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Regions of magnetic support of a plasma around a black hole
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We establish'necessary conditions for the trapping of charged particles by an electromagnetic field in the
magnetosphere of a black hole. Three regions are defined according to the relative importance of electric a,nd
magnetic fields. Idealized models are used to illustrate the application of these criteria.

I. INTRODUCTION

The observations of binary x-ray sources have
given clear evideoce that plasma accreting from a
normal star into a neutron star or a black hole
gives rise to the emission of x rays of up to
1.0'Lo. ' The primary source of this radiated en-
ergy is the gravitational binding energy of the ma-
terial accreting into the deep potential well of the
gravitationally collapsed object. ' Recent observa-
tions of x-ray bursts' also point to the possibility
that processes involving black- hole magneto-
spheres occur in the cores of globular clusters. '
Similar mechanisms have also been suggested as
the origin of extended radio lobes in extragalactic
radio sources. '

In order to reach deeper implications from these
observations it is therefore relevant to obtain a
theoretical understanding of the magnetosphere
of a gravitationally collapsed object. . Moreover,
since the emission processes are expected to occur
within a few radii of the surface of the black holes,
it is likely that these observations, duly inter-
preted, will give information about the most novel
and strong-field effects of general relativity. '

In this paper we introduce basic criteria for
establishing the regions of magnetic support for
a plasma accreting in the field of a black hole, and
we apply these criteria to idealized models of
astrophysical systems containing black holes.

II. THREE CONDITIONS FOR MAGNETIC TRAPPING

. The motion of a test particle of mass rn

and charge q in an electromagnetic field F„„ in a
fixed curved background is determined by the well-
known relativistic generalization of the Lorentz
force law,"

Du".I qF u„,

A AE-=F-.-and a- = &--F",Jo 2 fkt (2a)

where the careted indices indicate projection onto
the orthonormal components of the tetrad defining
the local inertial frame. In such a frame Eq. (la)
acquires the familiar form

m —[v/(1 v')'~']=q(E+ v x 6). (1b)dt

Let us consider the possibility of trapping test
charges in a magnetic field. The minimal local
condition for magnetic dominance is

p2 E2
&0, (3a)

which may be expressed from:: Eq. (2) in covariant
form as

F—4F F&~) 0 (3b)

This local criterion is a necessary condition
only when the Lorentz force given in Eq. (1) domin-
ates the motion of the charged particles. In, view
of the strength of the electromagnetic fields ex-
pected near a collapsed object' and the large
charge-to-mass ratio of the particles under consi-
deration, the direct effect of the gravitational field
on the motion of the particles can. be neglected
expect very near the horizon of a black hole.

The condition of Eq. (3) does not take the relative

where u„ is the four-velocity of the particle and
D/DS denotes the coyariant derivative taken along
the trajectory of the test particle.

In a local Lorentz frame the electromagnetic
tensor F„„is related to the components of the elec-
tric and magnetic fields '
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direction of the electric and magnetic fields into
account. A stronger requirement would be that the
magnetic force can balance the electric force in di-
rection as well as modulus. In a local Lorentz
frame this is equivalent to the Lorentz force on
the charge being orthogonal to the electric field:

E ~ (E+ v x B)= E —v ~ (E x B)=0. (4a)

B =-&-g ~.,„,F g .

Equation (4a) may then b'e rewritten in covariant
form

Since the magnitude of the velocity is less than
one, Eq. (4a) implies that

xB()E. (6)

The electric and magnetic fields can be expressed
in terms of g, the four-velocity of an observer
at rest in a local inertial. frame, as follows:

E =F ~g~

v, = (E x 8)/(8'+ E,') .

