
PH YSICAL RE VIE% D VOLUME 17, 5 UMBER 6 15 MARCH 197S

Creation of particles by singularities in asymptotically flat spacetimes
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The creation of massless scalar particles by naked singularities in asymptotically flat spacetimes is
investigated within the geometrical-optics approximation. To avoid the need to impose boundary conditions on
the singularity, we consider models in which a curvature singularity arises at a finite time in the past. %e
consider two particular types of models. One is a shell-crossing singularity formed in the gravitational
collapse of a dust cloud. . The ener'gy flux of the created particles remains. finite up to the time of formation
of the singularity. In the particular case when the singularity forms on the event horizon, geometrical optics
yields the exact flux, in spite of the high curvature of spacetime. The radiation obtained is identical to the
thermal Hawking radiation emitted by black holes. The other models considered are those of charged shells
for which the charge exceeds the mass. If these shells collapse to form naked singularities (which is possible
if the Proper mass is negative or if Einstein's equations are not imposed), an infinite flux of created particles
results. In the cases examined here, the flux is negative for two-dimensional models and for the minimally
coupled scalar field in four-dimensional models, whereas it is positive for the conformally coupled scalar field
in four-dimensional models. In either case, the back reaction from particle creation will be large and may
prevent formation of a naked singularity.

I. INTRODUCTION

One of the fundamental problems facing general-
relativity theory is the occurrence of singularities
in spaceti. me, examples of which are the initial
singularity of cosmological models and'the curva-
ture singularities on the interior of black holes.
General theorems have been proven which demon-
strate that singularities are inevitable in classical
relativity theory provided that certain conditions
are imposed on the energy-momentum tensor. '
These conditions are reasonable for classical
matter, but cannot be expected to hold in general
for the energy-momentum tensor associated with
quaritized matter fields. ' This holds out the hope
that quantum effects associated with the matter
fields can lead to the avoidance of singularities.

A related question of interest is that of calculat-
ing the spontaneous particle creation by the very
strong gravitational fields in the vicinity of singu-
larities, or almost singular regions. For many
spacetimes possessing singularities, this is not
possible in an unambiguous manner because of the
uncertainty in the boundary conditiqns to be im-
posed on the singularity. If the singularity evolves
from regular initial data, however, it is possible
to calculate unambiguously the energy radiated by
spontaneous particle creation up to the time of
formation of the singularity. In such a situation
one can attempt to answer the question of whether
the back reaction from particle creation is suffi-
ciently large to be able to prevent formation of the
singularity. One. might expect to find that the rate
of particle creation will become infinite if back re-
action is not taken into account. It is also possible

for quantum effects to be significant even in the
absence of particle creation since there can still
be a nonzero vacuum energy and pressure.

In this paper models of singularity formation
from regular initial configurations will be consid-
ered. One model is a shell-crossing singularity
formed in the gravitational collapse of a dust
cloud. ' In this case there is no evidence for very
large or infinite rates of particle creation as a
result of the formation of the singularity. The
other models considered are charged shells with

charge greater than their mass, which collapse
to form a naked singularity. In one model this is
made possible by not requiring that Einstein's
equations be satisfied; in another model the shell
has negative proper mass so that a naked singular-
ity forms in accordance with Einstein s equations.
In these models it is found that the radiated flux
becomes infinite as the singularity forms.

Each model may be regarded either as a four-.
dimensional spherically symmetric spacetime or
as the corresponding two-dimensional spacetime
obtained by removing the angular degrees of free-
dom. A solution of the four-dimensional version
by use of the geometrical-optics approximation is
equivalent to the exact solution of the two-dimen-
sional version. We consider massless scalar par-
ticles, but the same techniques may be applied for
other types of particles.

Iri Sec. II, we derive an approximate expression
for the energy flux radiated in the geometrical-
optics limit to infinity in a four-dimensional,
spherically symmetric, asymptotically flat space-
time. In Sec. III the gravitational collapse of dust
clouds and the formation of shell-crossing singu-
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larities is discussed. In Sec. IV the use of the
geometrical-optics approximation to analyze the
energy radiated by such a singularity is consid-
ered. The case of the collapsing charged shell is
taken up in Sec. V.

II. PARTICLE PRODUCTION AND ENERGY FLUX
IN THE GEOMETRICAL-OPTICS APPROXIMATION

lm

The normalization of the'F, is such that

(2 2)

a wave packet formed from the F, . Therefore
we can write the Hermitian field operator in the
form

(F i F i )&(~-~')~» & (2.3)'

The considerations of this section are rather
general, and apply to any spherically symmetric,
asymptotically flat spacetime, or region of space-
time, in which the radial null rays define a one-
to-one mapping between past null infinity (8 ) and
future null infinity (8'). Using the geometrical-
optics approximation, we derive a simple expres-
sion for the power radiated to infinity in the lower
angular momentum modes, when no field quanta
are present at early times. Our approach is anal-
ogous to that used by Fulling and Davies' in their
analysis of radiation by a moving mirror in two
dimensions, but also applies to four-dimensional
spacetimes. For simplicity we consider a scalar
field. The same technique should also apply to
higher-spin fields.

