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Most experimental laboratories accelerate and rotate relative to inertial frames. This paper derives
approximate expressions for the general-relativistic metric and the general-relativistic equations of motion of
freely falling particles in such a laboratory. The metric is derived accurate to second order in distance from
the origin of coordinates; the equations of motion are derived accurate to first order. The equations of
motion contain inertial, Coriolis, and centripetal pseudoforces, electric, magnetic, and magnetic-magnetic
type forces due to Riernann curvature {inhomogeneous gravity), "gravitational red-shift" corrections to these
forces, and velocity-induced special-relativistic corrections.

Synge' defined a natural coordinate system for
an accelerated observer, which he called the
"Fermi coordinates, "' and derived integral ex-
pressions for the metric and the inertial (coordi-
nate) accelerations about the observer's worM
line for these-coordinates in spacetime with small
curvature. Manasse and Misner' obtained the sec-
ond-order coordinate expansion of the metric in
the special case of a freely falling observer. Us-
ing a somewhat different coordinate system, and a
dyadic formalism, Estabrook and %ahlquist4 de-
rived an equation for the inertial acceleration near
an arbitrary world line. Ni' and Mashhoon' cal-
culated the second-order expansioo of the metric
and the first-order expansion of the inertial ac-
celerations in these coordinates for an accelerated
observer in special and general relativity, re-
spectively.

A natural extension of the Fermi coordinates of
Synge to the case of an accelerated rotating ob-
server is the "local coordinates of the observer's
proper reference frame" defined by Misner,
Thorns, and Wheeler (MTW). ' Such coordinates
are important because they are the ones used by
real experimenters in real earth-bound labora-
tories. MT% calculated the first-order expansion
of the metric, and obtained the inertial accelera-
tions on the world line of an arbitrarily accelerat-
ing and rotating observer. In this paper, we ex-
tend their work to obtain the second-order expan-
sion of the metric and the first-order expansion of
the inertial accelerations for the case of an arbi-
trarily accelerating and rotating observer in gen-
eral relativity and in other metric theories of
gravity. To this order, we include centripetal
pseudoforces, second-order red-shifts, relativ-

istic corrections, and electric and magnetic Bie-
mann curvature terms.

Consider an observer moving along the world
line Po(7') with four-velocity u(v) and four-rota-
tion &u(7) in a gravitational field with Riemann ten-
sor R"„z(v) along the world line. The orthonor-
mal tetrad (e-t which the observer carries trans-
ports according to'

de-—=-Q e-d:=-
where

0 =Q Q —QQ +Q 0; 8

a(7) -=v„u,

and 7 is thy proper time along the world line.
Following Sec. 13.6 of MTW, at any event P,(7)

we send out geodesics P(7';n; s) orthogonal to
u(7'), where n is the unit vector tangent to a par-
ticular geodesic at P,(r), and n u(v) =0. An event
a distance s out along any geodesic n is then as-

A

signed the coordinates x =—7, x~ =sn e-. These co-
ordinates are called local coordinates.

This coordinate system is good for events near
the world line, i.e. , for

]
s «min un8

(gJ '. )~j ' )g~„.f
I ' Ig5Ge8

since within this distance the geodesics coming
out of the world line do not cross (s «1/ la I), the
"light-cylinder" has not been reached (s «1/ I ur I),
curvature has not yet caused geodesics to cross
(s «1/IR",,&I' '), and the Riemann tensor has
not yet changed much from its value on the world
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line (s « IR~--l/IR~=. -I). This last condition
is usually the most severe restriction when using
this coordinate system in an earth-bound labora-
tory.

ln the local coordinate system we decompose a
four-vector V as V= ( V', V&) —= ( V', V). Now de-
fining f&=V„a, &) = V„&d and using Eqs. (1) and'(2)
we have

To express r"-.- -. in terms of R---, a, b & and
jkgi ngj:Gf

q, we follow the method of Manasse and Misner'
and use the geodesic deviation equation

d'N" dN'
r&..U +N'P U~~".,as' as

$0=a'a b= + x a
d7

(4)

(10)

'g = 4)'a d(d
g d7

r -= r -.»=0
00

I"-,.= a' a.ll a.long P,(v),
AAA

r j ~i~i jk'
kop»

(5)

