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Explicit currents in SU(5) and K7 unified gauge theories
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Explicit currents generating the SU(5) and E7 Lie Algebras are constructed out of the quark and lepton
fields appearing in the appropriate representations of these groups. The diquark-leptoquark structure of the
currents involved in baryon-lepton transitions is exhibited, and it is pointed out that the diquark currents are
related to color and flavor currents through Pauli-Giirsey transformations. In the SU(5) case, the u and d
quarks are found to have charges +2/3 and —1/3, respectively, as an inevitable result of the way
SU(2) p U(1) is embedded in SU(S). The E7 currents are obtained by using Majorana leptons which can be
related to Weyl leptons through an SU(6) generalization of the Pauli-Gursey transformations. The
dependence of diquark charges and algebra upon the assumed statistics for the basic quark and lepton fields
is also discussed.

I. INTRODUCTION

The bold proposal of unifying strong, electro-
magnetic, and weak interactions with a single
gauge group was initially put forward by Pati and
Salam' and by Georgi and Glashow. ' In the. first of
these, SU(4) is the color gauge group, with leptons
representing the fourth color. In the second ap-
proa. ch, color is described by SU(3) only and lep-
tons are classified as color singlets. In both
schemes, leptons and quarks are placed together
in representations of the unifying gauge group,
making transitions between baryons and leptons
inevitable in principle, albeit sufficiently rare in
practice through the choice of extremely large
masses for the intermediate bosons involved. If
the second alternative is adopted with the usual as-
sumptions of permanent color confinement and
fractional quark charges, new currents which have
diquark as well as leptoquark components are
needed to realize a baryon-lepton-number-violat-
ing process. In contrast, diquark currents are not
mandatory in the Pati-Salam approach, where the
quarks have integer charges as well as the leptons.
However, it is interesting that an independent the-
oretical motivation for the existence of diquark
currents has been given by Nambu, ' who, observed
that a system of massless fermions automatically
admits Pauli-Gursey' transformations as an addi-
tional internal symmetry and that these are gener-
ated by diquark currents.

In this article, which is largely a continuation of
an earlier work, ' we will not concern ourselves
with the Pati-Salam alternative since our interest
mainly centers around diquark currents. In Ref.
5 unifying vectorlike simple supergroups of the
SO(k), SU(k), and Sp(k) for all k as well as the ex-
ceptional types are sought such that the generators
of the supergroup consist of those of the SU(n)
x SU(3) subgroup, plus a set of diquark-leptoquark

charges whose number can be fixed by the assump-
tion that the diquarks are generated by Pauli-
Gursey transformations. The only solution to the
Diophantine equations (quadratic in both n and k;
n ~ 30) thus set up is found to be n= l, leading to
the supergroup SU(15). This model suffers from
the fact that it involves at least 84 four-component
leptons. On the other hand, as shown in Ref. 5,
the exceptional groups G„F„and E, have the
correct number of generators for the cases n= 1,
n = 3, and n = 6, respectively. Naturally, obtaining
the correct number of currents is a necessary but
not sufficient condition for establishing that these
currents are the generators of the corresponding
exceptional groups: it must be verified in addition
that they generate the appropriate I ie commutator'
algebra. In Ref. 5 this was done for the cases of
G, and F,. In the present article we construct
charges bilinear in quark and lepton fields belong-
ing to low representations of SU(5) and E, and
prove that these charges (some of which are of the
diquark-leptoquark variety) satisfy the commuta-
tion relations of the above groups. The SU(5) ex-
ample of Sec. II is interesting in that it does not
fit into the general treatment of Ref. 4 by virtue of
not being vectorlike. We also show that the com-
mutation relations of SU(5) and the standard Wein-
berg' model currents for. the leptons inevitably re-
sult in charges —', and ——', for the u and d quarks,
respectively. The factor of one third in the quark
charges is a direct consequence of choosing the
color grouP as SU(3).

