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Propagation functions in pseudoparticle fields
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The Green s functions for massless spinor and vector particles propagating in a self-dual but otherwise
arbitrary non-Abelian gauge field are shown to be completely determined by the corrresponding Green's
functions of scalar particles. Simple, explicit algebraic expressions are constructed for the scalar Green's
functions of isospin-1/2 and isospin-1 particles in the self-dual field of a configuration of n pseudoparticles
described by 5n arbitrary parameters.

I. INTRODUCTION

The existence of classical, pseudoparticle solu-
tions' in non-Abelian gauge theory has profound
implications for the structure and physical conse-
quences of this theory. The classical pseudopar-
ticle solution in Euclidean space provides a tunnel--
ing path which yields a finite quantum transition
amplitude between different would-be vacuum
states characterized by a vanishing field-strength
tensor but with a nontrivial gauge field. Thus the
true vacuum state in non-Abelian gauge theory has
a rich structure. ' 4 The pseudoparticle solution
may provide a resolution'~ of the "U(l) problem"
by removing the unwanted Goldstone boson from a
theory which has an-apparent chiral-phase sym-
metry. Pseudoparticle solutions may also provide
a mechanism for quark confinement. "

Clearly, it is important to develop the dynami-
cal theory of fields quantized about classical pseu-
doparticle solutions. The first part of this pro-
gram entails the determination of the nature of
the small fluctuations of such quantum fields.
This involves the calculation of propagators
(Green's functions) for particles moving in the ex-
ternal field of a pseudoparticle. The small fluc-
tuation of the non-Abelian gauge field and its as-
sociated "ghost" field correspond to the motion
of spin-1 and spin-0, massless particles. Had™
ronic matter is presumably described by the inter-
action of these fields with those of spin- —,', mass-
less particles (quantum chromodynamics). In this
paper, we shall present explicit and simple alge-
braic formulas for the Euclidean propagation func-
tions of massless particles with spin 0, 2, and 1
moving in the external, classical, non-Abelian
gauge field of any pseudoparticle solution. A
brief account of some of our results has already
appeared. '

The pseudoparticle solutions that concern us are
characterized by field-strength tensors which are
either self-dual or anti-self-dual. We begin our
development by showing that the propagation func-

tions for massless spin-z and spin-1 particles
moving in a self-dual or anti-self-dual but other-
wise arbitrary gauge field are determined explicit-
ly by the propagation functions of the correspond-
ing massless, spin-0 particles. This is a com-
pletely general result which holds for any gauge
group; the only restrictions are that the field
strength be self-dual (or anti-self-dual) and that
the particles be massless. The spin-& case will
be worked out below in Sec. II and the spin-1 case
in Sec. III. Thus we will need explicit expressions
only for the propagation functions of massless,
spin-0 particles moving in pseudoparticle fields.

The pseudoparticle solutions, and the propaga-
tion functions in these external fields, are de-
fined in Euclidean space-time. We shall work
entirely in Euclidean space in this paper. More-
over, we shall restrict our discussion of the spin-
0 propagators to those in a SU(2) gauge field.
The original pseudoparticle solution' approaches
a pure SU(2) gauge transformation at infinity, with
the gauge transformation covering the SU(2) group
once as the field point at infinity covers the S,
hypersphere once. The gauge field has a topologi-
cal character described by a winding number (or
Pontryagin index) l. Thus the solution is referred
to as the field of one pseudoparticle. Its field-
strength tensor is self-dual. There is another
solution giving a similar mapping of the S, hyper-
sphere once onto the SU(2) group, but with the
points on S, mapped to the inverse group elements.
This is the antipseudoparticle with winding number
-1; its field-strength tensor is anti-self-dual.
The general solution with n pseudoparticles or n
antipseudoparticles covers the SU(2) group n times
as the field point at infinity covers the hypersphere
S, once. It has winding number +n (with a self-
dual or anti-self-dual field-strength tensor). The
general solution is determined by 8n parameters'
(three of which designate a global gauge orienta-
tion). Of these Bn parameters, 4n determine the
positions of the n pseudoparticles, w describe
their sizes, and Sn fix their orientations in the
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SU(2) gauge space. Explicit n-pseudoparticie so-
lutions have been constructed' in terms'of 5n para-
meters"; these solutions do not contain the Sn
parameters needed to fix the gauge orientations
of the pseudoparticles. We shall construct explicit
and simple algebraic expressions for spin-0 propa-
gators in this somewhat restricted n-pseudopar-
ticle (or antipseudoparticle) field. The construc-
tion for isospin & will be carried out in Sec. IV and
that for isospin 1 in Sec. V.

We discuss our results in Sec. VI. Here we note
that-the spin-~ and spin-1 propagation functions
decrease more slowly at large distances than do
free propagators. At large distances the spin-2
propagator is of order 1/x' in contrast to the
O(1/x') behavior of the free propagator. Similar-
ly, at large distances the spin-1 propagation func-
tion is of order 1/x while the free propagator is
O(1/x'). This slowly vanishing character of the
propagators in pseudoparticle fields is a gauge-
independent property; it may significantly affect
physical processes occurring in pseudoparticle
fields.

II. SPIN 2

We turn now to the construction of the massless
spin--& propagator in a self-dual or anti-self-dual
but otherwise arbitrary non-Abelian gauge field.
We shall use simple operator techniques to ex-
press this propagator in terms of the correspond-
ing spin-0 propagator. Before considering the
spin-& propagator, let us first establish our nota-
tion and conventions. We work in Euclidean space-
time, and use skew-Hermitian Dirac matrices

. y» y» y» y4 =iy' obeying the anticommutator condi-
tion

Dz =&z —iT,A„,(x), (2 'I)

where A„(x) is the non-Abelian gauge field. By
virtue of Eq. (2.6), this derivative obeys

[D„,D,] = i T,F„„—, (2.8)

ere

F„„(x)= BqA„(x) —S„A„,(x)

+f...A „,(x)A „(x) (2.9)

is the non-Abelian field-strength tensor. Now,
using Eqs. (2.1), (2.3), and (2.8), we find that

-(rD)' = D'+ z&~vTvF~vv .

Let us suppose that F„„is self-dual,
d
+j1Va.

= ++pija ~

(2.10)

(2.11)

Then, according to Eqs, (2.5) and (2.10), we have

project into spaces of definite chirality, y5' =+1.
The formula (2.5) shows that the spaces of definite
chirality reduce the representation of the O(4) al-
gebra generated by 0„, into the direct product,
O(4) =SU(2) SSU(2).

We shall consider the spin- & propagation func-
tion in the non-Abelian field of an arbitrary gauge
group specified by the real, completely antisym-
metrical structure constants f„,. The spin- —,

'
field belongs to some representation of the gauge
group with generators specified by Hermitian
matrices T, which obey the commutation relations

(T„T,] =if,„,T„
where a sum over repeated indices will always be
implicit. The gauge-covariant derivative D„ is
defined by

{y„,y, f =-25„,. (2.1) (2.12)

Hermitian Dirac matrices y5 and 0» are defined
by

y5 yl ~2y3 y4

(with y,
' =+1) and

&z. = z i[y„, r.] .