The electric and magnetic fields in the arbitrary
local Lorentz frame, Eq. (2b), are

E =(E —v~ x B )(1 —vD') '~'

B=(B+ v xE)(l v )'
(Va)

(Vb)

The motion of the guiding center is composed of
the drift velocity of Eq. (6) and an acceleration
parallel. to Eo, which can be expressed in terms
of these fields as

dx
=EpE +BpB (8)

where A. is an appropriately normalized arclength
parameter, and

z '=(z'+G2)"'- &

B 2 (P2 G2)l/2

and the invariants of the electromagnetic field
are

E F ~u =V~u =0
g g

where

(4b) o
—Eo
2

G = g.F *F~" = E B = E ~ B.4 gv - p 0

Equation (4b) requires that the four-velocity of
the test charge, uz, be orthogonal to the four-
vector V~. Since u~ is timelike, V~ must be
spacelike or zero to satisfy condition (4b). If V8

is spacelike, then there exists a timelike four-
velocity u~ orthogonal to V . Thus the regions in
which the magnetic field can. balance the electric
field are determined by the condition

V, V'&0. (4c)

The boundary of these regions is called the plasma
ho riz.on.

To study the flow of plasma in regions of mag-
netic dominance, we will use the guiding-center
approximation. Consider the local I.orentz frame
in which the electric and magnetic fields are
parallel and have magn. itudes E, and B,.' In this
frame the solution of Eq. (1b) consists of a helical
motion about the common direction of E, and Bp.
To characterize thy global behavior of these parti-
cles we average out the gyration and keep only the
acceleration along Ep Such a guiding-center ap-
proximation is valid only when the radius of gyra-
tion is small compared to the distance over which
the magnitude of the magnetic field changes signi-
ficantly.

The velocity of the boost from an arbitrary local
Lorentz frame to the frame in which the electric .

and magnetic fields a,re parallel is

The flow lines determined by Eq. (8) can be divided
into two classe s, those that inter sect the horizon and
those that do not. Plasma flowing along a line that in-
tersects the horizon will either accrete to the black
hole or be swept away from it, depending on its
charge. Plasma flowing along a line that does not in-
tersect the horizon can oscillate back and forth on the
flow line. A magnetosphere can form only in this re-
gion. The flow line that divides these classes of
flow lines from each other is of particular in-
terest. It may have a cusp, unless the electric
field is everywhere less than the magnetic field.
In either case, the surface of revolution it gen-
erates is the boundary of the region in which a
magnetosphere is possible.

III. BLACK HOLES IN EXTERNAL ELECTROMAGNETIC

FIELDS

The three criteria developed in the preceding
section will be applied to idealized models con-
taining black holes. These general considerations
clarify the basic features of the magnetosphere
of a collapsed object embedded in a pl.asma and
external electromagnetic fields.

I,et us first consider a, cha.rged sta, tie bla, ck hole
in an asymptotically uniform magnetic field. The
exact solution of the Einstein-Maxwell equations
for this system was derived by Ernst. " The lin-

' earization of that solution for a weak magnetic
field near the black hole is
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d~2 $ + dt2 + ] + dr2

+ r'dg'+ r' sin'8dqr' + 4BQr sin'8dtd///, (10)

variants of the electromagnetic field are

B' Q 2M ~ 9Q4 6Q"F = —]. + — Sln 8+
2 r2 r r~ r2 cos g

and the nonzero tetrad components of the electro-
magneticc

fie ld are

E„.= Q/~',

Q2

2r'
QB SQG=, 1—,cosO.r2 r2

(12a)

(12b)

3@2
B;=B 1- 2 cos61,

2M Q' '"
Be"=-Bsin8 1 — + ~r

(1lb)

(1lc)

The separation of the plasma, horizon from the
axis is

q 2~ @2 -X/2
r sing= 1 — + ~Br

The basis 1-forms of the tetrad to first order in
B are

2M Q'+,— dt, ~~ =rde,r r'

and the flow lines are determined by

d(y sing) 3Q~ Q (F +6 )'/' y'
cos6—

dg y By (F2+ G2)1/2 ~E
(14)

co = 1 — +r

&'=rsin0 dy+ dtr
and the four-velocity used in Eq. (2b) is 1i

=Ã(1, 0, 0, 2BQ/r), where N is the appropriate
constant of normalization. In this case the in-

They are plotted along with the surface I = 0 for
a specific choice of parameters in Fig. 1.