We treat E, in Sec. III. E, charges and their
commutation relations have recently been obtained
by Gursey and Sikivie, ' who take the fundamental
56-dimensional representation of E, to consist of
left-handed spinors. In contrast, in our approach
which uses Pauli-Gursey transformations to gen-
erate the (15*,3)+ (15, 3*) parts of the E, genera. —

tors, it is more natural to use a Majorana repre-
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sentation and Majorana leptons. With our E,
charges the commutation relations are satisfied
only if the Majorana leptons obey a somewhat un-
usual anticommutation relation. This is easily
shown to result if the Majorana leptons are given
by a particular Pauli-Gursey combination of Weyl
leptons. In Sec. IV we draw attention to an obser-
vation of Nambu' that an algebra involving diquark
charges qq or q q~ depends crucially on the choice
of Bose or Fermi statistics for the quarks and lep-
tons, unlike algebras generated by normal q~q

charges which are insensitive to such a choice.
We show in particular that the SU(5) charges and
commutators are unchanged when Bose statistics
is assumed while the changes resulting in the al-
gebras of the exceptional groups can be compen-
sated for by additional applications of the chiral
[exp(io y,)] Pauli-Gursey transformations. Finally,
we present some concluding remarks in Sec. V.
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for the purpose of illustrating how the algebra is con-
structed. Inthe above, I„It —= (1+ y, ) andi)t'—= y, )tined

the representation that we will employ. The repre-
sentations 5* and 10*are obta, inedby P —P', L —A.
The charges Q~ (A. = 1, . . . , 24) of SU(5) are then com-
binations of the entries of the 5 x 5 matrices, which
we can indicate symbolically by

II. SU(5) CHARGES AND COMMUTATION RELATIONS

The SU(5) algebra can be generated by charges
built of only electron-type leptons (v„e) and a
single isodoublet of tricolored quarks (u;, d;; i
= 1, 2, 3). If a more physically realistic spectrum
is desired, the doublets (v„, p, ) and (c, , s, ) can be
trivially incorporated by, analogy to the previous
set of particles. Hence, we mill stick to the mini-
mal set,

T,'= dv t(u'u, +d'd, ) --', 5,'(u"u, +d" d,)], (4)

while the SU(2)~ charges are obviously

dv(v e~+ujd;~), (5a)

dv(v v —el, el. +ututl. —dldtl) .B I i i (5b)

The "hypercharge" operator Y should have the
form Y = Y„„,„,,+ Y«.«. We will take the leptonic
part of this U(1) generator as in the 1967 Wein-
berg' paper, '

Yl,pt „, = dv( —epeR —pv v -pel. eg),t

so that the leptonic electric charges are expressed
as

(7)=W@ leptonic I leptonic leptonic

The quark charges should also be given by an
equation as (7) but the generator Yq„„k is not de-
termined yet. It will emerge from a particular
commutator of two SU(5) charges when ii'~ and

pt ', are separated off from the right-hand side.
We will then see that this operator added to + Qq

gives the charges+ —,
' and ——,

' to the u; and d,
quarks. Let us now turn to the diquark-leptoquark
charges. The proper combinations out of (2) that
lead to the closing of the SU(5) commutator alge-
bra are

d~ vy, d;~+u;L, y,e&+ ~;„,. u„'y, d'I. , 8a

E, -=dv(eely, d, R+d;zy, eR —et»u„y, ui), (8b)

where the first and second entries in (, ) denote
SU(2)~ and SU(3)„i., transformation properties,
respectively. From (1) and (2} and the definitions
of 5* and 10* in the above paragraph, the construc-
tion of the charges i.s now straightforward. The
color charges are trivially given by (note the dis-
tinction in covariant and contravariant color in-
dices)

Q, ~ (5n y, 5, L0*y,10). (2) E'=— dv(dRy, el +eRy, d~+e'™nu y, ul~), (9a)

3 x3=(1,8)

2 x3 diquark-
leptoquarks

To ensure commutation between the color SU(3)
charges and those of SU~(2) x U(l), the matrices
Q& must have the block-diagonal form

3 x2
diquark-

leptoquarks
3

N —= dv(dRy, v + eely, u~ —e™d~y, u~).. (9b)

The minus signs in (8) and (9) come from the
very well-known fact that under SU(2)~, (dg, -ul)
transforms as (u~, d~). Note that (8) and (9) behave
as (2, 3) and (2, 3*) respectively under SU(2)~
x SU(3) giving the transformation properties of all
24 SU(5) generators under this group,
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g - exp(io'y, ) 0,

(11a)

(lib)

on the quark fields in Eqs. (4) and (5). In particu-
lar, using (11b)' together with (11a) cancels the y,
matrices, giving

(12)

When (4) and (5) are subjected to (12), the resulting
diquarks have color content 3*+6+3+ 6*, of which
only the 3 and 3*parts are physically relevant
since they transform the same way as the lepto-
quarks. We will see in Sec. III that Pauli-Gursey
transformations are more suitable for a derivation
of the E, charges than they are in this case.