Along P,(7'), MTW derived the connection coef-
ficients and the first-order partial derivatives to
be

where N= 8/BN and U= s/I&s of a, one-parameter
family of geodesics &R(N, s), and where s is an af-
fine parameter along the geodesic 6l(N, s) for N
fixed. The family of geodesics we want to con-
sider is P(v; n', s) = P(v;n;s) —where n= &&&'e Th-. .e
case N= 8/Br merely leads to part of Eqs. (18).
The case N= 8/Bo. ' leads to the desired results.
In this case N = 9/9 &&&' = s S/Sx', hence Ã' = s 5-.".
Expanding the second term in the geodesic devia-
tion equation in powers of s, we have

25 'r', n'= 2& r', .I„&,&u'n" +o(&&.') .
vj

g» A»=g»A»= 0
n0y 0 jk~ l

g-;= -2a; all along P,(v) .
jkl l

g»A A ( Q)oj, k

(6)
A

(Br +R
~ . )Ip &

&Q'Q =0
i jk jik 0

(12)

Substituting (5) and (11) into (10), dividing (10) by

s, and then setting s = 0, we obtain

Differentiating Eqs. (5) along the trajectory
with respect to r and using Eqs. (4), we have

Since o~ can be arbitrary, (12) leads to

» A

(I +I ) p.
& &

3(R +R )Ipijgk ik, j jik kij p ~

0
00~ 0 jkq p

I ', = 5'(~) + ~'"«'(~)~'(~) all a.iong P,(&-) .
AAA

I' —.= —&l'(7)e '
jp&, 0

From the definition of the Hiemann tensor,

r ...=R . .+r .+(I'..r. I' r ).
p o,v Pvp p. v, 0 gv ap WO vv

This equation can be solved for I" -- -I p &, &
by add-

o ~

ing to it one cyclic permutation and subtracting
another:

(14)

From the definition of the Christoffel symbols,

0'tv, n =gp ar vn +tv v n &

Combining this equation with Eqs. (5), we find we find by differentiation that

»
rp

00~r..
oo,

r-0
jo~

A

koan

.= b'(7) + 2a'(7) &d~(~)e"'
i

AAA A

~'g Q +Q ak jik i j
p joi

A

+&8 M —5 ((d )ij
A

i jA= Pi»AAA —a a
Ojpi

k l-=.~i--+a & e--
jkip lji

) ail aiong P.(~). (9)

~o I 7 Cr

gA A A A p ( ) 7)A AJ AA A
I p ( ) + QAAJ A A A p ( )gv, no 0 f"~ vn 8 O trav Vn, g O

(16)

Combining Eqs. (5), (6), (7), (9), (14), and (16)
we have
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g„„„„—Q
o.gq 00

gaa aa 0
jk~ lO

g 2(bz + (gNgk~l )
00, jo

g~a
Oj, ko jkl

g...-= 2R'...—2a'a'+ 2P-((u')' —2g'(o'
00, jk jko k

2/g.- -= —g(R--+ R--)
01,jk Ok~ j Ojik

lgg.. ..= ——,(R..—+ R..--)
lm, ij if jm

) all along P,(~) . (17)

From Eqs. (17), we obtain the second-order ex-
pansion of the metric at the point P(x', x') as

A A A A

ds'= -(dx')'[1+ 2a-x'+ (a'x')'+ (&u'x')'j
A A A A

—(cu)'x'x'+R-- x'x ]Ol Om

w = v(1+ a x) —~ && x+ O((x') '),
which is obtained by integrating Eq. (20).

Substituting Eq. (21) into (20) we obtain

2Xi A

, = —(1+a x)a'+2(a v)(1+a x)v'
d xo

(21)

A A

d(xo) vv vv dxo dxo dxo
(19)

and substitute into it the first-order expansion of
the 1's. Defining w' —= dx'/dx', the velocity mea-
sured by the accelerated rotating observer, the
resulting coordinate acceleration is

'x'
, = -(1+3, x)a' —(e x (~ x x))' (q x x)'

2(~ x w)'+2(a. w)(~ x x)'

y w' [2a (~ x x) + 2a, w(1 - a, x) + b x]
R'~isa Q g2 l

0$0S g jlo

+ 3 X K K R~~~~+ 2g S K R~~~~Z l j k r

~ jkl 0jol

+ ~ x'w'w~w'R +O((x'-)'.-) . (20)

To express d'x'/d(x')' in te'rms of the velocity
v' observed in the local coordinates of an unac-
celerated nonrotating observer, we use the rela-
tion

