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Coulomb gauge description of large Yang-Mills fields
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Recent observations on ambiguities of the Coulomb gauge in Yang-Mills theories are clarified. We point
out that discontinuities of the transverse potentials are necessary in order to accommodate arbitrary
Pontryagin index. A general argument is given along formal lines, and a numerical example is presented for
an O(3)-symmetric gauge-field configuration. The one-pseudoparticle solution is transformed into the-
Coulorhb gauge, and the mechanism for the emergence of an angle characterizing the vacuum is indicated.

I. INTRODUCTION

Attention has recently been drawn to the inter-
esting circumstance that the Coulomb gauge de-
scription of Yang-Mills fields is ambiguous when
the magnitude of the fields becomes large: Namely
any one of several transverse and gauge-equiv-
alent potentials A~ represents the same physical
field configuration. A signal for this multival-
uedness is the appearance of zero eigenvalues in
the spectrum of the inverse ghost propagator for
definite values of the potentials; consequently
the Coulomb interaction Hamiltonian is not defined
for such A~.

The purpose of this communication is to clarify
the types of ambiguities that occur in the Coulomb
gauge. We shall consider an SU(2) gauge theory
and restrict attention to field configurations that
have explicit O(3) symmetry. We shall then show
that ambiguities of the gauge potential are a ne-
cessity if one wants to accommodate field con-
figurations with nonzero Pontryagin index. More-
over, the time evolution of the potential must be
discontinuous, involving transitions between gauge
equivalent A~. 'The multiple vacuums' of the quan-
tum theory emerge then from a requirement on
the values that the wave functional takes for gauge-
equivalent transverse potentials.

'The analysis will proceed in Sec. II along a
formal line, making use only of general properties
of the theory. In Sec. III we shall then illustrate
the results with an example: We transform from
the A', =0 gauge to the Coulomb gauge an especially
simple gauge-field configuration with arbitrary pon
tryagin index. Finally the original solution of
Belavin, Polyakov, Schwartz, and Tyupkin' is
presented in the Coulomb gauge, by numerical
integration of the appropriate equations.

Our considerations are easily generalized to
groups other than SU(2). The restriction to O(3)
symmetry is motivated by the desire to render the

II. CLASSICAL VACUUM AND PONTRYAGIN INDEX

A potentia, l with explicit O(3) symmetry has
the following form (we use an anti-Hermitian ma-
trix representation in the space of infinitesimal
group generators, with the coupling constant
scaled out; o, are Pauli matrices):

a b . , c—+a& v r —+s&c

(2.l)
Ao=io;x, —.

The functions a, b, c, and d depend on r and t;
it will be frequently convenient to use s =lnr as
the independent variable. The Coulomb gauge
transversality condition is

& ~ A=O,

which implies

a +a =2c.

(2.2)

(2.3)

(The overdot will indicate differentiation with
respect to s.)

I.et us consider the effect of a radially sym-
metric gauge transformation

U' —e'~o. r
t (2.4)

A -A = U 'A U+U"'8 U.

a-a=a+ 8,
b ——,-b ——, = (b —2) cos2n+c sin2n,

c-c =c cos2n —(b —~) sin 2n,
8cvd=dy
Bf

(2.5)

relevant equations tractable. We do not expect,
however, that our results are a consequence of
the special geometry. It mould be extremely patho-
logical if the Coulomb gauge description of spheric-
ally symmetric, gauge-invariant field configurations
necessitated nonsymmetric gauge potentials.
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%e define the classical vacuum as a zero-en-
ergy fieM configuration, thus I and I''~ variish
and A„ is a pure gauge:

b= 1 —cos2a
2

sin20.C=
2

Insertion of Eq. (2.6) into (2.3) gives the equation
for a transverse gauge description of a [0(3) sym-
metric] classical vacuum"

K+ n —sin2n =0. (2.7)

Evidently (2.7) can be thought of as the equation
of motion for a damped pendulum with angle a,
moving with friction in a periodic potential V(n)
= -sin'u.

