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A current-algebra treatment of the low-. Iying spin-zero meson mass spectrum (with four flavors) is given on
the basis of a Lagrangian which includes not only the "quark mass" symmetry-breaking terms but also the
simplest effective. term which breaks the U{4) && U(4) down to SU(4) )& SU(4) X "quark number.

" A term of
this sort has been used previously in the linear o. model and has been claimed by 't Hooft to arise from the
effects of the pseudoparticle on the color-gauge-theory vacuum. In this way good agreement with what is
currently known about the mass spectrum can be achieved. We also show that this term provides a source for
violation'of the Okubo-Zweig-Iizuka rule even without considering unitarity corrections, Predictions are
made for the mass of the I'" meson, the decay constants of the D and I' mesons, the q-q'-g" mixing
angles, etc. All the parameters involved in the model —the "quark masses, " the vacuum parameters, and the
strength of the new effective term —are estimated. Generalizations of the model to include isospin breaking
and more flavors are also discussed. Finally, throughout the discussion we have taken note of the points at
which the conventional current-algebra treatment (which we use) are open, to question and we have referred
to different approaches.

. I. INTRODUCTION

One of the basic problems in strong-interaction
physics is the decipherment of the symmetry
structure of the fundamental Lagrangian. Our
present ideas assume that Bn exactly conserved
gauge group of color' is responsible for the strong
forces. This leads to a chiral U(n) x U(n)-invari-
ant st:rong Lagrangian (n=number of quark fla, -
vors). However, the effective (in the sense, for
example, of doing current-algebra calculations)
strong Lagrangian has a lower symmetry. It is
convenient to identify the terms which break this
symmetry. First, there are different mass terms
for each flavor of quark. These are expected to
arise from the unified weak-electromagnetic gauge
theory. If one stops here and calculates the pseu-
dosealar mass spectrum in the conventional way
one finds a bad result, known as the U(l) prob-
lem. ' This can be avoided by including an effec-
tive term which breaks U(n) x U(n) down to SU(n)
x SU(n) x U(1), where the U(l) corresponds to
quark number. Such a term has long been utilized'
in 0 xnodels to solve the pseudoscalar-mass-
spect;rum problem and to give a satisfactory des-
cription of the decay vj-37''. Remarkably, 't
Hooft~ has recently found that just this kind of
term may arise when the pseudoparticle' con-
tributions to the color-gauge'vacuum are taken
into account. This work' is still in its beginning
stages and requires further clarification. ' For
our present purposes we shall just assume that
this term exists and find its consequences. %'e

are thus led to postulate that the follcmring Lagran-

gian density is the effective one for doing current-
algebra calculations:

-U[det q(l+y, )q+detq(1 -y, )q]
I

+ [U(n) x U(n)-invariant interaction], (1.1)

where the q, are the quark fields (a is a flavor in-"
dex; color indices are suppressed) and nl, their
"masses. "

U is a new numerical parameter while

=1det q(1 + y, )q =—,g e, , ..., e,......,.
x q.,(1*y,)q.; q.„(1+y, )q.

(1.2)

is the term which breaks' U(n) x U(n) down to
SU(n) x SU(n) x U(1).

The case of three flavors (n=3) has been dis
cussed previously' and found to give a numerically
consistent mass spectrum. Here we shall mainly
concentrate on the standard model with four quark
flavors. This is quite a bit more complicated and
leads to a consideration of certain allied questions
such as the validity of the current-algebra ap-
proach and the origin of the pseudoscalar decay
constants. We also raise the possibility that the
term (1.2) not only solves the U(l) problem but is
also the mechanism responsible for the breaking
of the Okubo-Zweig-Iizuka (OZI) or quark-line rule.

From the present point. of view, the goal of a
fundamental theory should be to permit one to
calculate the parameters m, and U from first
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principles. Here by consideration of the pseudo-
scalar mass spectrum we cannot find the m, and
U by themselves for comparison but only their
product with certain vacuum expectation values
of fields. This occurs because of the assumed
Goldstone nature of the symmetry breaking. De-
fining

ea= (qgqa)oi

VE =RE e

the quantities which we are able to estimate are

m „A=m 2/m„a' = m4/m „2()= e,/e„2()' = e4/e, ,

U= U([detq(1+y2)q+ detq(1 -y, )q])0.

