing~¹~N is estimated, then, simply by calculating

1 H dS, where S, is a surface the size of one of
the faces of the above cube. Let us take S, to be
a square of side length l in the (x, y) plane. Then

2

H, (x, y, 0)dx dy

do p(o, P)e",

where

and

f5) [A] e ~ '~'5(g 0(A, P))

fg) [A] e-s(A)
(2)

where I' is a square path of side length /, A„
= 2&'A'„, and 8 indicates a path ordering of the in-
tegral in (1). The theory is discussed in the
Euclidean region of x„. One can w'rite

d'x d'x'(H, (x, 0)H,(x', 0)) .

If P is a. magnetic potential such that H= —Vf, one
can write

8(»)' d'x d'x', , (y(x, z)y(x', z))
e =0~

where (p(x)p(x')) is the correlation function of the
magnetic potential in a monopole-antimonopole
plasma. Owing to Debye screening (Q(x)P(x')) is
short-range correlated and so r N' ~ l2 and»~
0- /. Thus the typical excess of monopoles over
antimonopoles is of order / inside the cube, and so
exp(ig f A dx) = e'o'". This is a sufficiently largeP
phase to allow confinement.

One can actually see that confinement must take
place by realizing that the expectation of
exp(ig J A dx) in a monopole plasma, is the sameI
as the expectation of exp(i f&,d'x) in a, charged
plasma, where Zl is the interaction Lagrangian for
a closed monopole current loop interacting with an
electric field of the plasma. The closed monopole
current loop can be described by a scalar poten-
tial E = —VQ, if a singular surface bounded by P
isincluded. Because of the Debye screening, the
surface carries action and the total action is mi-
nimized by taking the surface to be the minimal
one attached to I'."" The interaction action is
proportional to the area of this minimal surface
and one has a finite-size-string model. "

III. FOUR-DIMENSIONAL PURE YANG-MILLS THEORY
I

In this section it will be argued that a pure SU(2)
Yang-Mills theory cannot confine charge by means
of long-range fluctuations in a. semiclassical ap-
proximation.

A. Nature of the A'f fluctuations necessary for confinement
P

Consider

Jn[A]e ~'~' —,
' Tr8 exp(ig J A dx)

fn[A] e

6 exp ig & dx =cos6 &, I'
P

+i 7 8(A, P}sin6(A, P).

p is a positive-semidefinite even function of 0.

normalized so that J do p, (o', P) = 1."
If the pure Yang-Mills theory confines, lnI- $' "as l ~, where y( &. Constant factors and

logarithmic factors of / have been ignored. Thus
confinement means

d)p, (),P)e'" ~ exp(-l' "),
00 $ -+CO

and the normalization is

did(5, P) =1.

It can be concluded then that it ($, P) is analytic at
( = 0 for large values of l and hence that essentially
all configurations have values of &(A, P) on the or-
der of l' '.

Let A(x) be a, field configuration such that 8(A, P)
is of size l' ' for almost every square path of side
length l. Further, suppose that the theory is de-
fined in a volume of size V= L'. . Fourier coeffi-
cients of A(x) are defined by

A(k) =
~v

dx e ""A(x),

and the Fourier expansion is

A(x}= ~ e'~"A(k)1

VV a

We suppose that a Lorentz gauge can be found such
that momentum-space Green's functions approach
a finite limit for nonexceptional momenta as
U- ~, though this may require singularities of
A(x) at isolated points. We also suppose that very-
high-frequency contributions are convergent and

do p, (o, P)e" ~ exp(-l' &) .
a

Define o'= )l' ", and g($, P) =P 'g(g/' ', P). Then
we obtain
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can be ignored in this gauge. The magnitude of
~A'„(k}

~
can be established by the following esti-

ma'te: for 0+0,

As k varies on a scale of 1/I, A(k) takes on ran-
dom pha. ses in the above sum, so, for example,

A'„(k)A'„( —k) =— dx dye l)(x-+ iI)))Aa(x)A()(
0 +Z/~

A(k) = O((V/l4)'~')

= Jt Cx e '""(A;(x)A'(0))
Thus we obta, in

A-,(x)Px = O(1). (Ba.)