In the asymptotic region, let x, 0, P, t denote the
usual quasi-Minkowskian spherical coordinates
and time, which are asymptotically related to nul1.

coordinates u and v by u=t —x and v =t+r. An
incoming null ray v = const, originating on 8,
propagates through the geometry becoming an out-
going null ray u = const, and arriving on 8' at a
value u=F(v). Conversely, one can trace a null
ray from u on 8' to v =G(u) on 8, where the
function G is the inverse of E. In the geometri-
cal-optics approximation, a wave packet formed
at early times from incoming plane waves
exp( —i&tv) will become at late times an outgoing
wave packet formed from plane waves
exp[-i&kG(u)]. It is assumed that ~G(u)~ is small
for large r only at late times, so that the outgoing
wave packet arrives in the asymptotic region at
late times [for example, in Minkowski space G(u)
=u].

Let E, be the solution of the massless scalar
wave equation, which in the asymptotic region has
the form

F, - (4m~) ' (e '""+e ' " )t 'Y, (8, Q) . (2.1)

This asymptotic form is independent of whether the
field obeys the minimally coupled equation, Q = 0,
or the'conformally coupled one, Q+ —,'RP =0.
Wave packets formed from the E» are incoming
at early times and outgoing at late times in ac-
cordance with propagation by geometrical optics.
Any positive-frequency solution of the scalar wave
equation which is incoming on 8 can be written as

where the conserved scalar product is defined by

(k,f) = -i (h, at'f + —f *8"h,)( g)'~'d—s„, (2.4)

[a r, a
&

]=
(2 5)

t g a 'i' ' ]

The state of the field is specified by the state vec-
tor ~0) containing no particles of the field at early
times, i.e.,

a„,~
0) = 0 for all &u, l, m . (2 6)

The energy-momentum tensor of the massless,
minimally coupled, scalar field is (the effect of
conformal coupling is considered below)

1 , (X
Tpv 4, p4, v 2 gyve, aA (2.7)

where a comma denotes the ordinary derivative,
and symmetrization is understood. The average
energy flux of particles radiated to 8' is given
formally by the expectation value of

T" =-'(~ ~".e "~ ) (2.8)

However, this operator is not well defined because
it is quadratic in fields evaluated at a single point.
It can be replaced by a well-defined operator hav-
ing finite expectation values by separating the
points at which the fields appearing in the quadra-
tic product are evaluated, and taking the limit as
the separation of the two points vanishes. No in-
finite renormalization is necessary when this pro-
cedure is applied to T"„although that is not the
case for the diagonal components of 7"",. Be-
cause we work in the asymptotically flat region,
possible ambiguities coming from the local curva-
ture do not arise.

From Eqs. (2.2), (2.6), and (2.8) one finds that

where ds„is a future-directed surface element of
the spacelike three-dimensional hypersurface s.
[In the Appendix, the normalization of Eq. (2.1) is
obtained by considering a wave packet formed
from the F, at early times, and taking s as a
constant t hypersurface with ds, =dhd8dg. ] As a
consequence of Eq. (2.3) and the canonical commu-
tation relations for the field and its conjugate mo-
mentum, ihe creation and annihilation operators
satisfy
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oo

&olT", lo& =
2

Z
lm 0

+F, "F„*,,) . (2.9)

We evaluate this in the asymptotic region (large r)

using Eq. (2.1) and replacing u, v by u+@, v+c in
the function F*, appearing as the right member
of each product of F's in Eq. (2.9). Thus one ob-
tains the following for the point-separated expres-
sion:

&olT", I o&, = (4vr')-' Q I
I',.I'

lm
[Ge (u)Ge (u+ &) bio'(G(v+o)-G(v)) ei~o ] (2.10)

where a prime denotes the derivative with respect to the argument. One has

de (d8

G'(u)G'(u+ e) iorr[v(ll +)oG(u)] G (u)G (u+ ~) . 2 1 G 1 G
( )[G(u+ e) —G(u)]' 4 G' 6 G'

where we have made the integrals well defined by
introducing convergence factors e " into the in-
tegrands and taking the limit as n vanishes. In-
troducing these expressions into Eq. (2.10), one
finds in the limit as e approaches zero that

1
Pl Ore ~V, (re)l' exo („)—1 (2.16)

l

The expression given for this case in Ref. 6, Eq.
(136) lea.ds to

&olT" lo&=, Z lr,.l' —(,)
——

(2.11)

where
l B,(~)l' is the probability that a photon of

energy (v in angular mode (l, m) will reach 8'
from 8 . If lB, (id)l' is approximated by unity, one
finds by direct integration that

The total power radiated across a sphere of.ra-
dius ~ at late times is

P = (olT", lo& r' sin() d6d~))

1 G" '. 1 G"'

4m, 4 G', 6 G' (2.12)

We infer that the power radiated in the mode (I,m)
across a large sphere is

1 3 GI~ 2 Gi

24' 2 G' G' (2.13)

G(u) = -C exp [(4M) 'u] +v„ (2.14)

The sum of / in Eq. (2.12) is divergent; however,
that is because we have neglected backscattering
by the curved spacetime, which in a geometry like
that of a collapsing body reduces the radiated flux,
especially for large l. For the cases of interest,
such as a collapsing body, we expect Eq. (2.13) to
be a good approximation for sufficiently small l,
while for large l the radiated power P, will ef-
fectively vanish.