With further assumptions we will make crude
estimates of m„e„and U by themselves.

In See. II we give the general current-algebra
mass formulas and discuss the way in which we
approximate them. The connection between the
U(1) problem and the new term is mentioned. It
is noted that a somewhat similar mass matrix is
postulated in various phenomenological models.

The linear o model is briefly discussed as an
aid to intuition in Sec. III. This leads us to be-
lieve that the vacuum should be almost symmetric
and that the decay constants should be correlated
with the vacuum values. W'e fit the mass spec-
trum to an accuracy of about 20% using an exactly
SU(4)-symmetric vacuum and equal decay con-
stants. We also demonstrate that the value of the
new parameter U does not change drastically even
if we were to consider fits with badly broken
vacuums.

In Sec. IV we attempt to fit the mass spectrum

exactly in our framework, allowing a broken vac-
uum and unequal decay constants. To reduce the
number of parameters a testable ansatz is pro-
posed correlating the vacuum values and decay
constants. Also, the decay constant of the q, ob-
tained from a charmoniumlike picture is used.
Detailed predictions are made for masses, mixing
angles, and decay constants. The associated
algebraic and numerical work is described in the
Appendix.

It is shown in Sec. V how the new term acts as
a violator of the OZI rule. Hadronic decay modes
of the g, meson may test this result. The order
of magnitude of OZI-rule violation for the (d-(t)

system is estimated and found to be reasonable.
In See. VI we attempt to get absolute values of

the parameters, rather than just their ratios, by
postulating that the "current" value of the
charmed-quark mass is roughly the same as the
"constituent" value. The parameter U is esti-
mated by making a semiclassical approximation.

Finally in Sec. VII, isospin breaking and the
extension of this formalism to more quark flavors
are discussed.

II. MASS FORMULAS

We take the current-algebra point of view that
the pseudoscalars (all n' of them) would be (zero-
mass) Goldstone bosons" were it not for the U(n)
& U(n)-violating terms in the strong Lagrangian.
This holds explicitly in the linear o model. See
for example Table I (with V4= 0) in the first of
Ref. 3. Their masses are considered to arise as
a first-order effect of the symmetry-breaking

' terms. This leads to the general mass formula"

P E' E' (M ) = —-' f d'x d'y (ol (I';(xo), (I"(y, o), &l)
l

0, ) + (a- - &)
A, B

(2.1)

1
K 2 (m1 ™3)(1+ e

K

2-m~ ——,(m, +n14)(e, +e,),
D

1
mK = —

2 (m2+m4)(e2+ e4) .

(2.2)

where (M2)„e is the mass squared matrix of the
pseudoscalar fields in some basis, P;(x, f) is the
ath pseudovector current, while I'~ is the "decay
constant" obtained by sandwiching the P', between
the vacuum and state A. Note that only the U(n)
&& U(n)-violating part of 2 contributes to (2.1).
Substituting (1.1) into (2.1) gives the squared
masses of the m, K, D, and I' mesons:

1
m, ' = —,(m, + m, )(e, + e,),

Our axial-vector current is normalized so that
the pion decay constant E, =m(mo). The quantity
U does not appear in (2.2) since all the currents
involved belong to the SU(4) & SU(4) x U(1) subgroup
under which (1.2) is invariant. U appears when
we consider the mass-squared matrix for the
zero-flavor objects. It is convenient to use a
quark basis by defining

P;(x) =i q, (x)y, y, q, (x) . (2.3)

Using the quark-model commutation relations"

[P4 (x, 0), detq(0)(1 +y2)q(0)]

= +2i5 (x) detq(0)(1 +y2)q(0) (2.4)

we find for the right-hand side of (2.1) specialized
to the flavorless subspace
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(2.5}

FIG. 1. Two-gluon-exchange diagram.
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where m, and U are defined in (1.3) and (1.4). As
it stands (2.5) is not the mass-squared matrix of
the flavorless pseudoscalars. This is because
first of all I"„ is not necessarily a square matrix
so I' is not necessarily a 4 & 4 matrix. Here,
however, we shall assume that I"~ is a square
matrix which amounts to identifying the labels
A and a. Physically this means we are neglecting
the mixing of the lowest-lying pseudoscalars with
their radial excitations" and with any states of
gluonic matter. '4 Then (2.5) would. be proportiona-
to the squared mass matrix for the ~', q, g', and
q' [presumably q, (2830)] when F'„ is proportional
to the unit matix. (we will not assume this, ex-
actly, in what follows).