Let us now consider a slightly charged rotating
black hole in an asymptotically uniform weak
magnetic field. Since there is no background
electromagnetic field, the magnetic field and
charge make no first-order corrections to the
Kerr .metric:

ds' =20 'd. r'+ Zdg'+ Z ' sin'8[adt —(x'+ a')dy] ' —g 't1(dt —a sin'gdy)',

where Z = r'+ a' cos'8 and ~ =.r'. —2Mr+ a'. The tetrad components of the electromagnetic field are the

superposition. of those of a Kerr-Newman hole and an asymptotically uniform magnetic field:

E.„=E„"=Z 'A ' '(-BaM[2x'si 'n 8Z (.r'+a—'.)(r'-a'cos'8)(l+cos'8)] Q(r'+a')(r acos 8)]-,

Ee-=Ee; = Z 'A '/'&'/'2ra' sing cos8[BaM(1+ cos'8)- Q],
B-=y'--=g 'A '/' cosg(BI1(x'+ a') Z' —2Mra'[2r' cos 8+ a'(1+ cos 8)]] + 2Qar(r'+ a')),

Be =1 „-„=Z 'A ' '6' ' sing(@a(r' —a'cos'8) —B[Ma (4"—a' cos'8)(1+ cos'g)+rZ ]],

(16a)

(16b)

(16c)

(16d)

where A = (r'+ a')' —&a' sin'g. The basis 1-forms
of the tetrad are

(Zt, /A)'»dt, (u = Z' ~dg,

(g/g)1/2d~

2JI/Ira sin0
&u' = (A /Z)'/' sing d(p — A)„, dt,

I

and its four-velocity is 1l =N(1, 0, 0, 2Mra/A),
where N is the normalization fa.ctor.

Figures 2 and 3 show the electric and magnetic
lines of force for specific systems with the dipole
moment of the black hole parallel and antiparallel
to the external magnetic field. The plasma hori-
zons [Eq. (4)] are plotted for the tetrad defined in

the preceding paragraph. Figures 41-a.nd 5 show
the corresponding flow lines. When the magnetic
moment of the black hole is aligned with the ex-

ternal field, the magnetic field is weaker in the
equatorial plane. Consequently there is less sup-
port for a charged particle in that region and
both the plasma horizon and the cusped flow line
are farther from the black hole than in the counter-
aligned case.

In the limit that the external magnetic field
vanishes, B=O, the flow lines are strictly radial.
It is not possible for the magnetic field of an iso-
lated black hole to support a magnetosphere
against the electric field of the black hole.

As a, final example, consider a slightly charged
static black hole at the center of an oppositely
charged ring of current. This idealized model
is related to Wilson's' numerical analysis of the
accretion of a magnetic plasma, to a black hole.
Neglecting second-order perturbations of the
background, we have the Schwarzschild metric
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PIG. 1. The circle represents the event horizon of a
Heissner-Nordstr'om hole, whose charge is one-tenth of
its mass. The ellipse defines the surface of revolution
on which the asymptotically uniform magnetic field
(B =g/~ ) has the same magnitude as the monopole
electric field of the black hole. The other pair of heavy
lines are the plasma horizon [Eq. (4)] associated with the
tetrad given after Eq. (11). 'The lighter lines are the
fl l' defined in Eq. (14). Plasma spiraling around
the flow lines outside the cusped flow line will osci a e
through the equatorial plane. Plasma gyrating about
flow lines inside the cusped line will be pulled from the
magnetosphere by the electric field.
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FIG. 2. Magnetic (light continuous) lines of force and
electric {dashed) lines of force of a weakly charged black
hole (a/M=3/4, q/M =10 2) embedded in an asymptoti-
cally uniform weak magnetic field (8= Q/4M2) are plotted
in Boyer-Lindquist coordinates. The magnetic moment
of the black hole is aligned with the external 'magnetic
field. The heavy lines represent the plasma horizon
[Eq. (4)] for the tetrad of Eq. (16).