%e now discuss various aspects of the solution
to (2.7). Near n'=0 (or a. =n7i with integer n) the
equation may be linearized and the solution is

n =c,e'yc, e "+(nv) . (2.8)

n =cf(s —s,), e =+1. (2.10)

The function f (s), illustrated in Fig. 1, describes
a motion where n starts at 0 (with n =0) —this is
a maximum point of the potential —and rolls down
the potential valley approaching iT/2 —a minimum
point of the potential. These nonvanishing solu-
tions for a give origin to nonvanishing trans-
verse potentials A, behaving as i(r x v)/t for
large x.

It is evident that, just as in electrodynamics,
the transversality condition does not fix,the gauge
completely; an additional regularity condition is
required, and in the following we ad6pt the re-
quirement

llm VA = 0.
r~~

(2.11)

Nevertheless, in the Appendix we shall discuss
the features of the evolution of the potentials when

Linearization is possible also near n =i&/2 (or
n =v/2+nv) where one finds an oscillatory be-
havior

n=ce '~'cos(ass+@)+v/2y(nv), &d'= —', . (2.9)

Assuming that n = 0 for x = 0 (s = -~), so that the
gauge potential is. regular at the origin, one finds,
with Gribov, ' that the only solutions to Eq. (2.7)
are 6=0 and

I'IG. 3.. The angle n that parametrizes the gauge
transformation leading to a pure gauge transverse
potential as a function of ln(x/xo).

one allows long-range, 0(1/x), tails in A.
There are various reasons why we should ex-

clude the O(1/x) a,symptotic behavior when fixing
the gauge. Without this condition, the specification
of the vacuum would not be stable against con-
tinuous deformation. Also, in the corresponding
quantum theory there appea, r to be no (tunneling)
transitions between the trivial vacuum A. =0 and
those with lim„„„rA4 0.'

Adopting (2.11)„we conclude that in the Coulomb
gauge the classical vacuum is uniquely A= 0. This
is also true of the quantum theory, but there is
no contradiction with previous analyses in the
temporal gauge A'=0. ' I,et us recall that while
we found a family of vacuums parametrized by
an angle 8, there are no transitions between dif-
ferent 8, and different inequivalent theories are
built on each separate vacuum. In the Coulomb
gauge we have only one vacuum; nevertheless, as we
shall see presently, an angle 8 emerges, which
characterizes different theories, when wave func-
tionals are constructed.

Let us compare in detail the evolution in a tem-
poral gauge and in a Coulomb gauge. In the for-
mer, the elassieal vacuum ean be described by
nonvanishing potentials, still well behaved at
infinity. If we set

e i&i&r)8 ~ r" ~-ecB&r)5 PP(0) 0~ (2.12)

(2.11) will be satisfied if lim„„„p=mii, integer
&+, where m is the winding number of the gauge
function. Consider now an evolution in the tem-
poral gauge with the potential approaching vac-
uum configurations with different winding num-
bers at t-+. In particular, let us assume that
A(r, f) tends to 0 at f = —~, while at f = ~ it becomes the
pure gauge Eq. (2.12)with m 0 0. (Notice that any con-
tinuous field evolution can be brought into the
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lim A;(r, t, +«) A j"(r),
» p

lim A;(r, t, —«) =A,' "(r), «&0

(2.14)

where A"' and A"' are transverse potentials that
are gauge equivalent to the same potential A(r, to)
in the temporal gauge. Therefore, the Coulomb
gauge description of a guage field with nonvan-
ishing Pontryagin index cannot be single-valued.