This. can be checked for radiation by a body of
mass M collapsing to form a black hole. In that
case, Hawking' showed that

P, = i([12(kT)'] (2.17)

1 ) IIII 3 gg
/))' 2

m( i) 24 (Pe)3 2 Pe2 (2.18)

where now the prime denotes the derivative with
respect to v. Here Pl is given as a function of
u, but can be expressed as a function of u by writ-
ing v =G(u).

The energy-momentum tensor given in Eq. (2.7)
is that foi the minimally coupled field. Although
the asymptotic form of the solutions of the wave
equation, Eq. (2.1), is the same for the minimally
coupled and the conformally coupled scalar field,
the energy-momentum tensors differ even in flat
space. That for the conformal field is, ' in the flat
region,

which agrees with Eq. (2.15) when the temperature
T = (8vkM) ' of the black hole is substituted. The
approximation of Eq. (2.13) is not good in this case
for -large l because of the neglect of backscattering
into the black hole, which reduces the actual value
of P,

One can also write Eq. (2.13) in terms of the
function F which is the inverse of G [i.e. , v =G(u)
implies u=F(v)]. One finds that

where C and v, are constants. Then Eq. (2.13)
gives, for the power radiated in mode (I, m) at late
times,

P,.= (768vM') -'. (2.15)

1e) v 4')4v ~-g) ,v it ,~it—)

—l (4 '),.+ o g, .
The flux is the expectation value of

(2.19)
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er Tr 1 (~2).r (2.20)

G //I

dQ,

provided G" and 6"'-0 as u-+~. Furthermore,
both expressions yield the same value, Eq. (2.15),
for. the Hawki:ng flux. It is interesting to note that
I'i ~ 0 whereas P~ can become negative for
some choices of G. Such negative Quxes are due
to quantum coherence effects associated with states
containing an indefinite number of particles and
also arise in the radiation from moving mirrors.

In the case of two-dimensional spacetimes, the
minimally coupled and the conformally coupled
scalar field are equivalent, and the energy-mo-
mentum tensor is given by Eq. (2.7). The net flux
is given exactly by the right-hand side of Eq.
(2.13), the labels I and r12 no longer having any
significance. The fact that this. expression is ex-
act arises from the conformal flatness of two-di-
mentional spacetirnes, so the modes which have
the form of e ' " on 8 and e '- ~ "~ on 8' are ex-
act solutions of the wave equation. For a more de-
tailed discussion of the calculation of the energy
flux in two-dimensional spacetimes, see the papers
of Davies, Fulling, and Unruh' and of Bavies. "

III. COLLAPSING DUST CLOUDS

AND SHELL-CROSSING SINGULARITIES

We shall calculate the function F(v) for the
spacetime of a spherically symmetric collapsing
pressureless Quid or dust in which a shell-cross-
ing singularity forms. The metric can be written
in comoving coordinates" as

ds' = dt' —I' '(2 ) [A'(2. , t)]'dr' R'(r, t) dD', -(3.1)

where a prime denotes s/sr Each part.icle of the
collapsing dust falls along a radial geodesic char-
acterized by constant values of the comoving co-
ordinates 2, 8, Q. The dust cloud or fluid can be
thought of as made up of concentric shells labeled
by ~. The shell at ~ has proper circumference
2mA(r, I). The motion of each shell as a, function
of time is governed by the equation

(3.2)

A calculation analogous to that above' reveals that
the analog of Eq. (2.13) for the power radiated in
mode (I, m) is

r, = (48m) -'

(—,
)

Thus the power is different for the two fields; how-
ever, the total energy radiated over all time is the
same in both case:.. since

and resembles the Newtonian equation for a given
shell x. Here

m(r) = p, I (2')dr', (3.3)

(3.4)

We will be dealing with solutions such that ini-
tially the matter is very dispersed and the shells
start to fall from infinity [i.e. , lim, „R(r,t) =~]
with no kinetic energy. Then we have

I (r) =1 (3.5)

for all the shells. That this condition is indepen-
dent of time indicates that the effect of the kinetic
energy and gravitational binding energy cancel at
later times. We also take R'(r, t) &0 initially for
all shells. As the system evolves it can happen
that A'(2, I) changes sign, indicating that shells
with ~'&r- have fallen past the shell labeled by x
and now have smaller circurnferences. During
such a process A' passes through zero, and the
proper energy density of Eq. (3.4) becomes infin-
ite. Such an event is called a shell-crossing sirig-
ularity. It is a naked singularity in the sense that
components of the Riemann curvature tensor be-
come infinite and are not hidden from infinity by
an event horizon. The nature of such singulariti. es.
has been discussed by Yodzis et al." Apart from
questions of how realistic shell-crossing singular-
ities are, problems concerning the energy-flux and

particle creation occurring up to the formation of
the singularity can be answered independently of
the boundary conditions at the singularity.