(When a & b the above equation must be interpre-
ted as the left-hand side having a rapidly varying
phase as k varies over scales of the inverse
length of the universe. )

The above relation uses

fKl [A ]8 iA (x)A (0)

f/[ A]e s(A)

dy A'„(x+ y)A„'( y),
1

where the A'(x) in the final expression can be any
reasonable contribution to the functional integral.
It will be further a:ssumed that h(k') k ""as
k-0 (see Appendix) where nonpower dependences
are neglected.

Define a mixed representation having only one
component, say x„Fourier transformed:

A(x, k,) = dx,e "0"()A(x)
1

We a,iso obtain

A.-„'(x)(f'x = O(l')

A-, '(x)d x=O(l).

Analogously, we define

A~(x, xo) =—Q e'"()"OA(x, ko).
WI Idol& a

Then one easily finds

A-,(x,x,)dx, = O(1},

A-,'(x, x,)Cx, = O(l),

(Bb)

(Bc)

A-,'(x, x,)dx, = O(1). (4c)
A(x) = g e'"o"oA(x, k,).

1

Wi,

Then we obtain

A;(x, k,) A„'(x, —k,)

dxo(fyoe '"0"o" o~o A'„(x,x,) A~(y, y )

dxoe '"o"o(A'(K, x )A (0, 0)).

Define A~(x) by

A~(x) = ~ e'""A(k).
WV (a ( - )(

Consider the integral over a large square box of
side length I having L/I »1. Then we obtain

A-(x)de=- p A(k f)d);e'"*~~~ (a (=Ã

1 . ~ A( }+2sink I

I)) ((l a K

Equations (B) and (4) show that large Fourier
components give no sizable contribution when
A(x) or A. '(x) is integrated over a, large volume.
All long-wavelength coherences are in the small
Pourier components. Consider now the ordered
integral

8 exp tg A. '4c

over a "square" path of side I. (Since A may have
point singularities, the path may involve small de-
tours so as to avoid the singularities. ) From Eq.
(4) an integral such as f A dx receives contribu-

Ptions of O(1) from the large Fourier components.
In the Appendix the contributions of large Fourier
components to 8 exp(ig f A ~ dx) are also shown to
be much too weak to lead to confinement. [Such
components only give &(A, P) = O(l). ] Thus, the
small Fourier components are the ones related
to confinement. In particular, as shown in the
Appendix, in order that &(A, P) be of size I' " it-is
necessary that ~A'„(k)

~
be of size k "' for small

k and for some a and p.
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B. The equations of motion

In part A of this .section we have seen that to get
e(A, P) to be of order P " it is necessary that
~A'„(k)

~
be of order k "' for small k. It will now

be shown that such a behavior, for y &1, is in-
compatible with the classical equations of motion,
and that the violation of the classical equations of
motion is large. The equations of motion are

~abyb 0
V PV

In the Lorentz gauge we obtain

g'(AaA+bb AaAb Ab)

The integral equation corresponding to this differ-
ential equation is

—2Ab( y) B„A'(y) ]

). [A~(y)A,', (y)A', (y)

—A:(y)At(y)A.'(y)] .

(6)
An estimate of the size of the two integrals on the
right-hand side of Eq. (5) can easily be made in
momentum space, where one has

A'„(k) = ——'b; Q [Ab(k —k, )A„'(k,)k,„—2Ab(k —k, )A'(k, )k,„]
~V

—
V k, Q [Aa(k, )A„'(k,)Ab(k —k, —k,) -A'„(k,)A'„(k,)A'„(k k, k,)].

kltk2

The integral equations are illustrated in Fig. 1.
Now consider the first term on the right-hand side of Eq. (6). The large-k, contribution is

(6)

A'„(k —k, )Aa(k, )k,„~O(~v),
lk l&T

since e,b, (A'(x)AB(x)) = 0, and the absence of long-range fluctuations means that a random approximation
should be a good estimate of the k sum. The small k, contribution is, for small k,

Ab(k k )Ac(k )k Q q g Ab(k k )Ac(k )k (, O(k-a+ar(Vk4)1/a} ~yk 1+ar

klgk kl "k+ 0 (k)

The ( Vk')' ' comes from a random approximation
for the Vk modes in the region k to k+O(k).