The SU(5) commutators of (4), (5), (8), and (9)
now follow in a straightforward way from the anti-
commutation relations of the spinor fields,

[T,', W 1
= [T,', W ] = [T,', Y] = 0,

[zV, , N, ] = [E;,E,] = [N;, E,] = 0,

[N;, E'] = -5';(dz. u»~+ e~v) -=-O;'Wz. ,

[N;, N' ] = -5,'. W~ + 5; Y —T,'

[E,, E'] =5,'. (Wi+ Y) T', -
=5;(-e e+ —,u u» —id d») —T;,2 k' 1 l

[T,', Ei ] = 5, E' ——,
'

5,' E',

[T,', N, ] = -O', N, + —,
'

5,' N, ,

[W~, E;] = [W~, N'] = 0,

[Wi, N;] = -E;,
[W;, E'] =N',

[W, N;] = =N;,
J.W. E*l =-'E .

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(2 5)

The commutation relations which have been left
out are derivable by Hermitian conjugation from
the above. I et us briefly point out the significance
of these equations. (13)ensures the familiar strong-
interaction conservation laws since color and weak
charges commute. The right-hand side of (14) ha. s
to vanish since the algebra would not close other-
wise: 2~ '&21 gives 3~+1~, neither of which is
present in the set of (10). In (18), the term pro-
portional to 6,'- is simply the charge operator,

J (1, 8) + (3, 1) + (1, 1) + (2, 3) + (2, 3 *)}. (10)

The diquark-leptoquark structure is clearly evi-
dent in (8) and (9). The diquark parts of the above
charges are a subset of the diquark operators that
can be derived by applying the Pauli-Gursey trans-
formations

g-a)+by, ( =a(+by, y, g* (lal'+ lbl'= 1),

III. E7 CHARGES AND COMMUTATION RELATIONS

A. Derivation in the Majorana representation

E, has a maximal subgroup SU(6) && SU(3),
where the former factor can be assumed to cor-
respond to the flavor and the latter to the color de-
gree" of freedom. ' The 56-dimensional funda-
mental and the 133-dimensional adjoint represent-
ations can be decomposed with respect to this sub-
group as"

56 = (6, 3) + (6*,3*)+ (20, 1),
133 = (3 5, 1) + (1, 8) + (15, 3 *) + (15"', 3) .

(27)

(28)

Obviously, the three terms in (27) are respec-
tively to be thought of as quarks, antiquarks, and
leptons while (28) represents 35 color-singlet
weak, electromagnetic, and superweak currents,
8 gluons, and 90 diquark-leptoquarks. The group
can be taken as vectorlike, which means that there
is a right-handed current for each left-handed one,
but this does not necessarily imply that the weak
neutral current is purely vector. As we will see
below, Pauli-Gursey transformations are espe-
cially well suited for an explicit construction of
the charges when the group is vectorlike. Let us
denote quarks by q, , where o. and i are flavor
and color indices, and leptons by the completely
antisymmetric multiplet L &&. Antiparticles will
be shown by upper indices. Then, as a first step,
we can trivially write down the color generators,

«(q q» —s ~»q (29)

We will use a Majorana representation with an
antisymmetric y, in this section. The transforma-
ti ons (11) thus become

q; -aq; +by5q' (30a)

from which the charges of the M and d quarks can
be read off as + -', and ——', . It should be noted that
this result is ob'tained ivithout the use of the Gell-
Mann Ni-shijima relation Q =T, + (B+S)/'2 or the
assignment of strong in-teraction flavor qua&ztum

numbers to quarhs In. fact, in that approach the
color degree of freedom z si'rrelevant to the charge
assignments, zvhereas here the factor of one third
results directly from the fact that the color group
is SU(3). The equations (19)-(25) simply state that
the E', N, , etc. transform as (2, 3) and (2, 3*) un-
der SU(2)z, &&SU(3). Finally, the expression for
Y„„„„is obtained from Eqs. (16) and (1'I),

q»»k
=+ z zzu;zz

—
& dRdzz+ 6 (uzuiz +dz dzz) .