If U=0 we see that (2.5) is diagonal so that
(noting rn, =m, by isospin invariance) one other
flavorless pseudoscalar is roughly degenerate
with the w . This is essentailly the mass spec-
trum aspect of the II(1) problem.

We should mention that mass squared matrices
of the general form (2.5) have been postulated by
a number of authors with a different interpretation
of the parameter U. These treatments" consider
that the off-diagonal terms in (2.5) are generated
by a two-gluon-exchange diagram as in Fig. 1.
An argument against the importance of such a
term, expecially for the first three flavors, is
the success of current-algebra theory at low en-
ergies. Equation (2.5) is an "exact" consequence
of the current-algebra approach and would give
zero off-diagonal elements if the term (1.2) were
not present. Also, there is no immediate way to
explain q-3~ decay on the two-gluon exchange
picture whereas it can be nicely accomodated in
the present framework. We would like to leave
open the possibility that diagrams such as Fig. 1

may nevertheless make small contributions (pre-
sumably more important for the fourth flavor) or
that they may, when computed carefully in quan-

turn chromodynamics (QCD}, turn out to in fact
be the same as our U term.

III. SEVERAL APPROACHES TO THE MASS SPECTRUM

There are in fact a large number of unknown
parameters in the formulas (2.1), (2.2), and (2.5)
so we must, to go further, make some approxi-
mations or assumptions. As an aid to our in-
tuition in this respect, we may consider a linear
o model. " The pseudoscalar field p,' is consid-
ered as an analog of the composite operator
iq,z, q, while the scalar field S, is considered as
an analog of the composite operator q~q, . The
Lagrangian density with the transformation prop-
erties of (1.1) is

—,
' g(s, y,'a, y', + a, S,'s„S;)

ayb

+ 2 PA, S;—U, [det(S+ iP)+ det(S —iQ)]
a

+ [U'(4) x U(4)-invariant nonderivative

polynomial ] . (3.1)

In addition, the following vacuum values are re-
quired:

(S',),= 6',n. . (3.2)

+~=2&j. r

+Sr=&i+ ™3r
+D +1+ +4 r

+y = CV3+ CV4 r

and by setting

1
m =—Aa C a

e.= (q.q.), = —2Cn„

U = 2U, cy ~jy~n3(y4,

(3.3)

(3.4)

where C is an arbitrary constant of dimension
(mass)'.

one can learn several interesting things if the
identifications in (3.3) and (3.4) are made. First,
the experimental fact that I'~/I', is around unity
implies by (3.3) that n, /n, is around unity. Then
(3.4) implies e,/e, is around unity, so that the
vacuum is approximately SU(3) symmetric. Fur-

We can derive the mass spectrum and pseudo-
scalar decay constants from (3.1) and (3.2). These
turn out to be special cases of the formulas der-
ived in the preceding section. Specifically;" one,
gets a consistent solution of the present equations
by choosing the decay constants as
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O
100

CP

o lQ

m {q )exp

) QQQ
lap

m {q")exp

I I I i I I I I i I I I I tivation for considering solutions with approx-
imately symmetric vacuums. There is actually
an ambiguity if we say that the fields in the o.

model are fundamenta/ fields (rather than quark-
antiquark composites) which exist in addition to
the quark fields. Then one would have quark mass
terms arising from a term in the Lagrangian of
the form Zq, q~S, . This would give m, ~n,
rather than e, ~n, as in (3.4). Such a model would
give m, /m, of the order of unity rather'than about
25. However, we shall not pursue this analogy
since introducing quarks as well as mesons seems
like double counting. "

With the above lesson in mind let us first at-
tempt a fit to the mass spectrum in which the
vacuum is exactly SU(4) symmetric,

8~ =e2 =83=- e4,

and in which all decay constants are equal,

(3.5)

I I I I I I I I I I I I I I I I I I I l I I I I

0 -2.5 -5 -7.5 - lO -12.5
4'

U in units of m {7r )

FIG. 2. m„2, rn„, , and m„„ fin units of m (7t o)]
plotted against, g for the case of an SU(4)-symmetric
vac uuIIl.