(2.2)

(2.3)

1fv v z e
v vAgf x gy. (2.4)

where c „~„ is the completely antisymmetrical
tensor with e»„=+1. A simple exercise in the
Dirac matrix algebra shows that

The dual of a skew-symmetrical tensor f„,=-f, „
is defined by

since the oz,F» term arising from Eq. (2.10),
when acting on the chiral projection matrix —,(1
+y, ), is equal to -'o„„F„,= &~, 'Fz, = -o„,F-z, and
thus vanishes. It is this simple statement [Eq.
(2. 12)] which will enable us to relate the massless
spin- & propagator to a massless spin-0 propagator
in a self-dual, non-Abelian gauge field. In order
to keep our notation clear, we shall write out the
development for the case of a self-dual field. The
anti-self-dual case is obtained simply by changing
the sign of y„y5--y5.

The massless spin--, propagator S(x, y) has a
formal representation as sum over normal modes,

1+y5 ~ 1 +y5 (2.5)
(2.13)

The matrices &„, are generators of the Euclidean
O(4) rotation group while the matrices z(1 +y, )

with mode functions g„of eigenvalues A„,

yD)„= A „P„. (2.14)
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There are, however, a finite number N of zero-
mode functions" g„o), satisfying

gator obeys the Green's function equation

)"DS(x, y) = Q(x, y), (2.19)
yDy(o) () (2.15)

Since the matrix y, anticommutes with ya, the
zero-mode functions ((t„o can be chosen to simul-
taneously diagonalize y„ i.e., they can be chosen
to be chirality eigenstates. Now if we multiply
the zero-mode equation (2.15) by yD we get, by
Eq. (2.10),

(-D' —o(J»„T,Fq„)g(o) =0. (2.16)

lf g„" has positive chirality, y, g(o) =+/(o), then,
according to the discussion following Eq. (2.12),
&„,E„,g(o) vanishes. In this case there can be no
zero-mode solution to Eq. (2.16) because the re-
maining operator, -D', is essentially a positive
operator. (See Brown et al. , Ref. 8.) Hence the
zero-mode functions must have negative chirality,

g(o) g(o) (2.17)

4.(x)4.'(y)Sx, y =
n n

(2.18)

where the prime on the summation sign indicates
that the zero modes (states with )(„=0) are to be
deleted.

It follows from Eq. (2.18) that the spin- —,
' propa-

In this case, the -&&~,T,E„„contribution in Eq.
(2.16) no longer vanishes and, in fact, presents a
negative potential energy in appropriate spin-iso-
spin states. Thus, Eq. (2.16) can appear as a
Schrodinger equation at zero energy for a particle
moving in a negative potential, an equation that
may possess square-integrable solutions. As
shown rigorously in Ref. 11, there are indeed a
finite number of these solutions.

None of these zero modes can appear in the mode
sum representation of the propagator, Eq. (2.13),
if the propagator is to exist. Note, however, that
the quantum transition amplitude with spin-&
fermion fields involves a factor of Det yD=QA„
times the propagation function for some number,
k, of spin-& Fermi particles. The latter, k-par-
ticle propagation function is formed as an anti-
symmetric product of & two-point propagators,
det» S(x„,y„), corresponding to the Fermi statis-
tics of spin-& particles. On account of the factor
Det yD, the quantum amplitude will vanish unless
A ~ N and all N zero-mode states are included in
the k-particle propagation function. By virtue of
the complete antisymmetry of the determinant
(the Pauli principle), the remaining k-N particles
in det» S(x, y„) cannot be in zero-mode states.
Thus the propagation of these remaining particles,
the particles with which we are concerned, is de-
scribed by a propagator

@(x y) = (x-y) -Z 0'"(x)P'"'(y) (2.20)

with the summation running over all the zero-
mode functions. The quantity Q(x, y) represents
the projection operator into the subspace of all
nonzero modes, the complement of the zero-mode
subspace. It also follows from Eq. (2.18) that the
spin- —,

' propagator is orthogonal to all the zero-
mode functions,

(d, 'x) y(o) '(x)S(x, y) = 0. (2.21)
&'

The Green's function equation (2.19) and the ortho-
gonality constraint (2.21) serve to define the spin-
—,
' propagation function S(x, y).

A construction of this propagator is easily
achieved with operator techniques. We write the
function S(x, y) as the matrix element of an opera-
tor 8,

s(x, y) = &xlsly& . (2.22)

-D'L(x, y) =&(x- y),

as the matrix element of an operator I/-D',
(2.23)

I
a(x, y)=(x, y). (2.24)

We now assert that the operator expression of the
spin- & propagator is

1 l-y,
+ —--,-yD--

The proof of this assertion is quick. We multiply
Eq. (2.25) by yD and use Eq. (2.12) to get

yDS =q,

where

(2.26)

D y5 (2.27)

Now Eq. (2.26) implies that Q contains no zero
modes since these modes are annihilated by yD.
On the other hand, using Eq. (2.12) again, we find
that

yDQ = yD (2,28)

Similarly, we write the corresponding spin-0 prop-
agation function A(x, y), which is defined by
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Hence q is the operator which projects into the
subspace of all the nonzero modes, and we have

q(x, y) =(x)q~y), (2.29)

qS =S, (2.30)

which is tantamount to the constraints (2.21).
The matrix elements of Eq. (2.25) express the

massless spin-& propagation function in a self-
dual but otherwise arbitrary non-Abelian gauge
field in terms of the corresponding massless,
spin- 0 propagation function,

s)&, &) &&&"a(») ( =')

+a(x, y)yD" (2.31)

(Note that when the symbol D„acts to the left,
D&, it involves the derivative ~& with its sign re-
versed, -S ~.) Equation (2.31) expresses the
pl lnclpal result of this sectloYl. The spin-g propa-
gator in an arbitrary anti-self-dual field is ob-
tained from Eq. (2.31) by changing the sign of the
y, matrices and using the appropriate spin-0 prop-
agator.

where q(x, y) is the function defined in Eq. (2.20).
The matrix elements of Eq. (2.26) thus reproduce
the Green's function equation (2.19), and therefore
the matrix elements of Eq. (2.25) produce a spin-&
propagation function which obeys this Green's func-
tion equation. [Incidentally, it is a. simple matter
to use Eq. (2.12) to check directly that the defini-
tion (2.27) does obey the projection property
q' = q. ] It remains to be shown that the assertion
(2.25) gives a propagator which is orthogonal to all
the zero modes, i.e. , a propagator which obeys the
constraints (2.21). This, however, is immediate,
for Eq. (2.12) implies that

in all variations of the action. We shall study the
small fluctuations &f&~, of the gauge field about the
classical solution,

A„, =Acq), + p„, . (3.3)

Inserting this decomposition of the vector potential
into the field-strength tensor [Eq. (2.9)] and ex-
tracting pieces quadratic in Q„ from the resulting
action [Eq. (3.1)] yields the small-fluctuation, vec-
tor-field action

g W~ =-2 d~ x ~
-D &~, —2F~

+(1 —I/()D D,]4, . (3:4)