ds'=-(1 2M/r) -d't'+(1 —2M/r) 'dr'

+ r'(d8'+ sin'8dy2) . (17)
" = r sin8 dip .y'

The orthonormal tetrad of a static observer has
the basis

2m~t j, dg ~& ydg
y

The weak-field solution for a ring of azimuthal
current J" and radius a centered about an op-
positely charged static black hole follows im-
mediately from the solution of Linet." The
nonvanishing tetrad components are

(18a)

where

dy[(r- M)(a —M) —M' sin8 cosy]

2 ~ 2 s2 -1/2x[r —M)'+ (a —M)' —M' —2(r —M)(a —M) sin8 cosrp+M sin 8 cos rp]

8 ~x
r(1 2M/r)"' 88 (18b)
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a= 5M/4 Q=M/10
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FIG. 5. This figure is identical to Fig. 4, except that
the magnetic moment of the black holp is directly op-
posite to the external magnetic field.

FIG. 3. This figure is identical to Fig. 2, except that
the magneti. c moment of the black hole is antiparallel to
the external magnetic field.

a = 3M/4 Q = M/10

FIG. 4. The integration along the flow of the plasma
was started at regular intervals along the circular event
horizon. Integrating out in the equatorial plane produced
the cusped line, which divides the lines that intersect
the horizon from those that do not.

FIG. 6. The heavy circle represents the event horizon
of a static black hole, whose charge is one-hundredth of
its mass. A ring of current whose charge is opposite
that of the black hole is shown at r =10M (J+/J =2).
The cusped line encloses a toroidal region in which the
lines of Qow do not intersect the horizon.
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where

X= J "(r 2M— ) cos8 pdpdy[(r M-)'+ (p-M)' —M' —2(r- M)(p —M) sin6 cosy+M'sin'8 cos'yj '~'.

The flow of the pl, asma is determined through
Eq. (14) by the invariants of the electromagnetic
field. Figure 6 shows the flow lines of this system
for a specific choice of parameters. The plasma
horizon [Eq. (4)] and lines of force have been
published elsewhere. " The region surrounded
by the cusped flow line is qualitatively different
from that of the systems with an asymptotically
uniform magnetic field. Not only is the region
of flow to the horizon infinite, but it contains the
equatorial plane beyond the toroidal magneto-
sphere. The source of the magnetic field is, how-
ever, within the toroidal magnetosphere.

IV. CONCLUSIONS

When the possibility of strong electromagnetic
fields around an accreting black hole was first
proposed, " it was thought that the selective ac-
cretion of oppositely charged particles would neu-
tralize the charge of the black hole on a short time
scale. That argument was based on the dominance
of the electric fieM and did not take into account

the possibility of external magnetic fields.
Figures 1, 2, and 3 delineate the regions in

which the electric field of a charged black hole can
be balanced by asymptotically uniform weak mag-
netic fields. While these examples manifest the
restrictions of the selective- accretion argument,
they are only a first step toward demonstrating
the possibility of trapping charged particles in the
magnetosphere of a- collapsed object.

Ruffini and %ilson' gave an explicit example of
charge separation and strong electromagnetic
fields near the surface of a collapsed object ac-
creting plasma of infinite conductivity. The pos-
sibility of charge separation allows for the overall
neutrality of the system, which screens it from
selective accretion.

The flow lines derived in this paper provide a
global criterion for the trapping of charged parti-
cles in the magnetosphere of a black hole. The
idealized mode1s considered here are indicative
of the processes occurring in real astrophysical
systems.
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