F,=F~=FD =Fp,

F~=F.&~ ~

(3.6)

[Eq. (3.6) would follow from (3.5) in the v model].
Equations (3.5) and (3.6) are the generalizations
of the Gell- Mann-Oakes-Benner assumption' to
SU(4). The mass formulas then become

thermore, the formulas for m»' and m, 2 in (2.2)
then show that m, /m„ is of the order 2(m»/m, )'
~ 25

Here we shall not take the 0-model identifica-
tions literally, '8 but just use the above as a mo-

m, = —2(m, +m )/E, ',
m, =-2(m, +m, )/E, ',
ma = -2(mg+m4)/E~

m»'= -2(m, +m, )/E, ',
and for the flavorless subspace:

(3.7)

2M =-
F, m,

4
2

(2m» —m, ')+ U

U

F 2

(2m'' —m, ')+ U

(3.8)

From (3.7) we have" the usual prediction"

Sly = RED + Vlg —VE» (3.9)

The more interesting results follow from (3.8).
There, everything but U is known. The four
eigenvalues of (3.8) are m, ', m'(q), m'(tt'), and
m'(tt"). It is most convenient to display the pre-
dicted values of the last three as a function of tj
(see Fig. 2). We see that there is no value of U

for which all three masses are fitted exactly.

However, a fit of about 20% accuracy is obtained
for

U=-4m, o . (3.10)

The above results are not outstandingly accurate
but are good enough to encourage us to search for
a more accurate fit by using more realistic values
of the parameters. For completeness, though,
we first give the predicted mixing angles in this
ease. We define the physical ~', g, q', and g"
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fields by

1 (uu —dd )
v2

1
(uu+ dd —2ss)

= I'(y)Z(x)X(x)
1

(uu+ dd+ ss)
3

For example, we see that interchanging m, and e,
leaves (2.2) and (2.5) invariant so one could get
a fit' with m, =I, = m, =I, but e, /e, = 25, e,/e,
=400, as an extreme example. The above authors
advocate a somewhat milder case I,/m, = 5. In
fact the present formalism can be used as is for
any value of R =m, /nz, so long as the ratio of vac-
uum values u = e,/e, is modified accordingly.
From (2.2) and (1.4) we see that the relation is

CC

(3.11) R+1 ~,F, (3.14)

where

0 0 0

0 0 0 1

0 0 0

0 cosy 0 —sinyI'(y =

0 0 i 0

0 siny 0 cosy

1 0 0 0

0 1 0

0 cosx —sinx 0Xx =

0 sinx cosx 0

(3.12)

which gives w =12 for R =5 (and Fr/F, =1.2). It
is easy to carry out the exact calculation for all
-the parameters of the theory for a given value R
when w'e restrict ourselves to the SU(3) case, as
in Ref. 9. Taking F'„of (2.1) to be a 3 && 3 diagonal
matrix with components (F„F„eF,), where c
(assumed positive) is initially unknown, and
examining the truncated version of (2.5) gives,
after some calculation the quadratic equation for
g2

(3.15)

( „mm)'c' '+[m„' —~~,'(m„'+m„, ')(2Rzv+1)

+ (m„nz„')'] &'+ (I,'Rge)' = 0

The new parameter U is given by

U= ' m, 'Rm — " " [SU(3) case],F, &Pl„Pl„,
4 2Rw+

(3.16)

0 0 cosz —sins

0 0 sins cosa

x, y, and z are g-g', g-q", and q'-g" mixing
angles, respectively. For small x, y, z one finds
(in radians)

]. Vl„—Pl

Bt„g —Bl„

y=0,
1 I„,' —m„'/2 —wi, '/2

m„„—m„,

(3.13)

[Note that the right-hand side of (3.13) is inde-
pendent of U.]