This discussion may be reformulated by exam-
ining the expression for the Pontryagin index

1
16'' v~ g~&v & gt veg

p pp ng

E "= 8"A"—8"A"+ [A" A "] (2.16)

I,et us assume that the potential is continuous
and transverse. Since the integrand may be writ-
ten as a total divergence, we may use Gauss's
theorem to east the formula for q into the fol-
lowing form:

temporal gauge with a continuous gauge trans-
formation, so that starting in the temporal gauge
is not a restriction. ) Suppose that we want to
describe the same evolution in the Coulomb gauge.
We must perform a time-dependent gauge trans-
formation from A;(r, t) to A;(r, t) with an amplitude
n(x, t), such that the coefficient functions a and
c obey the transversality condition (2.3). From
(2.5) we deduce the equation for n,

5 + 0 —s in2Q. = —d —a —2b s in2n + 2c cos2n,

(2.13)

where a, b, and c are the coefficients in the ex-
pansion of A(r, t) in the temporal gauge. An en-
ergy-conserving evolution in the temporal gauge
cannot change the asymptotic behavior of A(r, t);
hence lim„„xA(r, t) =0 at all times, ' which im-
plies that a, b, and e vanish as s tends to ~.

The solution to (2.13) as t- —~ is clea, rly @=0
because lim, „A(r, t) =, 0, which is already trans-
verse, and the transverse vacuum is unique.
However, for t-~, we must have li m,„n= —P
because the potential in the temporal gauge is the pure
gauge (2.12) and the effect of the further gauge
transformation, parametrized by e, must be to
return A to zero again because the transverse
vacuum is unique. This shows that n cannot be
continuous in t, when the winding number is non-
vanishing: n tends to zero as s tends to infinity
when t is large and negative; conversely at tends
to -mm for large positive t. We conclude that the
Coulomb gauge description involves a discon-
tinuity at some time tp of the type

1
q =—,lim16m'

drX' —lim d rx'
g» ce

dt llm dQX f' 'X (2.16a)

X~=4«' ~" Tr( ,A—B~A,+3A A~A„),

8 X"=Tr*E~E (2.16b)

q =—,d r discontinuity PC ) .
16m

(2.16c)

The potentials A"' and A'," in (2.14) are related
by a gauge transformation

(2.iva)

With some algebra one finds

X'"=X"'—-'Tr (U 'B~U)(U 'B~U)(U '8" U)

+ 2Tr«, 8„8 (8~ U)U 'A". (2.ivb)

From (2.16c) we see that Pontryagin index is given
precisely by the winding number of the gauge
transformation which relates the two different
transverse descriptions of the same field con-

figurationn.

One may wonder what necessitates a discon-
tinuous transition to an equivalent Coulomb gauge
in a field configuration which evolves according
to the Yang-Mills equations of motion. Recall that
a time evolution is established by defining a Ham-
iltonian formalism. In a Yang-Mills theory the
Hamiltonian contains the term ~ Trp8p where p
is the charge density and 8 is a Coulomb Green's
function:

1
8 '=d d d=&~&(A).

V (2.16}

Here 6)A) is the gauge-covariant gradient with
transverse potential A. As noted by Gribov, ' 8 '
develops a vanishing eigenvalue for those values
of A which begin to allow more than one gauge-
equivalent transverse representation. For com-
pleteness of this presentation, we repeat the ar-
gument. I,et us consider. a nonunique transverse
A which is infinitesimally close to its gauge-equiv-

. alent partner. In that case, there exists an in-

By hypothesis, the configuration becomes the
vacuum as t-+; hence the first two contributions
to (2.16a}va.nish, since the unique transverse
vacuum is zero. Moreover, if the potentials van-
ish faster than 1/x as r- ~, the last term in (2.16a)
is also zero. We see then that a gauge. potential
with nonvanishing Pontryagin index cannot undergo
continuous time evolution in the Coulomb gauge.

When the potentials are discontinuous, as in

(2.14), the right-hand side of (2.16a) acquires an
additional contribution:
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finitesimal gauge transformation U =I+io with
the property that both A and A+5A = A+ i'(A)&
are in the transverse gauge. Consequently 8
satisfies the equation

V ~ 5(A)e = 0. (2.19)

For this A, Detd vanishes, and 9 ' becomes ill
defined when two gauge-equivalent transverse
potentials differ infinitesimally. But this is pre-
cisely the point where the number of gauge-equiv-
alent gauge potentials changes and we see that
the Hamiltonian procedure fails to produce a con-. .

tinuous time evolution when the transverse po-
tentials reach definite magnitudes. The evolution
of the system may be followed only by altering
discontinuously the gauge representation.