In the present case, the total mass of the col-
lapsing dust cloud is given by Eq. (3.3) as

where p is an ax'bitrary constant giving the proper
energy of a fluid element, and x=0 labels the "in-
nermost" shell, which need not have zero circum-
ference 2wA(0, t). A fluid element is defined by the
condition that it have rest energy p, and that the
total number of fluid elements in all shells labeled
by x' ~r is constant. As in Ref. 11, we take the
comoving coordinate r to be the number of fluid
elements contained in all shells with r' ~r. The
quantity m(r) can be interpreted as the total energy
of the matter contained in those shells, with the
factor I'(r) needed to take into account the kinetic
energy and gravitational binding energy of the vari-
ous shells. The rest energy contained in the shells
in the range x to r+d~ is pdx. The proper volume
of those shells found frorq Eq. (3.1) is
I4mA2A'I 'dx~, so that the proper energy density
of the shells near ~ is

wh'ich is a consequence of the Einstein equations, 2n(to) = i1J'o, (3.6)
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where xo is the largest value of x labeling a shell
of matter. Outside the dust cloud one will have an
exterior Schwarzschild geometry of mass m(r, ),
and beyond the innermost shell one has a flat
spacetime (if the circumference of the inner sur-
face of the dust cloud is not zero). The solution of
Eq. (3.2) with I'(r) =1 is

R(r, t) = (-', [f(r) —(2pr)' 't]]' ',
where f(r) is an arbitrary function of r Th. e g„„
component of the metric is

SINGULAR

CENTER

Z„=(R')'= [f' --'(2p ')"t]'/R. (3.8)

%e will be interested here in the case when the
function f(r) is a positive constant, i.e. ,

f(r) =a.
Then we can write

FIG. 1. The spacetime of a collapsing dust cloud
which forms a singularity at the Schwarzschild radius.
The dashed line is a null ray which passes through the
cloud.

(r t) 3Brl/3(Ar-1/2 t)2/3

where

A =a(2t/) '/', B = (t//6)'/'.

R'= Btr (A-r ' —t)

(3.10)

(3.11)

(3.12)

IV. PARTICLE CREATION BY SHELL%ROSSING
SINGULARITIES

Exterior to the outer shell (r =r,); one has the
Schwarz schild metric

2M
d~ — 1 —

R d~ — 1 — ~R R ~ 41
For t & 0, increasing x corresponds to increas-

ing proper circumference (R'&0). At t =0, R'
vanishes so that the proper energy density ~ be-
comes infinite, and

R(r, 0) = 3BA'/' = (3a/2)'/', (3.13)

for all ~, so that all the shells have met at t=0 at
a single circumference. One can formally continue
the solution (3.10) past the shelL-crossing singular-
ity up to the time A.x ' ' when the shell labeled by.
x reaches zero circumference, but we will only re-
quire the solution for t &0, before the time of
formation of the shell-crossing singularity.

A Penrose diagram of the solution is shown in
Fig. 1, in the case when the shell-crossing singu-
larity forms at the Schwarzschild radius. This is
the most advantageous case for using geometrical
optics, as a ray which reaches 8 with finite fre-
quency at late times has a very high frequency
when it passes'through the region of high curva-
ture. (We will investigate the range of frequencies
observed at 8' for which geometrical optics is
valid later. )

Next, we match the metrics at the inner and out-
er boundaries'of the collapsing dust, and trace
null rays from 8 to 8' to find the function E(v)
giving the value of u at which the ray originating
at v on 8 arrives on O'. In these considerations,
the inner radius R; of the cloud, at which the sing-
ularity forms, can be outside or at the Schwarzs-
child radius.

where R denotes the Schwarzschild coordinates.
This must be matched to the metric of Eq. (3.1),
with I', R, and R' given by Eqs. (3.5), (3.10), and
(3.12), respectively. The circumference of the
outer boundary of the dust is proportional to

R(r„t) -=R,(t) . (4.2)

On the three-dimensional hypersurface Z in the
spacetime traced out by the collapsing outer bound-
ary, the intrinsic geometry expressed in terms of
the metrics of Eqs. (3.1) and (4.1) must agree.
From the angular part of the line elements one
finds that the Schwarzschild coordinate 8 has the
value R,(t) on the boundary. Therefore the match-
ing condition on Z is

2M -dT~j2 - 2M -1-dA0-2
1= 1—

R,(t) dt„R,(t) dt
1— (4.3)

M= ILL,r„ (4.5)

which comes from matching the extrinsic curvature
of the hypersurface Z, has been used. In the case

The integral of this equation, relating the exterior
Schwarzschild time T to the proper time t of a
dust particle at the surface, is

T =t (2M) " 'a 2(2V)' 'R ' '(t)

R "(t) -(2M)"
R ' (t)+ (2M)' '

Here the condition,
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that the shell-crossing singularity forms at the
Schwarzschild radius one has the further condition
that R(~, 0) =2M, which requires that

= -'(2M)". (4.6)

The matching at the inner boundary of the dust
is trivial because the circumference of the shell
at r =0 is constant for t &0, as there is no matter
present at smaller radii to attract the inner shell.
One has from Eq. (3.10) that

R(0, t) = (3a/2)'i'-=R, (t &0) . (4 7)

d&'=dt'-dA -A dQ', . (4.8)

where the Minkowski coordinate t is the same as
the comoving coordinate t of Eq. (3.1) on the inner
boundary of the cloud, and the coordinate A has
the value in Eq (4.7.) on that boundary.