Before going on to our more detailed discussion
of the mass spectrum (in the next section) based
-on an approximately symmetric vacuum, we
should mention that this assumption has recently
been brought into question by some authors. "
Their work is based on the use of baryon chiral-
symmetry results and Melosh-transf ormation
ideas but does not attempt to solve the U(1) prob-
lem. It may thus be worthwhile to reemphasize
here that an approximately symmetric vacuum is
an assumption not required by Eqs. (2.2) and (2.5).

TABLE I. SU(3) parameters with badly broken vacuum
and Ep/E~ = 1.2

2
5

10
15
25
34

25.1 1.48
12.1 1.69
6.1 1.71
3.9 1.65
2.0 1.48
1.24 1.24

in units
of gz~

5
—4.9
—4.9
—4.8
-4.5
—3.7

Mixing angle "x"
in degrees

—5.4
00

0.4
-0.8
—5.3

—15.8

and the q-q' mixing angle satisfies

2v2 [m, 'F, '(I Rw/e') 4U(2 I/e I/a')]
I,'F, '(1 Rso/c') 4U(2+8/e I/e')

(3.17)

Solutions for various values of R are illustrated
in Table I. Equation (3.15) has two solutions, but
one gives rise to an unacceptably large mixing
angle. It is interesting that the new parameter U

does not change drastically as R varies over a
large range. Thus, although we shall use in the
following the conventional assumption of an al-
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most symmetric vacuum, this result shows that
the value of the new parameter U should not change
drastically even if a badly broken vacuum (and
more nearly equal quark masses) were to be as-
sumed.

IV. DETAILED DISCUSSION OF MASS SPECTRUM

For orientation note that six masses (for m, K,
q, q', q~, D) and two decay constants (E, and Ez) are
known. We consider these as the reliable experi-
mental inputs; they do not furnish enough inform-
ation to enable us to calculate the relevant param-
eters. Hence we make the foDowing ansatz:

(e, +e,)/E, ' = (e, + e,)/Er' = (e, +e,)/E~'

Equations (2.2) with (4.1}now lead to the pre-
dicted mass ratios

Z =I,/m, =(2m '-m, ')/m, '=26,
a'=m, /m, =(2m, ' I )/m;=381,

(4.5)

which are the same as in the simple model of
Sec. III.

For typical values of the input parameters (aside
from masses")

F„/F, =1.204, E(q,)/E, =1.86,

we have the predictions (see the Appendix)

F,/F, =1.57,

E~/E, = 1.71,
= (e, +e,)/F~'. (4.l)

The first motivation for assuming (4.1) is that it
leads [see (2.2)] to expressions for the. v, D, K,
and E squared masses which are the same as one
would get from a Gell-Mann-Okubo type of per-
turbation (mz'-ID'=mz'- m, ' is an immediate
consequence}. Secondly, as in the linear o model,
(4.1) correlates the vacuum values e; with the ap-
propriate decay constants. In fact it makes the
prediction

(4 2)

x = -5.7',

y =0.53',

8=2 11'

and the parameter determinations

@=1.9,
sv' = 3.95,

E,/E, = 1.4V,

p = -4.50m, ,4.

(4.6)

(4.7)

(This is to be contrasted with the formula E~ E~-
=Ez F, in the—linear o' model. ) Note that (4.1)
tends to give us an almost SU(3}-invariant vac-
uum (e,=e,) since Ez is around E„. One way of
testing for deviations from (4.1) would be to test
for experimental deviations from (4.2).

Now (4.1) is still not sufficient to enable us to
uniquely determine the parameters of the theory
from the masses. We need some information on
the matrix of decay constants E„'. Qn the basis
of either the o model or a quark-model calcula-
tion we assume

EA ~AEA ~ (4.3)

where E,=E,=E,. One thing more is needed. The
success of nonrelativistic quark-model calcula-
tions for charmonium'4 leads us to feel that this
method should also work for g~[=q,'(2830}]. We
have carried out this calculation" elsewhere and
found that

F,=E(q.) = (1.78 to I.ev)E„ (4 4}

depending on the choice of some parameters. It
seems remarkable that one gets on the basis of the
quark model values just a little larger than E„

.and E~. This is in accord with the simplest extra-
polation of the existing world. As a cheek on the
reasonableness of this picture we expect E~ and

Ez to also come out in this range.