We may now identify the mechanism which
produces multiple quantum theories parametrized
by an angle e. When a quantum state is described
by a wave functional 4(A), with A transverse,
sufficiently small A cause no difficulties. How-
ever, when A reaches a definite magnitude, gauge-
equivalent A's describe the same physics. The
wave functional for two such potentials must be
equal in modulus, but a difference in phase can
be accommodated. Choosing a definite value for
this phase introduces the angle 8, and apparently
different choices of 8 define different theories.

The same ambiguity that is indicated by the null
eigenvalue of Eq. (2.19) also affects the functional
integral formalism and the Fadeev-Popov gauge-
fixing procedure. The null eigenvalues cause
Detd to vanish and the functional integral has to
be treated with care.

III. EXPLICIT CALCULATION

We have proposed that the transversality con-
dition of the Coulomb gauge be 'supplemented with
the requirement that the transverse potentials
decrease faster than 1/x at large x. This then
led to the conclusion that sufficiently large po-
tentials evolve discontinuously in time with sudden
transitions between gauge-equivalent transverse
configurations. The question still remains whether
it is in fact possible to find such gauge potentials,
i.e., whether the Eq. (2.13) has solutions with
lim, „„n(s)=nm. We answer this question affir-
matively by a, detailed solution of (2.13) for various
examples. AQ the features which we found in the
general analysis of Sec. II will be explicitly ex-
hibited.

Consider first the case where the original non-
transverse potential is a pure gauge, parametrized
by P. Of course (2.13) then reduces to the "free"
equation (2.7), but now for n+P. The only ac-
ceptable solution is n =-p, and if p varies from

0 to mm as s spans the real axis, then a moves
in the opposite direction, from 0 to -mm. When
we consider the parameters a, b, c of an arbitrary
nontransverse potential, the analysis of (2.13)
will not be so trivially straightforward. But one
expects that if the original potential, as a function
of time. , interpolates between zero and a pure
gauge with winding number m, then the effect of
the right-hand side of (2.13), which may be thought
of as a kind of "driving" term, is to force n for
large s progressively closer to -mm, as time
evolves.

This is illustrated by the following example. We
take p(s) to equal zero for s & s, to pass smoothly
to mg between —s and s, and to remain equal to
mm for s &s. For the nontransverse potential in
the temporal guage we take

A,.(r, t) =q(t) e n'" V, e~'", . (3.1)
4

where the function )7(t) interpolates monotonically
between 7i(-~) = 0 and q(~) = 1. This field con-
figuration has Pontryagin index m. From (2.6),
we find that for s-0, a approaches m7)ri(t)&(s),
whereas b and c vanish. So in the limit where
the variation in P occurs at a point, the equation
for 0. becomes

diii+6 —Hin2a = —mwq(i) —+))il(s)
ds (3.2)

X 0+

$0+
)

(3.3a)

(3.3b)

Since for s —, we want a to vanish, the solu-
tion for s &0 is (2.10)

n =e f(s —s,), @ =+1. (3.4)

We investigate in detail the solution for n at pos-
itive s; we impose the condition

lim a =nm, integer n,
$A OQ

(3.5)

which excludes a long-range 0(1/r) tail in the
transverse potential. (In the Appendix this re-
striction is removed. )

In order for n to approach and settle at a point
of unstable equilibrium n=nz at s =~, one must
carefully adjust the parameter s0 of the motion
for s &0. An understanding of the behavior of a .

is obtained as follows. The condition (3.5) re-
quires that after the jump at s=0, 0. takes a value
nm+ 4 n with velocity n ~, , such as to generate

This equation is solved by a function n which obeys
the "free" equation (2.7) for s (0 and for s) 0,
while at the origin there is a discontinuity in the
function, but not in its derivative:



+2 o=2nn (large s). (3.6)

Since both e -nm and h must remain small —the
allowed range of & o. is limited —and n ~, , always
differs in sign from d o.', we may extend (3.6) to
all s ~ 0 and use it as an approximation to the
desired relation between position and velocity
after the discontinuity. Replacing n in (3.6) by
sf(—~,) —mvq=nn+&n, and n by ef( s,) we find

ef(-s, )+2[~f(-s, ) —mnq] =2nv. (3.7a)

Therefore the approximate equation which deter-
mines that value for so which permits an un-
stable equilibrium to be the end point of motion
is

E(s,) = ,' af (-s,) ~-s—f(-s,) —m = mg g . (3.&b)

n=-I

OO &0

FIG. 2. A few branches (n = 0,'+ 1}of the function I (r p)

defined in Kq. (3.7b).

a motion directed toward . the peak at +&:sgn(@ ~, o)
= —sgn(ho, ). Moreover, ~b n

~

must be less than

m; otherwise the velocity is not sufficient to over-
come the friction. Finally c), ~, o and b, o. must be
in a definite functional relation, namely the func-
tional form that is obtained by integrating the
free equation from s =, with lim, „a=ng and
lim, „„5=0, backward in s to s =0. For large s,
where 6 and n are small, the relation between
velocity and position is obtained from (2.8) with

e, =0:

In Fig. 2 we plot three branches (n =0, +I) of
E as a function of r, =e '0, using the negative axis
to plot the values of E for negative c. It is ap-
parent that for small values of q (i.e., small
fields in the temporal gauge) there is a unique
gauge transformation that brings the field con-
figuration i.nto a unique Coulomb gauge. As mmq

becomes larger, however, a multivaluedness sets
in. For a critical value y, of mug a second so-
lution appears, and for a range y, &mph') &y, {see
Fig. 2) one has three solutions for s,. Of the
corresponding gauge transformations that bring
the field into the Coulomb gauge, one has winding
number zero (the one along the branch through
the origin), the other two have winding number
-1. As the field increases in magnitude, for some
range of values of the fields it is still possible
to follow the evolution without discontinuities in
the transverse potential (i.e. , in s,), although
the multivaluedness increases as ~+my approaches
m/2. Eventually, for rnmg&y, =m-y, (see Fig. 2)
one must leave the original branch, and adopt
a gauge-equivalent description, obtained by a
gauge transformation of nontrivial winding num-
ber. Notice that for mgq =y» there are two pos-
sible choices of so on the original branch, infin-
itesimally close to each other. Consequently there
exists an infinitesimal gauge transformation that
connects the two transverse gauges at the point,
and the Coulomb propag3tor becomes ill defined,
as explained in Sec. II. We thus see that all the
features we have discussed are explicitly realized
in the simple model;

Our final calculation is exhibited in Fig. 3 where
we plot the values of V(x) =2 —4b{x) for the pseud-
oparticle solution' of Belavin, Polyakov, Schwartz,
and Tyupkin„ transformed into the Coulomb gauge.
A numerical integration of Eq. (2.13) was per-
formed to find the function o.(s) that transforms
the pseudoparticle solution of Ref. 3, centered at
x =0 with scale A, to the Coulomb gauge, and
Eq. (2.5) was used to obtain the parameters, a,
b, and c of the pseudoparticle in the Coulomb
gauge. The initial condition in the integration
of Eq. (2.13) (i.e., the value of B n/B~ for ~= 0)
was set so as to fulfill Eq. (2.11). For a range
of values of f, from -~ to a definite -f, (t, &0)
and from t, to , the requirement that the trans-
verse field vanishes faster than I/x as x-~ [Eq.
(2.11)] fixes the initial condition uniquely. In par-
ticular, the transverse field A(r, f) vanishes for
t =+~. We followed the time evolution of the field
starting from t =-~. When more than one initial
value of Bo!/Br allowed Eq. (2.11) to be satisfied,
we resolved the ambiguity demanding continuity
in time. We thus found that we cou1d integrate the
equations up to a' maximum time t =to=0.18A. But
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the winding number -(1/16m')J d rX' equals a/2.
Therefore it is possible to obtain a Pontryagin
index q of modulus not larger than one as a dif-
ference of two surface contributions at t = + ~.
In particular the pseudoparticle solution can be
cast 'into the Coulomb gauge without any discon-
tinuities in the fi.elds. However, it is also ap-
parent that Pontryagin indices larger than one in
modulus cannot be accommodated without some
form of singularity. We shall show that additional
contributions to q come from the surface integral
at spatial infinity, the last term in (2.16a).