(26)

This clearly commutes with W~, W~ as it should.
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if; a exP (~ &'Y g) if i a y (30b)

since (if;„) = q'" in our representation. Applying
(30b) together with (30a) allows

in correspondence to (21). Thus we can derive two
new types of color-triplet diquark charges by sub-
jecting (29) to (30a) or (31). These are

this is the only representation common' to both (28)
and the decomposition of (15,3*)&& (15,3*). Indeed,
with a = b = 1, normal quark anticommutation rela-
tions, and the relation

~.a, (o) ~„,.(x)+ I„,.(x) I a, (o) =~ a„..r, 5'(x)

(36)

for the lepton fields, we obtain the E, commutation
relation

Iij
D~B 6 d5 Q'; ~ysQ'g8,

kijD 8-e dvg';~/;~ ~

(32) 1
[qi » q'. a] =-'-av, -ap."""q!'

The remaining E, commutators can be worked out
similarly with the following results:

q~a=««if;~rs&ia+& «q 'l a (34)

Here a and b are coefficients that will be deter-
mined by the requirement that the algebra closes.
Because of the transposition of fields in Hermitian
conjugation, the (15*,3) charges must have the
form

dv lp""q, p.

(

The commutator of the generators of (34) must
either vanish or be proportional to (15*,3) since

Equations (32) and (33) correspond to different
flavor multiplets: Since we are assuming that the
quarks obey fermion anticommutation relations and
since y, is antisymmetric in this representation,
the antisymmetry in color, common to both
charges, forces (32) to consist of the antisymme-
tric part of 6 X6, i:.e. , 15*; while (33) constitutes
the 21-dimensional symmetric part. Comparing
these with (28), we see that (32) and its charge
conjugate belong to the (15, 3*)+(15*,3) sector of
the E, generators while (33) has to be excluded
altogether. In fact, there is no other simple group
which has 35+ 8+ 2 && 3 & 21 parameters, hence,
(33)-type charges cannot be used in any such the-
ory. It should be emphasized in this context that
the above argument, which links the y matrix and
Qavor structure of the charges with the statistics
of the basic fields, is peculiar to theories employ-
ing diquark currents In con.trast, any SU(n) flavor
or color algebra can be generated by q'q, .-type
charges independently of whether the quarks obey
Bose or Fermi statistics. This aspect of diquark
charges has been first pointed out by Nambu' and
we will analyze it more extensively in Sec. IV.

We can now turn to constructing the full diquark-
leptoquark charges by adding a leptoquark part
with the same (15,3*) transformation property onto
(32),

[q„'„,q» ] = (5ii5p —5~5„)C»
&Hq ~a6 gp+ 6 ~ '

~pvpmae" I] r

[C,', Fq] =0,
[Ci qi ) 5i q 5 q~i

[Fa qi. l =~."qai -"i qa. +'~aq .i~

(38)

(39)

(40)

(41)

The commutators not shown here can be derived
from the above by Hermitian conjugation. In the
preceding equations Fa are the (35, 1) flavor
charges defined by

Fa = «[il qa —~65a(q cfog.) + I . I a~ ]

where

~of Hy j. - O'Bye v p
~6 ~5 pvp

(42)

(43)

It should be noted that leptonic currents consti-
tute part of the flavor currents just as the usual
SU(2)~ weak currents have quark and lepton com-
ponents. The properties of (36) and (43) ensure
that the last term in (42) is pure (35, 1).

B. Connection with earlier work

The relations (37)-(41) have first been given by
Sikivie and Gursey, ' who use only left-handed
fields for the fundamental 56-dimensional repre-
sentation. As a result, the explicit expressions of
their charges in terms of quark and lepton fields
differ from ours especially for the diquark-lepto-
quarks of Eqs. . (34) and (35). In the following, we
will briefly indicate how the expressions in Ref. 7
can be recovered from (34)-(36). First of all,
when passing from the Majorana representation to
the Weyl representation the y, in (34) and (35)
must be replaced by p / ~ Now let us consider the
diquark part of (34) as an example and decompose
the fields into their left- and right-handed com-
ponents,
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I jjD g
—=e dvq;~y, y, q, g

dv(q;'. + q;.) ~.r, (q,'8+ q', 8) (44)

1
l~gr = ((ugr+ 6 Ys'Y2 &ngrurn4

V2
(46)

' It should. be noted that since the Weyl representa-
tion is now' being used, (36) should have y,y, on
the right-hand side instead of y, . With the rela-
tion

dv(q n r2q;8 —q; 'Y2q;8) ~
Iij L R R L

/

Since z,q,.z is the left-handed field (q~z~)r, used in
Ref. 7 it is clear that (45) is nothing but the di-
quark term in Eq. (A10) of that work.