In the Appendix (and the associated tables) the
results for various values of the input parame-
ters are given. E~ and E~ are relatively insen-
sitive to the precise ehoi. ce of inputs. (J and the

q' mixing -angle x depend somewhat on Ez/E,
but not sensitively on E,/E, . Note that the esti-
mate for the new parameter U is similar to (3.10).
Our predicted value of U does not vary by more
than 25% over the. complete range of the input
parameters. An attempt to disentangle tj from
U mill be discussed later. Qur predictions for
ED/E, and FF /F, should be directly testable froni
the pure leptonic decay modes of these particles.

Note that the present formalism can be extended"
to include scalar mesons if desired.

V. VIOLATION OF OZI RULE

We raise here the possibility that the violation
of the OZI rule" and the U(1,) problem are related
in that both are explained by the new term in
(1.1).

We interpret the QZI rule as the forbidding of
quark diagrams with "haiipins" for the strange
quark and for the charmed quark. Original. y it
was formulated for vector mesons but recently
it has also beer. considered for the pesudosca'jars,
where&it of course does not hold so weQ. Thi
evidence for the QZI rule for pseudoscalars is
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examined in a recent review article" by Qkubo.
He stresses that since unitarity" forces OZI-
rule violation the rule can only be approximate.
Even if unitarity is not taken into account, how-
ever, the present model provides some violation
of the QZI rule.

Note that if the QZI rule were to hold exactly
for the pseudoscalar two-Point functions we would
have for the physical states

n='I/vY (uu dh )-,

g = 1/&2 (un+ dd),

g' =ss

'g =CC ~

This is just what we would get from (3.8) in the
case when U=O. Hence the U term in (1.1) clearly
gives OZI-rule breaking for pseudoscalar two-
point functions.

We can sharpen this statement by considering,
as discussed in Sec. III, the linear a model as a
representation of the chiral-quark-model dynam-
ics. If U, in (3.1) vanishes we have an exact OZI
rule to tree order for all ~-point functions which
of course get unitarity connections to one loop
and higher orders. We may see this in the fol-
lowing way. " The fields involved in the o model
are not traceless (tr$4bO, tr&40) when regarded
as 4 X 4 matrices since the group [SU(4) & SU(4)]
is larger than SU(4}. Ii' only U(4} && U(4) polynomi-
als are allowed in (3.1) we have terms such as
tr(QQQQ), etc. which always conserve the OZI
rule since if one of the Q's is $44, for example,
there must be an index 4 in two other places at
least. On the other hand, the U, term will con-
tain a piece, for example, like Q', Q,'Q', Q4 which
clearly violates the OZI rule.

Actually the 0 model provides an explicit ex-
ample of Okubo's original ansatz'2 (extended to the
present ease) that tr(Q) should not appear as a
factor in any terms of the Lagrangian. U(4)

, && U(4)-invarient polynomials will give terms such
as Tr(g'), Tr($4), Tr(S'Q'), etc. butnotTr(Q). The
OZI-violating term involving det(S+iQ) can be re-
written, using a well-known identity, , as a function
of the U(4) && U(4)-invariant terms as well as Tr(S
+i/), excluded by the original ansatz.

A possible test of this idea is the prediction of
the decays rl, (only hadrons) by a o'-model cal-
culation. These decays would be zero if U, were
to vanish (or in the limit of exact OZI rule). Some
of these calculations have already been done in
variants of the SU(4) o model by Ueda" for q»

gE'E', g%'X, gm'm, g'm'n and by Singer'4
The latter decays are

the dominant ones in this model and give widths

in the "several MeV" range. Such large widths
may possibly explain the anomalously low"
branching ratio p- g,y (as seen via g-3y) if q's
and g"s were not identified as coming. from an
intermediate g, .