In the Schwarzschild region [metric of Eq. (4.1)]
the mell-known null coordinate which is constant
along outgoing null rays is

n, =T -A -2Mln A —2M
2M

(4.9)

In the region occupied by the dust [metric of Eq.
(3.1) with I'= 1 and R given by Eq. (3.10)], null
rays are determined by

One finds that the metric at smaller radii than that
of the inner shell is

inner shell before t=0, it must pass in through
that shell at t = —2A;, which can be shown to be
earlier than the time at which that approximation
becomes valid. As we are interested in the effect
of the singularity, and the cloud is relatively tenu-
ous as the incoming ray passes through it, we will
make the simplification of imagining that the in-
coming ray passes through flat spacetime on its
way from 8 to the center. Thus we use the Min-
kowski null coordinate to characterize the incom-
ing ray. The contribution to the particle produc-
tion coming from the formation of the singularity
occurs as the ray is outgoing, and will not be af-
fected by this simplification. Alternatively, one
could use the incoming Schwarzschild null coordin-
ate to characterize the incoming ray up to some
average radius A, of the cloud as the ray passes
in through it, and then match it to the Minkowski
null coordinate for R &R, . (One can show that R,
should be greater than or of order 3M for 8;
~ 2M. ) This procedure does not alter our conclu-
sions. To avoid unnecessary complication we use
the simpler approach here.

To find the function F(v) giving the value of u on
8' of a radial nul1 ray originating at v on 8, con-
sider an incoming null ray on the path v = const. In
the flat region the outgoing null coordinate is

(4.14)

dt—=+R'(~ f) (4.10)
and one has, with the above simplification, v = t
+A, so that after the ray passes through the center
(R = 0) it moves on the path

where R' is given by Eq. (3.12). We are particu-
larly interested in the outgoing null rays which
pass through the cloud when t is small and nega-
tive, just before formation of the shell-crossing
singularity For .t«Ar, '~'=a—(2 )M'~', one has
the following, to lowest order in t/(Ar '~') f-or

outgoing rays:

(4.15)

Fc = U+A; =a+A; . (4.16)

When the outgoing ray reaches the inner boundary
of the cloud, the t coordinates are identical, and
'one has A = A,- and ~ = 0, so that

which gives

(4.11)
When the outgoing null ray reaches the outer
boundary of the dust cloud, T is given- as a function
of t by Eq. (4.4), and one has r =~, and R =R,(t).
Then Eq. (4.9) gives

In(-t)= 2A ' Br' +-const. (4.12)
u = T(t) -R,(t) —2M ln R,(t) —2M

(4.17)
Hence, a null coordinate which is constant along
outgoing rays is [for t «a(2M) '~']— and Eqs. (4.13) and (4.16) give f as a function of v:

S=t exp(2A ' 'Br' ') =i exp[(2p~/R, .)" '], (4.13) t=(v+R, ) exp[-(2M/R, )"]. (4.18)

where A; is the inner radius of the cloud given by
Eq. (4.7). The incoming null ray which passes
through the center and out of the cloud just before
formation of the singularity at:=0, enters the
cloud at too early a time to make use of the same
approximation as in Eq (4.11). Fo.r example, in

order to pass through the flat region interior to the

Since it is the ray that goes through when ~1~ is
small that is of interest, one can use in Eq. (4.4)
and Eq. (4.17) the first-order expansion of R,(t):

R,(f) = R, —(2M/R, )"t. (4.19)

Finally, Eqs. (4.17) and (4.18) give u as a function
of e. One finds that
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u = E(v) = (1+n) e "(v + R;) -R; (1+ 2 o + —,'o, ')

u'R, '(V +R,.)' —(3 —2o. —o, ')nR, '(v+R,-)+ 2(1 —o)(l —a')
(4.20)

where T = (8vkM) ', (4.25)

R; =2M (4.22)

is of special interest. In that case, one finds that
for t near zero or v near -2M,

T -2M ln— (4.23)

& = (2M/R, )"', (4.21)

and the term involving. t' has been retained in the
logarithm because when the singularity forms on
the Sehwarzschild horizon one. has o. = 1, so only
this term is nonzero. The ray which gets out of
the cloud at t=0, just as the shells cross, corres-
ponds to v = -R;. The power radiated in each
mode, as calculated using either Eqs. (2.18) or
(2.21), does not diverge for v ~ R;. A-s these ex-
pressions approximate the actual P, for small /,
and can be used as an upper bound on P, for large
l, we conclude that there is no indication from this
geometrical-optics result that any particularly in-
tense particle production will be produced just
prior to formation of this shell-crossing singular-
ity, or that there will be a significant ba.ck reac-
tion which might influence its formation.

In general, geometrical optics does not apply at
all frequencies, so the energy flux calculated
from Eq. (2.18) will contain some finite error.
However, since the geometrical-optics approxima-
tion does apply for sufficiently short wavelengths,
the error should be finite. That is, a finite result
in the geometrical-optics approximation suggests
that the actual flux is also finite even though some
error may be introduced into the lower frequency
modes.

The case when the shell-crossing singularity
forms at the Schwarzschild horizon, that is, when

R'„„,=R'„„,= -RR'/(RR'),
~ ~R'„,=a~, ,~ =R/R,

A,

R g g e
= -R /R

(4.26)

where R is given in Eq. (3.10), and the dot and

prime refer to derivatives with respect to the co-
ordinates t and x, respectively. Just before form-
ation of the singularity (for t small) —these com-
ponents have the form

R ~~. =-R -e=-R,.y
r e

= (2@~/R, )'/'(R, t) ',
R ~~e =R

~~ j= =2R eel= (I"~/R )R -2

(4.27)

As is well known, the metric in I. can be regarded
as Minkowskian over a region of spacetime of
linear dimension / as measured in the coordinates
of L, , where l ~ IR"Bzt; I

'/' for all curvature tensor
.components in I.. In particular, light will propa-
gate by geometrical optics if its frequency + as
measured in I satisfies

as for a black hole of mass M (here k is lloltz-
mann's constant). This is in fact the case. The
analysis of the limitations of geometrical optics
given below shows that for all frequencies reach-
ing 8', geometrical optics is valid. This is t.rue
in spite of the fact that the curvature is increasing
without bound.