For, , the second term on the right-hand side of
(6) we obtain

while

lk l, lk2I & k

I I

A'„(k,)A„'(k,)Ab(k -k, k, ) - O(V),

A;(k, )A "(k )A'(k k —k, ) & O(k-""Vk')
kl=k + O(k)

k =k +O(k)2"

Thus the dominant term on the right-hand side of
(6) is of order k '" and this is not consistent with
the classical equations of motion. The 0 ~" term
on the right-hand side of (6) cancels only if
~A„(k)

~

= u,a, that is, in the Abelian situation.
However, a dominant small-k Abelian configura-
tion is not consistent in nonleading order. In order
to get

A;(k) = O(k-'")
k~o

one must add a source term, J;(k). Then one gets
the integral equation illustrated in Fig. 2. In order
to get ~A;(k)

~

= O(k "') for small k it is necessary

and regions where, say, k, =o(k) with k, large
contribute

A;(k, )Ab(k, )Ab(k —k, —k, ) =O(Vk' ') .
l k) I = O(k)

lk l&k
2

»k »k »k

FIG. 1. An illustration of the cia,ssical Yang-Mills
equation where the circles represent A&(k).
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irk ir k irk

k9

ir k

or

=A(X) 8(X).

FIG. 2. An illustration of the classical Yang-Mills
equation with a source. The circles. represent A~ (k)
and the square represents J~~ (k}.

In the above A(X) 8(X) =A'„(Xv)v„e'(X). This can be
integrated to give

that
I
J'„(k)

I
= O(k "'). In fact, the source is com-

pletely determining the long-wavelength structure
of the theory in such a case. This might corre-
spond to a situation of confinement in Yang-Mills
theory with strong quantum effects, but is outside
of a semiclassical approximation. This is to be
compared to the three-dimentional Polyakov mod-
el, where the field equations become exact in the
low-density limit" although the collective coordin-
ates do not have values which make -S a minimum.

—,'8'(X) = A(A. r) 8(Xr) dX r.

—.'8'(x, ) = p
A(x, x',) 8(x,')dx,'.

Writing

i,k x8(x ) =— 8'"p"pe(k ),
~1- k,

Now let us take z along the xp direction so that
8= 8(x,), a.nd
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APPENDIX

Write
r- Xu

6 exp ig A(x)dx = cose(X)+i7 ~ 8(X) sine(&)
4 p

= M(A. ),
where z, is a fixed unit vector, and the path be-
@veen 0 and Xv„ is taken to be a straight line.
Then,

dM(X) = igA „(Xv)tr „M(X).

This means that

d8
dX
—=A'(Xtr) 8'v

ei ( pk+ pk)xp (8k ) 8(kl)

ei (kp+ k~p) ~ rr

A(x, k,) ~ e(k,).
k k'

p p

Now if

I e(x,) I
= o(x '

)

then

e(k,) I
= o(k,-'i" ).

p

For
I
8(k, '~'") the above equation requires that

A(k, k,) = O(k ' '").

k~p

If only high-frequency parts of A(k, k,) are included'
in the above equation, then one would obtain

(kp) I
= O(k 'i')
p

and

e(x,)I = o(l).
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8
6 exp ig A« =cos 0~g+&~ '0~sin 00,g

mrhich gives a unique 6~& for a direct path when P is
near e, to define 8~& for a contirsuous motion of P from
e around the path P andback to n again. This definition

of 0(A, P) is precise although, vs pointed out to me by
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rnigAt appear that a magnetic source exists as the
center of the monopole.