A ' A A A A A
2+2dx dx (e. , h! x —gR "."XX )ijk Orim

A A A A
1+dx dx~(~-. - —sR-.--x x )ij il jm

+ O(dx~dx'x'x "x~), (18)

where a-, ~', and R- —- are evaluated on the world
eggv

line at time x'.
To calculate the coordina, te acceleration of a

freely falling body, we use the geodesic equation
in the form

~(b x)g' 2(1+a x)(u& x v)'+(~ x (~ xx))'
A A

(q x x)' R-.-x —2R-. -.-x g'~ i j
OjOl i jlO

+ 3 RAAAAg g g + 2RAAAAg Ll g + 3 RAAAAg g gj k 2 l j j
i jkl Ojol Ojkl

I

+ O((x')') . (22)

The various terms in this equation are inter-
preted in Table I. Notice that to the order calcu-
lated there could be no coupling between the Rie-
mannian terms and the a, +, b, and g terms.
Therefore, we can also derive the above results
by combining a simpler special-relativistic de-
rivation with the results for a freely falling ob-
server in curved spacetime.

The results presented in this paper may be use-
ful in analysis of tidal deformation of objects due
to various types of close encounters, or in analy-
sis of gravitational wave detectors and laboratory
experiments where the size of the apparatus is
small compared with inhomogeneities in the gravi-
tational fields being observed. A Newtonia, n phys-
cist can think about the terms in Eq. (22) or Table
I as simply Newtonian forces, as described in box
37.1 of MTW. Moreover, a, Newtonian physicist
can use the equation of motion (20) or (22) to ana-
lyze mechanical apparatus in an experimental lab-
oratory. All he needs to do is multiply this equa-
tion by the mass of a mass element in his appara-
tus, and add it linearly onto the forces that would
be present if the apparatus were at rest in an in-
ertial reference frame (see, e.g. , box 27. 1 of
MTW).
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TABLE I. parious inertial and gravitational effects in coordinate acceleration.

Effect
Term in coordinate

acceleration d2x'/d (xo) 2

l. Usual inertial acceleration
2. Usual Doppler ("gravitational" ) red-shift

correction to term 1: physical processes
"overhead" run fast compared to
observer's proper time

3. Special-re1ativistic (SB) correction to
acceleration tdue to y= 1/(1 —v2)~ ]

4. Bed-shift correction to term 3
8(red-shift) /() 7 correction to acceleration

6. Cori olis acceleration
7. Bed-shift correction to term 6
8. Centripetal acceleration (Qef. 10)
9. Coordinate acceleration if u changes

10. "Electric-type" (usual) gravitational effect
11. SH correction to term 10
12. "Magnetic-type" gravitational effect
13. Sg correction to term 12
14. "Double-magnetic" gravitational effect

f

-(K.x)g'

+2(K v)v'

+2(a v)(a x)v'
+ {b .%)v'
-2(~ ~v)'
-2(a x)(co &&v)'

+ [(d X(CO XX)]
—(j&&x)'

-Roiol
+ 2R"".""x'v 'v j

Ojol

zjlo
2R-Path& xlv J

+ -;'R"".""x'v' v jv'
3 Ojkl

+ =" R--.—x'v'v'
3 i jk'l

In actual experiments, while the second-order
inertial effects are small, so are the Riemann
forces which are being observed. Terms 2, 8,
and 9 in Table I, for example, have a dependence
c.i the coordinates similar to the usual R;-.;; accel-
eration, term 10; likewise, terms 5 and 7 resern-
ble the "magnetic" Riemann effect, term 12, and
term 4 resembles terms 11 and 14. In typical
resonant-device experiments, for instance, one
might be concerned about noise fluctuations in the
acceleration of gravity: If g=g, (1+e cosset), then
the second term (red-shift) gives an acceleration
which slmula'tes an Ro o,- of magnitude 2+0 E'.

Thus, one might ask that the dimensionless amp-
litude (metric perturbation) of the wave h (he'
- iR--~) be greater than

OjOl

2
gob ]0 17

nin + 1H+2

where v is the frequency of the wave. For the
Crab pulsar, which is estimated" to produce
A,

-10"27 at 60 Hz, one thus would want to reduce
c below 10 ' (or orient the apparatus horizontally).
Second-order accelerations due to angular motions
may be more serious; there 'are no good measure-
ments at present of angular seismic noise. "
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