The range of validity of geometrical optics in a
local inertial frame I comoving with the dust de-
pends on the components of the Riemann curvature
tensor in that frame. One finds the following for
the nonvanishing independent components in the co-
moving inertial frame 2 at a point ~, t in the dust
cloud:

R"„„=R'/R',

(v+ 2M)
u = E(v) = —4M ln-

4m (4 24)

This expression is valid for t in the range 0& t/M-
The effect of the Schwarzschild exterior

metric on the incoming null ray will only alter the
constants appearing in the argument of the loga-
rithm, which has no effect on the observed flux.
This function E(v) is of the same form as that ob-
tained by Hawking for the spacetime of a body col-
lapsing to form a bla.ck hole in the absence of a
shell-crossing singularity. Thus one expects a
thermal spectrum at late times (large u) of ihe
same temperature,

1/2
( R t)

—1/2 (4.29)

where o is defined in Eq. (4.21). This range of
frequencies becomes narrower as t- 0, but it is
the range of frequencies s observed at infinity,
and. not in I, that determines over what range the
previous results a,re valid.

Therefore, we need the relation between the fre-

(4.28)

for all components. The curvature tensor compon-
ents of Eq. (4.27) are largest at the outer boundary
x, of the cloud. Then geometrical optics is valid
for frequencies as measured in I. such that
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quency (d observed at rest at infinity, and the fre-
quency ~ relative to a local inertia, l frame L, , in-
'stantaneously comoving with the dust at the outer
boundary of the cloud just before the shells cross
at t=0. The four-velocity u of a freely falling
dust particle at the outer boundary of the cloud is,
in the Schwarzschild coordinates of Eq. (4.1),

Therefore, when 8; &2M, any given frequency ~
will pass out of the above range of validity as ~t~- 0. However, when the shell-crossing singularity
forms on the Schwarzschild horizon A, =2M, one
has n = 1 and H = t/(2-M) for small

~ t~, so that
geometrical optics is valid in the range

P
d& dBO 0 0

1 —— —,0, 0 (4.30)

4M 2M (4.38)

V. THE REISSNER-NORDSTROM SINGULARITY

Thus, when the singularity forms at the Schwarzs-
child horizon, geometrical optics is valid for the
entire spectrum in the limit t-0.

2M

R,(t) ' (4.31)

(d=p Qp =p ' H+A
2

+n (4.33)

Near formation of the singularity, one has

~ =p'[(8 +n')" +n]. (4.34)

To relate this to the frequency & observed at rest
in the asymptotic region we use the conserved
quantity p" $„,where $" is the timelike Killing
vector, E" =6~O in the Schwarzschild coordinates.

One has for the frequency. at infinity,

(u=.P"5, =P H. (4.36)

(The usual red-shift factor of H'~' is obtained if
one notes that P =H ' '~', where ~' is the fre-'
quency relative to an inertial frame instantaneous-
ly at rest in the Schwarzschild coordinates. ) Thus
for small ~t~ one has

u) = [(H + n')'~'+ n] 'H ~ . (4.36)

It follows from Eq. (4.29) that geometrical optics
is valid for small ~t~ for the following frequency
range observed at rest at infinity:

uR [(H+n )'i'+n] 'Hn'i'( R;t) 'i'. -(4.37)

the coordinate t is the proper time of the dust par-
ticle; R,(t) is given in Eq. (3.10); and dT/dt is
found from Eq. (4.3). I et P" be the four-momen-
tum of a radially outgoing photon. In the Schwarzs-
child coordinates at the outer boundary of the cloud
one finds from P"P„=0 that

P =HP (4.32)

Thus the frequency & observed in the instantane-
ously comoving inertial frame L of the dust par-
ticle is

An example of a spacetime which possesses a. "
naked singularity is the Beissner-Nordstrom solu-
tion with the charge Q greater than the mass M.
The singularity is timelike and of a more serious
nature than the shell-crossing singulariti. es dis-
cussed above. One suspects that this singularity
will be unstable in a theory in which quantum ef-
fects are included. However, in'the ca,se of a
static singularity there is a,n ambiguity in the
choice of boundary conditions to be imposed at the
singularity itself. This question can be circum-
vented for spacetimes in which the singularity has
an origin in time, as is the case for a charged
shell which collapses to zero radius.

A shell with Q &M will form a black hole as seen
by an external observer; after it crosses its event
horizon it may, depending upon initial conditions,
reach zero radius. " A shell with Q &M and having
positive proper mass which collapses in'accord-
ance with Einstein's equations will rebound without
forming either a singularity or an eVent horizon.
There are two ways to overcome this difficulty and
obtain spacetimes in which the singularity forms
at a finite time. One is to suspend Einstein's equa-
tions and allow the shell to have any convenient
trajectory. The other is to endow the shell with
negative proper mass; such shells have been dis-
cussed by Boulware, "who finds that it is then pos-
sible to form a naked singularity in a spacetime
which satisfies Einstein's equations. We will con-
sider both possibilities below.