All our considerations have been for the system
of spin-zero mesons. It is natural to wonder if
some of these ideas can also be applied to the
vector-meson system (and others) for which the
QZI rule is a more dominant feature. Qne pos-
sible approach might be to use a, model like that
of Caldi and Pagels" in which the vector mesons
are treated in parallel manner to the pseudo-
scalars. Here, however, we will be content to
make a very crude estimate to see if the order
of magnitude of the QZI-rule violation for the
vector-mesons two-point functions is reasonable
(i.e. , small). Let us expand the U term in (1.1)
as a function 'of the composite operators m,
=iq,y,q, and 8, =qbq, -(qbqg, . This yields

—Ufdetq(1+y, )q+ detq(1 —y, )q]

= -Ue,e,e,e,

—Q S, Sb/e, eb+Q &,&b/e, eb

+ ~ ~ ~ (5.2)

j.
2 Uele2eb 4 qayu qaqbyeqb/ aeb+ t

a&b

(5.3)

where only the interesting vector x vector terms
are written. Denoting p~ as the vector-meson
16-piet and setting q,y q, =iW2m, F,p', (field-
current identity) we may consider (5.3) as giving
an effective contribution to the vector-meson
mass matrix. Probably the above arguments are
betterb7 for SU(3) rather than SU(4) so let us
specialize to the &u-p mixing term:

Z(OZI-violating) = v 2 Ue,e4m, 'F,'ur P„,

n ~~2 1n

3
40! p30 '

Using the estimates for U and the e, given in the
next section we find the coefficient of &o g in
(5.4) to be (-2.5 & 10 ')m, ' which does seem rea-
sonably small (considering m, =780 MeV).

where only terms of second order have been kept
and where e, is defined in (1.3). Assuming that
it is meaningful to apply the Fierz transformation
to (5.2).we get
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VI. ESTIMATE OF BASIC PARAMETERS

m, =rn, =4.1 MeV,

m =106 MeV,

m~ =1550 MeV.

(6.1)

Since m, and m, turn out to be of characteristic
"electromagnetic" strength the approximation
rn, =m, is clearly not appropriate. We should
thus write (m, +m, )/2=4. 1 MeV. In fact it has
even been speculated" that we might have m, =0.

Now using the formula for the pion mass given
in (2.2) we estimate (e, +e,)/2= —2&& 10' MeV'.
Hence with the typical values of the ratios m and
zo' computed in (4.7) we get

—3'(e, + e3) = -2 & 10' MeV',

e, —- -3.8x 10' MeV',

e, = -8 x 10' MeV'.

(6.2)

Finally we estimate the new parameter U by mak-
ing the semiclassical approximation

U= U([detq(1+ y, )q+ detq(l -yo)q]&o

—2U(qz qz)o(q3 q3)o(q3 q3)o(q4 q4)0

which, using (6.2) and (4.7), gives the typical
value

(6.3)

For comparison with a possible fundamental
theory of strong interactions it is interesting to
try to estimate the parameters m, , e„and U by
themselves from their ratios and combinations
[see (1.4)] found above.

First consider the quark masses, m, . In the
most naive quark model one might expect m, =m,
=m, /2 = 390 MeV, m, =m 4/2 =510 MeV, and m4
=mo/2 =1550 MeV. One puzzle is that we also ex-
pect m, =mz=~zz, /2=70 MeV. Another puzzle is
tha, t the ratio m3/m, as determined in the quark
model is very different from R = 26 given in (4.5).
Various attempts have been made to resolve these
difficulties. " A fascinating point of view, based
on renormalization-group ideas, "is that the ev-
fective quark mass depends on the momentum
scale, M of the system. The "current-algebra"
values computed here are considered to be the
values as M -~. The success of the charmonium
picture leads us to believe that for the fourth
(charmed) quark we are sufficiently close to M = ~
at 3100 MeV to enable us to set m4 = 1550 MeV.
Using this value in conjunction with the typical
ratios determined in (4.5) gives

ward way.
It is amusing to note that, assu'ming partial con-

servation of axial-vector current (PCAC) and the
nonrelativistic quark model the quantity U can be
related4' to the binding energy of q, as