(F) u)ab =facbF, Dc &

and used the commutation relation

[D„,D,] =F, ,

(3.5)

(3.6)

which follows from the fact that the structure-con-
stant matrices

c ab acb

obey the relation

ay b abc c ~

(3.7)

(3.6)

From the definition [Eq. (2.9)] of the field-
strength tensor, it follows algebraically that the
dual tensor F&„obeys

d
DI ab Fpv, b =0 (3.9)

Hence any gauge field with a self-dual (or anti-
self-dual) field-strength tensor F„„=+F~„pro-
vides automatically a solution of the field equa-
tions

Here and henceforth we omit the superscript cl
on the classical fields A&', F„"„and on the corre-
sponding gauge-covariant derivative D'„'. We have
also adopted a matrix notation with regard to group
indices +, &, . . . , defined

III. SPIN 1

DII abFjf Ijb 0 0 (3.10)
The non-Abelian gauge field is governed by the

action

g'W=- d4x -' F '+ -D" Ajf Ija
2~ pa

(3.1)

D)')I&)& = s )&5a)& +fac)&A)')e & (3.2)

where the vector potential A",describes a classical
solution of the non-Abelian field equations and is fixed

With our normalization of the gauge field [cf. Eq.
(2.9)] the coupling constant g appears as an overall
factor. Here we have chosen a "background
gauge" specified by the parameter (: The operator
D,"„is the gauge-covariant derivative

Moreover, by a suitable gauge transformation,
we may impose the background gauge condition

)

D~abA~ =&~Aqa =0. (3.11)

In general, a continuously connected family of
- self-dual (or anti-self-dual) fields exists, labeled

by some set of continuously varying parameters.
[For example, if A&(x) yields a self-dual. field-
strength tensor, then so does the translated field
A„(x —z), where z„are four constant parameters. ]
Thus, given a self-dual (or anti-self-dual) field,
we can take its derivative with respect to one of
its parameters to get a small-fluctuation field
which is also self-dual (or anti-self-dual). More-
over, an infinitesimal gauge transformation can be
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added to this small-fluctuation field to bring it
into the background gauge. We find that any self-
dual (or anti-seLf-dual) field will support some
number of zero-, mode fluctuation fields P~'~, ,
s = 1, 2, . . . , N, satisfying

D y(s) —0 (3.12)

and the field equation which follows from the ac-
tion (3.4),

(D'&„s+2Fq,) P~„'~ =-0. (3.13)

In the background gauge, the fluctuation fields
&j&,
' are square integrable, " and their. contribution

to the spin-1 propagator must be deleted just as
the zero modes were deleted from the spin- —,

pr'dpagator in the preceding section. Thus, ac-
cording to the action (3.4), the spin-1 propagator
G„,(x, y) in an arbitrary self-dual (or anti-self-
dual) field obeys the Green's function equation

-[D'6,~+2+,~- (1 —»&)DP.]G~.(x, ~) = @,.(x, y),

(3.14)
where

S=z

(&) ~ (&) y (3.15)

projects onto the space of the nonzero-mode func-
tions. (We should note that the zero modes play a
different role here from that in the spin-& case.
The zero modes in the spin-1 field are accounted
for by the introduction of appropriate collective
coordinates. ")

The vector propagation function in an arbitrary
self-dual (or anti-self-dual) field can be con-
structed in terms of the corresponding scalar-field
propagator using simple operator techniques akin
to those employed in the preceding section for the
spin-2 propagator. To proceed with this construc-
tion, we note that

Ppuks 4 ( pX us pK uX eysXK) (3.16)

projects out the self-dual part (P
'

) or anti-self-
dual part (p~ ) of an antisymmetrical tensor. We
now define

PfJVXK 1 K PflsXKZ[ Xg K] 2+pll''
(~) (+)

Hence

{ljgs D 6p s+2Eppy

(3.19)

(3.20)

which expresses the field equation operator (with
$ =1) as the bracket operation on the identity [cf.
Eq. (3.4)]. Second, we use the commutation rela-
tion of the gauge-covariant derivatives [Eq. (3.6)]
and the se1f-duality property

1

u vxg Fxg +Fu v

to establish that

Dq{Xji'~~ =D XD

and

{Xj„",D, =D„XD'.

(3.21)

(3.22a)

(3.22b)

(8 (~)
2 +uv(yKpa Cp~By Mu v~qg) ~

Hence,

Xu v~'~8k. 8 A. Xu v~KBX 2FgA = 0

and we secure the bracket composition law

(3.24)

(3.25)

(3.26)

Henceforth, so, as to achieve a simpler notation,
we shall consider only self-dual fields and delete
the superscript (+). (The treatment of the anti-
self-dual case is obvious. )

The construction of the spin-1 propagation func-
tion G~„(x, y) can now be quickly performed with
the aid of these operator techniques. We assert
that G„,(x, y) has the formal operator realization

1
+

u U

Third, we make use of the algebraic relation
proved in the Appendix:

(~) 0) (8 (~)
&u os& ~ ~8 ~&u ++u (3.23)

Here x„', ,&q is a numerical tensor whose detailed
structure need not concern us; we need only the
fact that it is antisymmetrical in its last pair of
indices, and that its duality character in this
last index pair is reversed:

(~) (4)
~u vX. K u v Xg 4Pu vA. K

and, for an arbitrary operator X,

{Xjp. &g.~ D~XD . -

(3.1'l)

(3.18)

(An alternative derivation of this result is sketched
in the Appendix. ) To prove this assertion, we first
observe that

(Some motivation for the introduction of the brack-
et operation is presented in the Appendix. ) This
bracket operation has several useM properties
when the field E&, is either self-dual [for the (+)
brackets] or anti-self-dual [for the (-) brackets].
First, we note that whence

= -{1j~~ D~+(1 —1/k)D„D'

= -(1/~)D, D', (3.28)

[—D'6p~ —2&p~ t(1 —1/h)D„Dx] Dg
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[-D'5„g —2F„g+(1—1/()Dq Dg]Gg,

=~i~„,I(,.) I
=~.. . (~.2w

by'

ie( )
2gg pg (x z)p

(.)

(x-z)'+p' (4 1)

Q„, = (I/D']„„. (3.30)

where a =1, 2, 3 is the SU(2) group index and q~'„
is antisymmetrical in p, v,

The quantity in square brackets on the left-hand
side of Eq. (3.29) is the field-equation operator
which appears on the left-hand side of the Green's
function, Eq. (3.14). Thus, we will have proved
that the operator G„, given by Eq. (3.27) is a
formal operator realization of the spin-1 propa-
gation function G&, (x, y) if we prove that Q&,
[cf. Eqs. (3.29) and (3.30)] is an operator realiza-
tion of the projector Q„,(x, y) onto the nonzero
modes, Eq. (3.15). The proof that Q„, is the cor-
rect pro jection operator proceeds exactly as in
the spin- & case discussed in the preceding sec-
tion. Since Eq. (3.29) expresses Q„, as the field
equation applied to some operator, Q„, itself can
contain no zero modes. On the other hand, it fol-
lows from Eqs. (3.20), (3.26), and (3.30) that

(D'5„g+2F„g)Qg„=(l)„g(1 D/'}~

(+) (&)
Ojf va 9vpa s

with

(') =
Ik la ~Ala

and

8)
Ok4a ka .