Spacetimes which are not solutions of Einstein's
equations are still of interest for the purpose of
understanding quantum field theory in curved
spacetime. All two-dimensional models are in this
category and, as was noted previously, the geo-
metrical-optics solution of a four-dimensional,
spherically symmetric model may be reinterpreted
as the exact solution of a two-dimensional model.
The simplest collapsing charged shell is that for
which the ra, dius decreases linearly in the proper
time, that is,
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Z(~) = -y~, (5.1) V =t+&. (5.12b)
'I

where y&0 is a constant and 7. is the proper time
along the shell. If Q &M, this shell forms a naked
singularity at v =0. The spacetime is given by the
exterior Reissner-Nordstrom metric

These equations contain all the information nec-
essary for matching the null coordinates across
the shell and obtaining the function I" (v). Thus
far, Eq. (5.1) has not been imposed, Combined
with Eq. (5.9), it implies that

ds '= 1 — +, dT'2M Q
y2

1 — + dx -r dQ, x&A
2M Q
y y'

(5.2)

and the interior flat metric

where a=(y'+ I)'~'. Thus at r=A one has

U=(a+y)T,

I

V= (a —y)T.

(5.13)

(5.14)

(5.15)

ds =dt' —dr' —r'dQ', x&A. (5.3)

The relation between t and T is determined by the
requirement that the timelike hypersurface Z
formed by the history of the, shell have the same
intrinsic geometry in both metrics, i.e. ,

%e are interested in null geodesics which pass
through the shell shortly before formation of the
singularity, so we may make expansions in powers
of r. Equation (5.8) implies that

(5.16)

ds, =ds,

at r =A. This yields the relation

(5.4) as v 0. As x-0, one has

~+- (3Q') '~', (5.1V)

where

(5.5)
so that the relation between the u coordinate of an
outgoing ray and the proper time at which it passes
through the shell is

2M Q'
1 — +

The metric of the hypersurface Z is

ds3 =d7 —g dQ

The requirement that ds3'=dsy on Z yields

(dT)', , (dR)'
'

(5.6)

(5.7)

(5.8)

a -T(~) -(3Q') 'I~'(~)
2

2Q 3Q' Q

This we have

u(U) - —
2

(a+ y) -'U'

2+, (yQ+M)(a+y) 'U'.

(5.18)

(5.19)

Equations (5.5) and (5.8) imply that

dt ' dR
(5.9)

Similarly, the relation between the v coordinate
of an incoming ray and the proper time at which it
enters the shell is

The outgoing and ingoing null coordinates in the
exterior (r &A) region are, respectively,

'y y M
v(7) - —

2Q
—

3Q, r Q- (5.20)

g=T -r+,
and

v =7'+x'+,

where

(5.10a)

(5.10b)

so that

v(V) - — (a —y) 'V'

2

, (yQ —M)(a —r) 'V'.
3@3 (5.21)

2M Q (5.11)

The corresponding null coordinates in the inter-
ior (r&B) region are

Note that all of the null coordinates have been
chosen to have the value of zero at the point where
the singularity forms. The inverse of Eq. (5.21)
is, as v-0,

and

U=t -rp (5.12a)
V(v) - (a —y) -(-2y 'Qv)'~'+

3 (yQ -M)v . (5.22)
3Q



1494 L. H. FORD AID LEOÃARD PARKER

u = F(v) —
P [v/+ u (-v)' '],

where

(5.23)

(5.24)

and

n = —,(2y Q) " '(a + y) '(a Q -M ) .4& (5.25)

As usual, the matching condition at the origin is
U= V. Hence one obtains the result that, as v-0,

The gravitational mass M is positive, but the pro-
per mass M, may have either - sign. A negative
proper mass is unphysical in that it requires a co-
moving observer to assign a negative mass density
to the shell. However, it is still of interest to
study the effect of the resulting singularity on the
quantiz ed field. If c & 0 and 5 & 0 (M, & 0 and Q
& ~M, ~) as well as Q & M, then the shell collapses
inward from a finite initial radius to produce a
naked singularity. As 7.-0, the solution of Eq.
(5.30) may be given as an expansion in powers of
f,—.

( ~)1/2.

From Eq. (2.18) one finds that the flux radiated
ls

R - a,&+a,$'+a2&'+ ~ ~ ~

where

—
( 25)1/2

(5.33)

(5.34)

as u 0. Since n & 0, this diverging flux is nega-
tive. One may also express P, as a function of
R. The u coordinate of an outgoing ray and the
radius of the shell at which it leaves are related by

%e do not need the explicit expressions for a, and

a, .
One finds that, as (-0,

u - -(2yQ) 'R',

so that

(5.27)
(5.35)

y'(aQ -M)
1211(a —y)R' ' (5.28)

as R-O.
Recall that P, is the flux in a given mode for the

minimally coupled scalar field in a four-dimen-
sional mode, and is also the net flux for a scalar
field in two dimensions (where minimal and con-
formal coupling are equivalent). " The flux per
mode for.the conformal field in four dimensions is
given by Eq. (2.21); in the present model, we have

T(h) - Ah',

where

Q -1(4 + a 4
Q -2)1/2

Thus along the shell one has

u(1) -
(A

—12.)1',

U- -2a,(,

(5.36)

(5.37)

(5.38)

(5.39)

256wPu ' (5.29) so that

as u-0. Since u is negative, -P& is positive.
Thus both fields yield a diverging flux for this
form of R(w), although the sign of the flux is dif-
ferent.