Next we will show that the seemingly anomalous
anticommutation relation (36) is in fact just the
normal one for a Pauli-Gursey-transformed Weyl
field. Let us introduce Weyl fields (~8„, also
transforming as (20, 1) under SU(6) x SU(3) and
related to the 1 ~, through

dependent of a particular exchange symmetry.
Indeed, because of the same reason, q'q, . makes
up the representation (n' —1)6 (1) independently
of the choice of statistics. Nambu' has suggested
that the situation in principle can be entirely dif-
ferent in an algebra involving diquarks 1 dv q'1'q',
J' dvq, .l"q;, as permutation symmetry now becomes
relevant between two fields both carrying upper or
lower indices. Here I" denotes a combination of

y matrices and the fields can of course have more
than one index corresponding to color, flavor, etc.
In Ref. 5, I' is specified b~T the assumption that
the diquark currents originate from the application
of Pauli-Gursey transformations on normal color
and flavor currents. Thus, in a Dirac-Pauli or
Weyl representation, I"=y,y, if (11a) is applied
single, or 1 =y, if it is combined with (lib). y,y,
and y, are respectively antisymmetric and sym-
metric real matrices. Considering quarks with
SU(n) flavor indices o., t..' and SU(3) color indices
i,j we can now see that

(50)

,t, gv17 1 fW+q0fgy, t,L—6~ &e8& & (47)

which is Eq. (A9) of Ref. 7, and the normal anti-
commutation condition, rin —1 n n+1

(51)

= —', ~"'""~,„„„,6'(x), (48)

it is easy to verify that (46) obeys (36) in its Weyl
representation form with y,y, on the right. It
should be noticed that (46) is itself a special Pauli-
Giirsey transformation of the form (lla) with
a= b= 1/v 2 properly generalized to incorporate
SU(6) internal symmetry. Substituting (46) in the
leptoquark part of (34), we obtain the leptoquark
terms in (A10) of Ref. 7.

IV. STATISTICS AND DIQUARKS

Although the spin-statistics theroem" dictates
the type of statistics according to the spin of a
given field, it is interesting that at the level of
current algebra a set of spin- —,

' fields q,. (i = 1,
2, , , n) and their conjugates q' generates the
same U(n) algebra, ,

(49)

through the integrated charge densities T&
= J dv q'q, , regardless of whether the fields obey
Fermi or Bose statistics. This is perhaps not
too surprising since the fields q' and q, in T,'- are
not subject to any permutation symmetry that iden-
tical particles must obey, the result in (49) is in-

with Fermi statistics, while

q -yyq8. , 6 e 3 (52)

rin —1 rin+1
(53)

with Bose statistics. These of course simply fol-
low from the requirement that the product of inter-
changes connected with permutation symmetry
(statistics) of the fields, the y matrix, flavor, and
color indices be symmetric, since the bilinear
diquark forms vanish otherwise. Thus we see
that the flavor-crolor representation content of
diquarks does indeed depend on quark statistics,
unlike the situation with q q currents. In a "real-
istic" unified gauge theory with Fermi statistics
for. spin ——,

' fields, diquarks are only present in
association with leptoquarks which transform as
3 and 3* in color space. Hence in such a theory
only the first term of (50), the second term of (51),
and their Hermitian conjugates need be considered.
We have shown in Ref. 5 that color-triplet (51)-
type diquarks are parts of the generators of the
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l 8,(0)f,„,(x) —f,„,(x)l ~,(0) = c,„,„,y, 6'(x), (54)

where the y, can be replaced by the identity if a
Majorana representation as in Sec. IGA is used.
Similarly, the 0, and F~ algebras ean be generated
by commuting quarks, generators as in the second
term of (52) with n=1 and n=3 respectively. The
proofs of these statements involve nothing but
straightforward evaluation of commutators wi~

quarks and leptons obeying obvious commutation
relations.

V. SUMMARY AND DISCUSSION

We have explicitly displayed all the physical
currents that enter into the unified gauge theories
SU(5) and E, in terms of the quark and lepton
fields characteristic of these groups. Since the
forms of color octet and color singlet currents
in such theories are immediately obvious, the

6, and E4 for ~ = 1 and n = 3, respectively. On the
other hand for n= 6, the first term of (50) is mere-
ly the E, diguarks of Eg. (32) where the y, is miss-
ing on account of the Majorana representation used
there.