(4.2a)

(4.2b)

(4.2c)

The (+) superscript denotes a pseudoparticle solu-
tion which has a self-dual field-strength tensor
while the (-) superscript denotes an antipseudo-
particle solution which has an anti-self-dual field-
strength tensor. (These self-duality properties
will become evident in the following. ) The four
constants ~ ~ parametrize the position of the
pseudoparticle and the fifth constant p parame-
trizes its si.ze.

It is convenient to introduce the Hermitian 2 & 2

Pauli spin matrices 7, which obey

=D &~v +2F~v, (3.31)
a ~, = ~aj) +2Eagc7c y

and define the matrix field

(4.3)

which implies that Q„, contains all the nonzero
modes. Hence Q„, is indeed the correct projec-
tion operator. [Incidentally, the fact that Q„, is
a projection operator, Q„qQ q„=Q„„ follows im-
mediately from Eqs. (3.26) and (3.30)].

There are problems with the formal operator
construction (3.27) for the spin-1 propagators.
These problems arise from the convolution inte-
gral that defines the matrix element of the opera-
tor (1/D')',

g() g(e (4.4)

7„=(r,i), re =(r, i), -
which have the useful properties

(+)
7' ~v ~jf v +20jf vaja

and

(4.5)

(4.6a,)

It is also convenient to introduce the four-vector
symbols

(')' (dz'z)S(x, z)Z(z, y).
(-)

7jf gv jf v +Z 7/pvara ~

The coordinate- dependent matrix

(4.6b)

(3.32)

At large distances (z ' —~) the spin-0 propagator
h(x, z) behaves as 1/z ' and the integral in Eq.
(3.32) diverges logarithmically. We shall discuss
this difficulty in Sec. VI after we have derived
explicit forms for the spin-0 propagators A(x, y)
in specific pseudoparticle fields.

IV, ISOSPIN 2 SCALAR PROPAGATORS

Here we shall construct explicitly the massless,
spin-0 propagation function with isospin 2 in the
self-dual (or anti-self-dual) SU(2) gauge field of
n pseudoparticles. First we shall review some
properties of the pseudoparticle fields. The vec-
tor potential of a single pseudoparticle is given

2 Tif Xg
Q(x) (4.7)

is a unitary matrix

n(x) ' = n-'(x), (4.8)

Hence, the matrix form (4.4) of the pseudoparticle

which connects each space-time point with an ele-
ment of the SU(2) gauge group in a particular way:
As the coordinate x„ranges once over the S, hy-
persphere x' =const, the matrix A(x) covers the
SU(2) group space once; this mapping thus has
winding number +1. It follows from Eqs. (4;6) that

(4 9)
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solution (4.1) can be expressed is

A (x)=, , n(x-z)(,) (x —z)'
(x —z) +p

x iBqn(x —z)". (4.10)

This form shows immediately that at large dis-
tances the vector potential approaches a pure
gauge transformation,

A'„'(x) = n(x)"iB„Q(x)".
~2 -+ (e

(4.11)

Thus, the pseudoparticle potential A(')(x) provides
a mapping with winding number +1, and the anti-
pseudoparticle potential A

&
)(x) provides a inapping

with winding number —1. .

In order to motivate the construction of the n-
pseudoparticle solution, we first gauge transform
the single pseudoparticle solution [Eq. (4.10)] so
that it vanishes more rapidly at infinity,

A(„') (x) = Q(x —z) "[iB„+A(„')(x)]n(x—z)"

2
(~) p= -nova ~v ln 1+ (x- z)

(4.13)

The solution in this gauge is singular at x„=~„.
This singularity arises because the gauge trans-
formation matrix Q(x —z) is singular at x~ =z~ in

the sense that its value at this point depends upon

the direction in which the limit && =~& was ap-
proached. Nonetheless, since the singular solution

[Eq. (4.13)] can be gauge transformed into a regular
solution [Eq. (4.10)], the singular solution is an

acceptable one. In view of the structure of Eq.
(4.13), it is natural to try the form'

A „,(x}= -q~~',), B,lnII(x), (4.14)

for a general n-pseudoparticle solution. This will
be a solution to the field equations if the field-
strength tensor

F
& va

= BpAva vAp a + &abcA& bA v c (4.15)

is self-dual (or anti-self-dual), i.e.,

Pp vi)(: FXI(;a (4.16)

where the projection operators P ' are defined in
Eq. (3.16). The symbols ))~('„define transformation
matrices that take the three independent compon-
ents of an antisymmetrical, self-dual (or anti-self-
dual) tensor into a three-vector labeled by the in-

(x- z)'
1—,, Q(x- z) 'iB~Q(x —z)&1 &1

(x- z}'+p'

(4.12)

We use Eqs. (4.4) and (4.9) to write this as

~(s 2p (y) (x z)p
(x —z)'+p' "~" (x- z)'

dex a. Thus they decompose the 0(4) rotation
group into its SU(2) SSU(2) subgroups. Indeed

( &) 1 ( &) ( &)
ppvXK 4. Ipva9 Xya y (4.17)

and the conditions (4.16) are tantamount to the con-
ditions

(4.18)

The g„'„symbols play another role. They are iso-
morphic to the generators i T, of the SU(2) group
since

( &) (+) (8
0+aOv Xb ab pv + ~abc0p vc . (4.19)

Inserting Eqs. (4.14) and (4.15) into the self-duality
condition (4.18) and using Eq. (4.19), we find that
it is satisfied if

11(x)-'B'11(x) = O. (4.20)

If the function II(x) approaches unity at large dis-
tances, then the vector potential (4.14) will vanish
at infinity. Hence, a general solutiong of Eq.
(4.20) is given by"

n
2

11(x)=1+ P
8 =1 s

(4.21)

A(&) (x) 2 (v) ( s)v"&- (x-z,)' . (4.22)

If we write the vector potential in a matrix nota-
tion and use Eq. (4.9), we see that this singularity
has the structure of a pure gauge transformation,

A(')(x) - Q(x —z,) "is„n(x-z,)".
S

(4.23)

Hence, these singularities of A(',)(x) can be re-
moved by a gauge transformation"

)

A"'(x) = U"'(x) '[iB +A,"'(x)]U" (x), (4.24)

if a unitary matrix U"'(x) can be found which obeys
for all z„s=1, . . .,n,

U"'(x) = Q(x —z,)"R,"'(x), (4.25)
S

with R(')(x) a unitary matrix that is regular at x

This describes an n-pseudoparticle configuration
specified by 5n parameters: 4n position variables
z,„and n sizes p, . It is not the most general n-
pseudoparticle solution, for the latter involves'
8n parameters, with Sn additional parameters
specifying the gauge orientation of each pseudo-.
particle. [Specializing to n =1 we recover the solu-
tion (4.13) and hence, by the gauge transformation
(4.12), verify that the vector potential (4.1) is the
regular, single-pseudoparticle solution. ]