Another set of models are those in which the
shell has negative proper mass. In four dimen-
sions such a shell can collapse in accordance with
Einstein's equations to form a naked singularity.
In general, the equation of motion for a collapsing
charged shell is"'"

u(U) - -(24a, 'Q') '(3Q'A -a,')U'.

Similarly, one has

and

so that

V(v) - -2a, 'Q'(3Q'A+ao') 'v.

(5.40)

(5.41)

(5.42)

(5.43)

where

c =M/M, ,

c2@2 —M2
b=

2cM

=c-
R

Q' -Mo
2MO

(5.30)

(5.31)

(5.32)

Hence we find that

u = E(v) Bv', -
where

B=, (3Q'A —a, ')(3Q'A. +a,') '.
0

Since ~A~ &a,'/3Q', one has B &0.

(5.44)

(5.45)
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The radiated flux (minimal field) is given by

P, (u) - -(54nu') '. (5.46)

Thus the flux is negative and diverges as the sing-.
ularity forms. It is of interest that this result is
independent of any of the parameters associated
with the shell. The flux associated with the con-
formal scalar field is given by

I', - (108vu') ', (5 47)

i.e. , of the opposite sign from that for the minimal
field.

In all cases the flux becomes infinite as the sing-
ularity forms. In the case of the four-dimensional
versions of these models, one must recall that
geometrical optics becomes p. poor approximation
near the singularity. Here there is no large com-
pensating red-shift as there is in the case of sing-
ularities near the horizon of a black hole. Thus
one should regard these results as only suggestive
of the presence of a large flux in four dimensions.
For the two-dimensional versions of the collaps-
ing-shell models there is no such difficulty, and
the fluxes given by Eqs. (5.26) and (5.46) are ex-
act. Regardless of whether one prefers an exact
solution of a less realistic model, or a heuristic
treatment of a more realistic model, these results
indicate that an attempt to form a naked singularity
of the Reissner-Nordstrom variety will lead to a
strong back reaction. The final effect of this back
reaction can only be determined by a self-consis-
tent calculation.

We are considering only a neutral scalar field,
so the coupling is entirely to the spacetime geo-
metry. A charged field will also couple to the
electromagnetic field and produce an even gregter
back reaction. "

A diverging positive flux may be interpreted as
the shell radiating away all of its mass before a

. singularity can form. A diverging negative flux i.s
more surprising, but it may be interpreted as the
shell forming a black hole rather than a naked
singularity. That is, if a shell for which Q)M
initially can radiate enough negative energy to in-
finity, its mass will increase sufficiently that a
horizon will form and avoid a naked singularity. "
Although neither of these scenarios can be verified
without a self-consistent treatment of the back re-
action, an infinite flux of either sign may be taken
as demonstrating the instability of the singularity.
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APPENDIX: NORMALIZATION OF WAVE FUNCTIONS

d+fx(&)&u rm )I (A3)

where f,(&u) is peaked near &u= ~,. Using Eq. (A2)
we have

+
y l pl y

0 QJ 2 l 2@i2
d~ d ~'f, ((u) f,*((u')

lll2 mlm2

Alternatively, one can evaluate the scalar product
of Eq. (A4) by integrating over a constant-t hyper-
surface at early times, when only the first term
of Eq. (Al) contributes to the wave packet. Thus,
one finds that at early times

Let &, be the solution of the scalar wave equa-
tion which in the asymptotic region (r large) has
the form

E, -N(&u)(e ' "+e '" ")r 'Y, (8, Q), (Al)

where N(~) is a normalization factor which is to
be found. Any positive-frequency solution of the
scalar wave equation which is incoming on 8 can
be written as a wave packet formed from solutions
of the form (Al). It is assumed that iG(u)i is
small for large x only at late times, so that the
term involving G(u) does not contribute to the
wave packet at early times. The normalization
factor N(co) is determined to within a phase factor
by the requirement that

(F, ,F, ) =6((u —(u')6„6, , (A2)

where the conserved scalar product is defined in
Eq. (2.4). This normalization is required so that
the canonical commutation relations will imply
that the coefficients a

&
in the expansion of the

field 'Q a.re annihilation operators obeying the cor-
rect commutation rules.

To find N(u&) consider a wave packet

@~|lym|P @F2!2m2) l gjp mgm2

dr dc' 4(d & (d +2 M N (d N+ (d 4)+co e
0

(A5)
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Because -t is large, the lower limit of integration
over ~ can be extended to -~ without affecting the
result (i.e., the wave packets are located at large
r). Then one can interchange the order of integra-
tion, performing the integrations over ~ first,
without affecting the convergence of the result.
Thus, using J dr exp( t'kr-) =2s5(k), one finds
that

+l~ lml~ @&2l2m21 l g!2 mym2

co

&~ ~l&(~)l'f, (~)f,*(~) . (A6)

N((u) = (4'(u) 'i'. (A7)

Comparison with Eq. (A4) implies that, to within
a phase factor,
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