Now let us return. to analyzing how the commu-
tator algebras of SU(5) and E, are affected if Bose
statistics is ascribed to the quarks and leptons.
Considering SU(5) first, it is clear from the ob-
servations at the beginning of this section that the
generators and the algebras connected with the
SU(2) z, && U(1) && SU(3)„„,subgroup will be unaf-
fected by a change of statistics. Observing that
the diquark parts of the remaining diquark-lepto-
guarks (8) and (9) are built of two "nonidentical"
fields in the sense of the fields always having op-
posite handedness, we may again expect statistics
to be irrelevant. Indeed, it is obvious from (8)
and (9) that these generators will respectively
transform as (2, 3) and (2, 3*) under SU(2)~ x U(1)
x SU(3) even with Bose statistics. With some
more work one can easily verify that the SU(5)
commutation relations (13)-(25) are obeyed with
commuting as well as anticommuting quark and
lepton fields.

The situation with E, is somewhat different.
The diquarks here must transform as (15, 3*)
+ (15*,3) under SU(6)„„„&&SU(3)„„„i.e., both
the flavor and color representations must be anti-
symmetrie. Thus with Fermi statistics we must
use the first term of (50) and with Bose statistics
the first term of (53), both with n = 6. The former
is of course the operator in Eq. (32), leading to the
algebra (37)-(41) when the lepton fields obey (36).
However, it is an interesting fact that the latter
leads to the same algebra if the lepton fields
commute according to

really novel element in this paper is that the spe-
cific diquark-leptoquark structure of the remaining
generators is obtained and exhibited. It is worth
stressing again some special aspects of diquark
currents first observed by Nambu. (i) Given a
theory with a particular color (3 flavor symmetry
generated by the usual q'q-type charges, a larger
internal symmetry is automatically present if the
fermions are massless —this is the Pauli-Gursey
symmetry generated by diquark charges of the
form qq and q'q'. Since these charges have been
seen to constitute parts of the generators of a
unifying supergroup, one can view their Pauli-
Qursey origin as additional theoretical support
for the necessity of combining the strong, 'electro-
magnetic, and weak interactions within a single
gauge group. (ii) A theory involving diquark cur-
rents may depend intricately on the statistics of
its basis fields unlike theories generated only by
qtq-type currents, where the algebra is the same
whether the fields obey Fermi or Bose statistics.
From the results of Ref. 5 and this work we also
have the conclusion that when SU(n)„,„„xSU(3)„„,
groups are enlarged to unifying supergroups by
the addition of color-triplet diquark-leytoquark
generators, the only possible such groups turn
out to be G„F„E„andSU(15), where the last
contains 7 quark flavors and 84 leptons. Since
E, follows from similarly enlarging the group
[SU(3) && SU(3)]„,„„xSU(3)„„„it appears that
all exceptional groups other than E, involve di-
quarks, and their generators decompose as flavor
charges 6 color octet charges 8 diquark-lepto-
quarks.

Finally, we will briefly compare some out-
standing mathematical and physical aspects of the
guage theories SU(5) and E,. The SU(5) color
triplet and antitriplet diquark-leptoquarks trivially
commute among themselves as can be seen from
(14), whereas the corresponding charges in E,
generate the richer noncommutative algebra (37).
This can perhaps be regarded as an aesthetic point
in favor of the latter group. A somewhat more
serious mathematical advantage of E, is that it can
accommodate all the relevant quarks and leptons
in its fundamental representation while even the
minimal set of particles requires the use of both
5- and 10-dimensional representations with SU(5).
Related to ttus property is the situation that the
total number of quarks and leptons in E, is fixed
at the outset, " in contrast to SU(5) which can ad-
mit arbitrarily many quark and lepton weak doub-
lets as long as anomalies'~ cancel.

In regard to the physical processes described
by the two groups, the main difference is the pres-
ence of flavor-changing neutral currents in E,.
While the corresponding intermediate bosons have
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to be made extremely heavy (with masses around
10' GeV), this feature also allows for a natural
incorporation of a superweak" mechanism of CJ.
violation into the theory. On the other hand, within
SU(5), superweak results can be very effectively
simulated via the Kobayashi-Maskawa" scheme
by the use of six flavors of quarks and six leptons.
Because of the success" of this simulation„ it is
unlikely that an experimental choice between the
two alternatives will be possible in the near fu-
ture. However, if no parity violation at the ex-
pected level is seen in atomic physics'" experi-

ments, new right-handed currents outside the
SU(5) model will be necessary. Z„being vector-
like, '" can naturally accommodate this phenomen-
on.
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