The n-pseudoparticle solution (4.14) is singular
at each of the pseudoparticle positions, i.e., as
+~~Sf I
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=z,. Such a matrix U"'(x) obeying Eq. (4.25) can
be constructed, and thus the divergences in A"'(x)
can be removed by a gauge transformation. In-
deed, for a single pseudoparticle, n=+i, we have

U" (x) = Q(x —z,)",
for two pseudoparticles, n =+2, we have

(4.26a)

x Q(x- z,)", (4.26c)

and so forth. Note that this construction shows
that the U"'(x) matrix for +n pseudoparticles cov-
ers the SU(2) group +n times as the space-time
coordinate x ranges once over the surface of a
large hypersphere S, that encloses all of the
pseudoparticle positions z,. Since as x'- ~,

A,"'(x)- U"'(x) 'is, U"'(x), (4.2V)

we find explicitly that the vector potential has a
winding number M. We should remark that al-
though the gauge transformation (4.24) does re-
move all the divergent pieces of the vector poten-
tail, there remain "singularities" in the trans-
formed potential A "'(x) involving ill-defined quan-
tities of the form (x —z)„[(x—z,)'] '~'. These weak-
er singularities, however, cause no trouble in that
they do not give rise to singularities in the action.

With this lengthy introduction completed, we now
proceed with the construction of the massless,
spin-0, isospin- —,

' propagation function &"'(x—y)
in the presence of the pseudoparticle, field A,"'(x)
[Eqs. (4.14) and (4.21)]. This propagator is defined
by

U"'(x) = Q(x —z,)"Q(z, —z, )"Q(x —z,)", (4.26b)

while for three pseudoparticles, n= +3, we have

U"'(x) = Q(x —z,)"'Q(z, —z,)"Q(x —z,)"'

x Q(z, z,)"Q(z, z,)"Q(z, z,)"

short-distance singularity as the free propagation
function,

{+)(x 7 y) ~
4v2( )2 (4.32)

F&"(x,x) = 11(x). (4.34)

Inserting the decomposition (4.33) into the Green's
function equation (4.28) and using Eq. (4.31a) and
the fact that

11(x) "'5(x- y)ll(y)"'=5(x- y),

we get

(4.35)

~s [ri(x)4z'(x —y)'] ' 7'sF" (x, y)

(x y) F&+)(

( )2 )y

= 5(x —y). (4.36)

Now according to Eq. (4.6b) we have

78&~8 =8',

and hence.

r (x-y)
TB

2[( ')2]2 5 (x y)

This allows us to write Eq. (4.36) as

(4.37)

(4.38)

to produce the inhomogeneous term 5(x y) in the
Green's function equation (4.28). On the other
hand, the appearance of the factors of II'i" on the
right-hand side of Eqs. (4.31) suggests that A"'(x
—y) should contain a factor of II(x) '~'II(y) '~'.
Thus, we are led to write

F"'&x y&")(x,y) =II(x) '~', ' ', -II(y) '~', (4.33)4v'(x —y)'

where the function F"'(x,y) must obey the boundary
condition

-D")2&"'(x,y) = 5(x —y),

where

(4.28)
~(n( )(*-))'1'('e~"(*,)')

D&'& = s. ,' ir.A &'.&(x)— (4.29)

D'(+&2 —II&127-/II (4.31a)

&i 27~gII"&g /II&~2 (4.31b)

(Here and henceforth we write scalar products
such as r„s, simply as ~s.)

The propagation function must have the same

Utilizing Eqs. (4.3), (4.19). and (4.14), we find that

D""= 5' ——, (5, lnII)'+ i~,q,"„),(8„lnll) 5, . (4.30)

The propagator can be easily constructed because
D"" can be factored. We use Eq. (4.6a) or Eq.
(4.6b) and Eq. (4.20) to secure

x
2 y [F"(x, y) —II(x)], =0.

(x —y

(4.39)
Since 7's has no zero eigenvalues [cf. Eq. (4.3V)],
we conclude that the quantity in curly brackets in
Eq. (4.39) must vanish,

~'sF&'&(x, y) —2, [F"(x,y) —II(x)]=0.(x- y)'
(4.40)

The same first-order differential equation holds
for F' '(x, y), but with 7'~ replaced by 7'„.

We recall that

(4.21)
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and assert that Eq. (4.39) is satisfied if F"(x, y) is
given by

(4.41)

and the relations

~t(x —z,)2 (x —z,) = (x —z,)',

7~(y —z,)v(x z,)2 t(y —z,)

(4.43)

The proof resty on the repeated use of Eqs. (4.6).
They imply that the boundary condition (4.34) is
obeyed [as is necessary for any solution of Eq.
(4.40)]. They also imply that

(y z,)22'(x —z,) + 2(x —z,)(y —z,)r'(y —z,).
(4.44)

Hence, on writing

.t). prtsF~+~(x y) =2 s 'y ' (4 42)(x —z,)' (y —z,)'
(x —y) = (x —z,) —(y —z,),

we get

(4.45)

T (x y) [ ( & ) ] 2 7 (y z ) 7 (x z )

x'(y x,) x'((x- x,) —(y —x,)]I
(x z,)'(y —z,)' (x —.z,)'

&'(y —z.)~ (x —z,)' (y —z,)' (4.46)

which, in view of Eq. (4.42), proves that the struc-
ture (4.41) does indeed satisfy the first-order dif-
ferential equation (4.39). The antipseudoparticle
solution is given by

(x —z,)' (y —z,)'
' (4.47)

2

F("(x,y) =1+, , „,a(x)"n(y)", (4.49)

where, for simplicity, we have located the pseudo-
particle at the origin, z, =. O. Thus, using Eq.
(4.26a), we get

5")x, y) =
Q(x)TlQ(y)21+p2(x2y2)1/2
II"'(x)II"'(y)41r'(x —y)' ' (4.50)

Equations (4.33), (4.41), and (4.47) provide a sim-
ple algebraic expression for the massless, spin-o,
isospin- —,

' propagator s in the field of an arbitrary
configuration of n pseudoparticles or antipseudo-
particles.

We have calculated the propagators Z(2)(x, y) in
a singular vector potential A "'(x) [Eq. (4.14)]. A
regular vector potential A„"'(x) can be obtained by
the gauge transformation U"'(x) [Eq. (4.24)]. The
propagator &(2'(x, y) in this (regular) vector poten-
tail is given by a gauge rotation of &"'(x,y):

&"'(x, y) = U"'(x) '&"'(x, y) U"'(y). (4.48)

For a single pseudoparticle (or antipseudopar-
ticle) it is a simple matter to perform this trans-
formation explicitly. Using Eq. (4.7), we may write

and, employing Eqs. (4.6),

V. ISOSPIN-1 SCALAR PROPAGATORS

We turn now to the construction of the massless,
spin-0, isospin-1 propagation function &,2(x, y) in
a general pseudoparticle field. This propagator
obeys the Green's function equation

-D2„&„(x,y) = 6„6(x—y),

where

(5.1)

(5.2)

In order to simplify the notation, we shall work
out explicitly only the propagation function for the
n-pseudoparticle field in the singular gauge,
A,",(x), and delete the various superscripts that
refer to this field.