'The angle 0., appearing in the transformation
from the temporal gauge to the Coulomb gauge,
must still satisfy (2.7) for large s at all t, since
the driving terms on the right-hand side of (2.13)
vanish as s- ~. When allowing a long-range
O(1/r) tail, one permits n to approach any of the
values v/2+nv for s- ~.

The way in which contributions to the surface
integral at spatial infinity emerge is that there
is a discontinuity in lim, „a as a function of t.
Typically, we will have lim, „n(s, t) =v/2+nm
for t &t, and lim, .„oi(s, f) =m/2+(n+ 1)m for t &to.
As a function of s with large s, o.(s, t) gets closer
and closer to m/2+ (n + 2)v for i approaching t„
before falling into a potential valley. For t very
close to t, (but t &t,) o.'lingers at large s nea, r
n/2+ (n+2) n', then falls back to w/2+nm; as t be-
comes larger than t„n passes (for large s, and
very slowly) the critical point of unstable equil-
ibrium, and falls into the next potential valley.
it appears therefore that discontinuities at finite
~, t may be avoided in transverse gauge potentials
with long-range O(1/x) ta, ils. They reappear at
infinite x.

The crucial difference between the lim„.„rA = 0
situation and the present case, lim„. „xA40, is
that with the former boundary condition, n must
approach a point of unstable equilibrium at s =.
As we have seen, this fixes n as a function of s
for all s with no free parameters. So for n to
approach two different points of unstable equil-

ibrium, it must be described by altogether dif-
ferent functions, and the time evolution is dis-
continuous. If instead, as in the present case,
a is allowed to approach a point of stable equil-
ibrium at s- ~, the parameter s, is left free in
the determination of n(s) [see Eq. (2.10)]. By
varying this parameter, one may go from a func-
tion n with limiting value m/2+nv, to another with
limiting value m/2 + (n + 1)n, continuously at all s,
albeit in a nonuniform way.

The discontinuity in t at infinite r produces a
6(t —to) singularity in the time component of the
Coulomb gauge potential at r= ~ [see Eq. (2.6)].
This, combined with the 1/x tail of the spatial
components, contributes unit magnitude to q
through the surface integral at spatial infinity in
(2.16a). By allowing for several such discon-
tinuities an arbitrary Pontryagin index may be
regained.

These general considerations are well illus-
trated by calculation on the model of Sec. III.
Allowing for a long-range O(l/x) tail, Eq. (3.2)
is solved straightforwardly, For s&0, n=cf(s
—so), where s, is arbitra, ry. At s =0, o! jumps

to ef(-s, ) —meri, keeping h unchanged. For s
&0, a executes damped oscillations and settles
finally in one of the valleys m/2+nv, with n de-'
termined by the magnitude of the position and
velocity at a=0+. For fixed s, n is a continuous
function of t (as long as e, so, and ri are con-
tinuous), whereas lim, „Q develops discontin-
uities of magnitude equal to m', confirming the
behavior described above.

Note added in proof Further inv. estigations of
these and related questions have been made re-
cently. I. Singer, U. C. Berkeley report (unpub-
lished), has found that the problems exhibited here
occur whenever one tries to fix a gauge condition
completely on a compactified space-time. M.
Ademollo, E. Napolitano, and S. Sciuto, CERN
report (unpublished), have extended portions of
our analysis to O(3) noninvariant configurations,
with results similar to ours.
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