To proceed with the construction, we note that
the isospin-& propagator has the- form

m(x, y)
( yy) 4 2( )2 (5.3)

wit'h

-(~). P + Xg+ 2$ „X
( 1 y) '(p2 ~ x2)1/2(I)2 + y2)1/24v2(x y)2

(4.51)

This solution (4.51) was obtained previously" by
exploiting the invariance of the single pseudopar-
ticle field under an O(5) group of conformal coor-
dinate transformations'.
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M(x, y) = 11-'"(x)E(x,y)11-"'(y), (5.4) Since

and F(x, y) =F' '(x, y) [Eq. (4.41)]. The matrix
M(x, y) is Hermitian in the sense that

M(x, y)'=M(y, x). (5.5)

By inserting the form (5.3) into the Green's func-
tion equation (4.28) for the isospin- —,

' propagator,
we find that

D'M(x, y) =4;D,M(x, y),
(x —y),
x —y

(5.6)

M(y, x)D = 4M(y—, x)D~
(x- y)„ (5.7)

where it should be remembered that the derivative
D, acting to the left involves —8, .

We combine two isospin- —,
' matrices 31(x,y) to

form an isospin-1 matrix

W„(x,y) = —,
' trr, M(x, y)r«M(y, x) (5.8)

and express the isospin-1 propagator in terms of
another matrix C„(x,y):

W.„(x,y) C.,(x, y)
4v2(x, y)' 4m'11(x)li(y)

' (5 9)

where here the gauge-covariant derivative refers
to isospin —„the derivative displayed in Eq. (4.29).
The symmetry (5.5) implies that we also have

W„(x,x) =6„, (5.10)

[~„~«]= 2ie,«,~„
and use Eqs. (5.6) and (5.7) to secure

(5.11)

C,«(x, y) 1D', '«) '
)

—— ), trr D M(x, y)T«M(y, x)D

(5.12)
The covariant derivatives on the left-hand side of
this equation refer to isospin 1 [Eq. (5.2)], while
those on the right-hand side refer to isospin —,

' [Eq.
(4.29)]. Specializing to the particular pseudopar-
ticle vector potential

A„(x)= -q,',', s„ lnrl(x), (5.13)

writing M(x, y) in terms of F(x, y) [Eq. (5,4)], and
commuting factors of II(x) with covariant deriv-
atives, we obtain an explicit differential equation
for the unknown function C,«(x, y):

the decomposition (5.9) will produce the inhomo-
geneous term 6,«6(x —y) in the Green's function eq-
uation if C,«(x, y) is regular when x-y. We insert
the decomposition (5.9) into the Green's function
equation (5.1); note that the isospin-1 covariant de-
rivatives acting on W„(x,y) are converted to iso-
spin--, covariant derivatives acting on M(x, y) by
the commutation relation

(5.14)

in which

1 ~811 (x), 1 ~411 (x)K,«(x, y) =
~

tr7, sq 2( )
-vq E( yx) E(Ty«, x) „7p— —

(
. (5.15)

Here we have also used Eqs. (4.6) to introduce the matrices v& and r& We shall. often make use of Eqs.
(4.6) in the algebraic reductions that follow.

The quantity K„(x,y) can be expressed in terms of fairly simple, explicit formulas. First, we note that
since

(5.16)

we can write

K.,(x, y) =Kg(x, y) +Kg(x, y),
with

(5.17)

K,', (x, y)=, trv[sqF(x, y) —2vell (x)v q]T«[E(y, x)aq
'-

2' r sII(x)] (5,18)

K~~(x, y)=, tr&T7eri(x)~„'[E(x, y) II (x)]7[F(y,x)s„-,'Tagtail(x)]

+ T,[S„E(x,y) —,'TSII (x)r~t]v[E—(y,x) -IT (x)]rq7'tSIT (x)j. (5.19)
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11 (x) =I,g P ,
'

S S
(5.21)

7X 7P
F(x, y) =I ++ p, ' X2

Manipulations similar to those done before [cf.
Eqs. (4.43)—(4.45)] give

(5.22)

In order to remove some of the notational clutter,
we define

(5.20)

so that

@,(, )( ) PsPt (-)
stb~~ I » ~I vb~sf ~tv ~

S

and in terms of these functions

(5.28)

K(,"b (x, y) also involves the expression displayed
in Eq. (5.24), and we get

K x )=(2) -16 Q Ps Pt Ps
sb &y 11(x) x 2y 2 (x 2)2y 2 (x 2)2

(") (m )
~ytca Xu)(,X ttc~gvb Ys~ ~ tv '

(5.27)
The y coordinate enters into both K,"b&(x,y) and
K~(2b&(x, y) only through the functions

2

s„Z(x,y) ,'TsII—(x)~t= g p;, Tx,~'„~(x y)~ty,2 . X22y2 s K,"b'(x, y) =8+ 2 2 C,';,'(x)C,',„'(y),
1

st XSXt
(5.29)

(5.23b)

Therefore, the quantity K(,'b& (x, y) involves

)(~(x y)~ ys~b"ysT (x -y)~p = 428 2vbys-pycv(x —y)',

(5.24)

and we get

2 2

sb ( yy) (X2)2y 2 (X2)2y 2

(-) (-)
~ Xva, XsX. tK~ pvb~sp~tv ~ (5.25)

(5.23a)
and

2

&(y, x)s), - 2Tp all (x)=-,', , ry, F(x —y)vptx, .

C„(x,y) = C„(y,x). (5.31)

The differential equation (5.14) for C,b(x, y) has
a driving term K„(x,y) which depends upon the

y coordinate only through functions 4;,b&(y) which
are the antisymmetrical in their indices s and t.
Hence, by virtue of the symmetry (5.31) of
C„(x,y) it can only involve these functions,

1'6

X) t X t X stb

(5.30)
The propagation function is symmetrical under

the interchange of its coordinates and isospin in-
dices and this symmetry must be shared by the
function C,b(x, y),

Using
C.,(x,y) = Q C'„(;,&(x)c„, ,„C'I'„&(y), (5.32)

and

E(x, y)-II(x) =p;, r(x -y)i y, ,
s Xs'&s'

(5.26a.)
with coefficients c„, ,u that do not involve the co-
ordinates x or y and have the symmetries

E(y, x) —II(x) = Z,'
2~y, ~ (x —y),

xt pt
(5.26b) ys& tu turps

ys2 tu san& tu ~rsvp ut '

(5.33)

(5.34)

together with Eqs. (5.23), we find that the quantity After a little calcula, tion, we find that

( ) B„II(x) S II(x) (,)
cc Ivvd cdc Ii(x) Ii(x) sc v vsc(

I

=.-4 ", ,' 4'„';,'(x) + g 2 2 2 esp„[(z„—z,)' —x„2]cs,",(x) + p,ps[(z„—z,)' —x,']@„'g,'(x)) . (5.35)

We now insert the expansion (5.32) of C,b(x, y) in terms of the 4 functions into the differential equation
(5.14) obeyed by C„(x,y), use the explicit forms Eqs. (5.17), (5.29), and (5.30) for the driving term
K,b(x, y) in this differential equation, and identify the coefficients of 4'„(;,&(x)4(„'(y) to obtain a matrix equa-
tion for the constants c„,„,:

I

=c()(a a a a ) "a ~ ~ a "a + va) (ass)
u u V tP
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I

Although this equation involves the coordinate x explicitly, it is solved by constant coefficients c . Thers&u v

solution is of the form

5„„5„—5„„5,„
rsss (& & )s

S

1 1—
( )s P„P„f,„—P„P„fs„PsP—„f„„—+ P,P„f~ ( )s

~

s u v

(5.37)

On substituting this structure into Eq. (5.36), we
find that all the x-dependent terms cancel indepen-
dent of the values of the constants f,„and that
these constants are determined by

+st&ts ss & (5.38)

in which

= 1+~~st ~ (& & )s ts
r s

PsPs
(& & )s ss (5.39)

c,.„.= [(z, —~.}'+p, '+ p.'l '. (5.40)

VI. DISCUSSION

We have shown that the propagation functions for
massless spin- & and spin-1 particles moving in a
self-dual but otherwise arbitrary non-Abelian
gauge field are determined by the corresponding

Thus, the constants f„are the elements of the
matrix which is the inverse of the matrix g„.
Since the latter is symmetrical, so is f„. This
symmetry ensures that the structure (5.37) obeys
the necessary symmetry conditions on c„,„„given
in Eqs. (5.33) and (5.34).

We have now completed our construction of the
isospin-1 propagation function. It is given by Eq.
(5.9) with the functions C„(x,y) determined by Eqs.
(5.32), (5.28}, and (5.37)-(5.39). Our development
has been for the case of an n-pseudoparticle field,
but the result for n antipseudoparticles is obvious:
One need only replace the function E=E"by E' '

and the functions 4') by 4 ' &, where 4 ' ' is con-
structed with g" symbols rather than with the g' '
symbols that appear in C '& [Eq. (5.28)j.

The result for a. single pseudoparticle (or anti-
pseudoparticle) field is particularly simple. In
this case the function C„(x,y) vanishes and the
isospin-1 propagation function is determined en-
tirely in terms of the isospin-0 function. Our
result agrees, when properly gauge transformed,
with that obtained from an O(5) group theory con-
struction. " The result for two pseudoparticles is
also quite simple. In this case the function

C,s(x, y).no longer vanishes but is determined by
the single constant

spin-0 propagators. The spin-0 propagators were
constructed for particles of isospin —,

' and 1 moving
in the self-dual field of n pseudoparticles. These
scalar propagators have a remarkably simple al-
gebraic form. This simplicity suggests the ex-
istence of some deeper underlying principles
which, however, we have not yet been able to fath-
om.

The field of a single pseudoparticle is invariant
under an O(5) group of conformal coordinate trans-
formations. " The corresponding massless, spin-
0 propagators which we have constructed for iso-
spin-& and isospin-1 particles are covariant under
this O(5) group and, in fact, coincide with the func-
tions obtained directly from an O(5) group theory
analysis. " The situation is different for massless
particles with spin —, or 1. The propagation func-
tions for these particles do not transform covari-
antly under the O(5) group. This lack of covari-
ance results because the propagators obey Green's
function equations [Eqs. (2.19}and (2.20) and Eqs.
(3.14) and (3.15)] from which the zero-mode com-
ponents of the inhomogeneous ~ function have been
subtracted. The products of zero-mode functions
which thus appear on the right-hand side of these
equations have the same conformal weight as does
the propagator (-3 for spin —,

'
and -2 for spin 1).

This weight differs from the conformal weight of
the 5 function (—4). Hence the inhomogeneous,
driving terms in the spin- —, and spin-1 Green's
function equations do not have a single, pure con-
formal weight. These equations —and hence the
propagators they define —are thus not covariant
under the transformations of the O(5) conformal
group. Accordingly, the propagators that we have
constructed for spin —,

' and spin 1 do not agree with
those obtained from an O(5) conformal group an-
alysis. '

The Green's function equations [Eqs. (2.19) and
(2.20) for spin —,

' and Eqs. (3.14) and (3.15) for
spin 1] dictate the asymptotic behavior of the pro-
pagators S and 6„„. For large x, the dominant
zero-mode functions in Eqs. (2.20) and (3.15) fall
as x '. The term 5(x -y) in Eqs. (2.19) and (3.15)
is irrelevant in this limit, and S and G„, must
therefore fall as x ' and x ', respectively. This
behavior should be contrasted with the large-x be-
havior of the free propagators for spin- & and spin-
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1 particles, namely x ' and x ', respectively. This
feature of our results is gauge independent and may
be of considerable importance for physical pro-
cesses occurring in pseudoparticle fields.

Note that this large-distance behavior conflicts
with that derived from an O(5) confor mal group
analysis. The O(5) results are physically relevant
only if they are supplemented by a corresponding
O(5)-covariant treatment of the various. collective
coordinates which enter any pseudoparticle calcu-
lation. An O(5)-covariant approach to the collec-
tive coordinates has not been formulated and may
in fact be an impossibility. It may also be true
that such a formulation is possible and that it re-
solves the discrepancies between O(5)-covariant
propmgators and those derived in the present paper.

There are, as noted in Sec. III, some problems
with the spin-1 propagation function that we have
constructed. Now that we have found an explicit
expressiori for the scalar, isospin- I propagator,

Wb(x, y), C.b(x, y)
ab( I y) 4&2(x )2 4+211(x)ll( )

I ( )

where, according to Eqs. (3.17) and (3.16),

~j1vXK P IJ XK Q vK jlK VX ~fgvXK
(w) (6.5)

(6.6)

Thus we have

(9 (+) (7)
~j VXK-&P&vK+np~anv~, (6 7)

and we can write the divergent piece of the spin-1
propagator as

Gt ~vab(Xq y)aiv
= [']+a )cell(X) 'gvaa 11(y) acb

+(D„„II(x) 'II(y) 'D„„]

(6.8)

The character of the divergent piece in the spin-&

propagator is revealed when we rewrite g„',&, in
terms of an appropriate combination of the sym-
bols q

' . To this end, we recall that these sym-
bols project out the self-dual (or anti-self-dual)
part of an antisymmetrical tensor [Eq. (4.17)],
glvlng

(~) ( ~)n~.n)s. =& y&8~ —& ~&a) +&~)s.

we can discuss these problems more fully. The
matrix C„(x,y) is a bilinear combination [Eq.
(5.32)] of functions 4„I,',)(x) C~,'„)b(y) [Eq. (5.28)] which
vanish sufficiently rapidly at infinity so as to be
square integrable:

The functions

iji~2'i'(x) =Dq„II(x) '

= -II(x) 2[&2 II(x)&„

+guava&vII(x)e a]a
(&) (6.9)

(6.1)

W„(x, y) = &.bii(y) '
OO

(6.2)

The matrix W„(x, y), on the other hand, does not
vanish when one of its coordinates becomes large:

are three (& =1, 2, 3) zero-mode functions of the
small-fluctuation, vector field. They correspond
to an overall, global gauge rotation of the small-
fluctuation vector field. " In general, "a zero-mode
function iji&',(x) obeys the background gauge con-
stre, int

[see Eqs. (5.8) and (5.4)]. Thus, in the formal
operator construction of the spin-1 propagator D2ablpb =0(8 (6.10)

G(-s)

+(1 —ilv, (,) D. , (3.27)
fiI v a(X) D2 ah it'vb (X) DvabijiIib (X) i

which is self-dual (or anti-self-dual), i.e.,

(6.11)

and produces a small-fluctuation field-strength
tensor

the convolution integral which defines (I/O')' is
divergent. In a coordinate representation we have

(6.3)

and the ~ integration diverges logarithmically at
large ~, giving a contribution

(
1 '

I ln~
y = 8, &„II(x) 'II(y) '. (6.4)

div

The bracket operation appearing in the formal op-
erator expression for the propagator is defined by

{X}2'~ = q(2+ii„Di,XD, , (3.18)

q&„DiLabiti, b(x) =0,(&) (&) (6.12)

(&) (8 (+)
gp. Xa gv g$ p v ag + ~abc 0p vc y

we see that if Q,', (x) is a zero-mode solution of
Eqs. (6.10) and (6.12), then so are the three func-
tions P~'i (x) (d = 1, 2, 3) defined by

(~) & — (&) (~)0,. (X)=&2.akv. .

Thus the other functions

(4.19)

(6.13)

for =1, 2, 3. It is a simple matter to show that the
gauge-rotation functions (6.9) do obey Eqs. (6.10)
and (6.12) and thus prove that they are indeed zero-
mode functions. Since the q symbols obey. the Pauli-
matrix algebra
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(6.14)

appearing in the divergent piece (6.8) of the propa-
gator, 'are also zero-mode functions. Now, using
the explicit form for the gauge-rotation mode dis- '

played in Eq. (6.9), we find that

nP. 4(". ( ) = - .Oi„'.)'( )+~ tci„".(. ), (6.15)

yi",)(x) = -11(x) 'Vii„')„9,11 (x) . (6.16)

Thus there is a fourth zero-mode function Pi~',)(x)
attached to the three gauge-rotation, zero-mode
functions Qi„',)(x). Recalling that

~i„'.&(x) = -qi„'&.s. Inii(x), (4.14)

with

(4.21)
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APPENDIX

The construction of the spin-1 propagator in Sec.
III can be motivated as follows. We decompose the
propagator into a sum of various mode functions
X„„(x). We set the gauge-fixing parameter $ = 1 so
that, in view of Eq. (3.14), the mode functions obey

-[D o,.+2+,.]x. ~ x, . (A1)

Making use of the commutator of the gauge-covar-
iant derivatives, Eq. (3.6), we find that

we see that
x'„=D,0 (A2)

(6.17)

which identifies gi„,l(x) as a zero mode corres-
ponding to an overall scale change. "

Collecting these results, we can rewrite the di-
vergent piece (6.8) of the propagator as

G'„".~(x y), = [80',"'( )0', ~(y)

+ (2+ () yI,'. '(x) y'„'", (y)] 8--,—.

(6.18)
Since zero-mode functions can be subtracted from
the vector propagator'without any change in the
Green's function equation, this propagator can be
rendered finite by simply deleting its infinite
terms. There is, however, no unique way in which
to perform this subtraction. The propagator be-
haves asymptotically as O(x ") as dictated by the
asymptotic behavior" [O(x ')] of the product of
vector zero-mode functions which appear on the
right-hand side of the Green's function equation.
Thus, one cannot impose the constraint that the
propagator be orthogonal to the zero-mode func-
tions; ihe inner product integral diverges loga-
rithmically. We believe that this ambiguity may
be resolved by an appropriate redefinition of the
collective coordinates associated with the zero
modes, but of this we are not yet sure.
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satisfies the vector mode equation (Al) if &j& is a
scalar mode function,

D'Q = ~'-Q .

As we have remarked in the text, the rf
') symbols

defined in Eq. (4.2) obey the algebra of the SU(2)
generators A, „

(~) (~) ~ z + (~)
~p ka Iv Xb pv ah+ ~abc ipvc '

Moreover, the two g symbols correspond to the
two SU(2) spins in the decomposition O(4) = SU(2)
II SU(2), and they commute,

(4.19)

1P&a ~ /vs ~IIXb ~g v a (A4)

(A8)

Now if the field-strength tensor I"„„is self-dual
(or anti-self-dual), we can write [cf. Eq. (4.17)]

(A5)

and thus conclude that g(' commutes with I (',
+ p) 1&va ~III ga +) v . (A6)

In this case, g
' commutes with the opera. tor on

the left-hand side of the vector mode equation (Al),
so tha, t if X„ is a solution of this equation, then so
also are the three functions g„'„Xv. In particular,
starting from. the scalar mode function Q„we can
construct three more vector mode functions

Xp =Opia Dv'0 ~
(+)

It follows from Eq. (4.19) that all four vector mode
functions X&, a = 0, 1, 2, 3, a,re orthogonal to one
another and from Eq (AS) that t.heir normalization
differs from that of the scalar mode function P by
a factor of the eigenvalue ~',
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Thus the set of all X'„ is a complete set of orthog-
onal vector mode functions, and with the scalar
mode functions normalized to unity, the vector
propa. gator can be written as

III, that

(3.23)(&) (~) a (&) (~)
~P DCt8~ OP XK BX ~P U C(K P V &KBX

where r„„,8& is antisymmetrical in its la, st index
pair with a reversed duality character,

1 ' (+) (~)
2 r

P v 0( K P a ~
P aBX +r

P u 0'. K BX ' (3.24)

(A9)

The tensor quantity in parentheses here is precise-
ly the quantity q(„„'„, [cf. Eq. (6.7)]. The scalar
mode sum in Eq. (A9) represents the operator (1/
D')', and Eqs. (A9) and (3.27) are thus equivalent.

Finally, let us prove, as was asserted in Sec.
I

The proof is brief if the form (6.7) is employed,
for the substitution of Eq. (6.7) in Eq. (3.23) and
the use of Eq (4..19) give

r(~) i~ (~) ~ (~)
P P O'K BX ~ P Cf ~PKC VK ~P C(C

-(+) (&) i ( )+ 1P na ~u Kb ~abC I ~8K.C ' (A10)

which is manifestly antisymmetric in PA. with the
opposite duality character (3.24).
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