BF(zi,) =4Ue, e,e, = 37 MeV. "(6.5)

This is, however, substantially lower than what
one gets from a linear potential model. "

1m~+'= —,(,)
(m, + m3)(e, + e3),

1
m~o'= —,(,)

(m3+m3)(e3+e3) .
(7,1)

Note that there are three sources of isospin viola-
tion in (7.1). In addition to m, o m, we must expect
e, e e, and F(K') 0 E(K'). In fact all three sources
are present in the cr model. Usually only m, e m,
is taken into account. It was shown, " though, that
in a renormalizable SU(3) o model the correct
rate for q-3m can be obtained when all these
sources of isospin violation are included.

The extra sources of isospin breaking may also
play a role in the "nonelectromagnetic" contribu-
tion to the O'-O' mass splitting. It was shown"
that the sign of this contribution relative to that of
the K'-K' "nonelectromagnetic" splitting is re-
versed if the parameters are chosen as in a o.

model [see (3.3) and (3.4) modified to allow isospin
violation]. This arises because the effects of un-
equal decay constants and vacuum values over-
come the (m, -m, ) term. On the other hand, in
general, we are not required to identify the pa-
rameters as in the 0 model. In fact if we were to
take the generalization of the ansatz (4.1) to in
elude electromagnetism, i.e.,

VII. GENERALIZATION AND DISCUSSION

A. Isospin breaking

Assuming that the origin of the m, is a unified
weak-electromagnetic gauge theory one expects
m, c m, . This effect is generally considered to
play an important role in AI= 1 isospin violations
such as the E'K' mass splitting, the O'O' mass
splitting, and the zl-3zz decay. pince our mass
formulas (2.2) were derived in a quark (i.e. , ten-
sor) notation it is trivial to modify them to take
this into account. For example, we get for the K+
and K' masses

U~ 6 1y, 10" MeV (6.4)
i

eg+ 82 eg+ eg e2+ e
F'(~") F'(Z') F'(Z') (7 2)

Of course, if one makes the assumption of a badly
broken vacuum as discussed at the end of Sec. III,
the above estimates are modified in a straightfor-

we would only keep, by construction, the m, —m,
term in the "nonelectromagnetic" part of the mass
splittings. Thus a more detailed study of the iso-
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spin violations may shed-light on the relation be-
tween the vacuum values and the decay constants.

B. More Aavors

Recent experimental data seem to indicate a pos-
sible need for more quark flavors. Assuming that
there is some sense in also considering these
(heavy) new mesons as Goldstone bosons in zeroth
order the formalism here can be easily extended.
Suppose there are six flavors altogether (denote
the new ones by 5 and 6) then, for example, the
meson made of 5 and 6 would have the mass

%%I~n56'=; — (m, + m, )(e,+ e,)
56

(7.3)

~Note that the present formalism does not require
us to specify the electric charges of 5 and 6.) The
generalization of the ansatz (4.1) would give a
wealth of mass relations (in the isospin limit):

2 2 2 2
m~ =mK +m~ —m„,

2= 2 2 2
mK + m15 m7t.

2 2 2 2ma +m15 ~ m7f

2= 2 2 2
m36 mK + m16

2= 2. 2 2
m46 m+ + m 16 m7)' 7

2= 2 2 2
m56 m 15 + m16 m7j'

(7.4)

ln addition every mass in (7.4) may be replaced by
the decay constant & for that particle and the re-
sulting relations should still hold [assuming again
the generalization of (4.1) to hold].

What about the new parameter U? In the case of
three flavors it turned out' to be about -3.5m'(m')

which is only slightly smaller in magnitude than
the present value (see 4.7) of -4.5m'(v'). Hence
we would expect the magnitude of U to increase
slightly for two new flavors.

OZI rule. The parameters in the model were all
estimated. In particular the strength of the new
term was estimated and predictions were made for
the decay constants of the D and I' mesons. At
various places in the text we have indicated where
the conventional current-algebra treatments are
open to question and have given references and
brief discussions of these points.

Note added in Proof. An alternate ansatz to solve
for the flavor-nonzero masses has been proposed
by R. S. Oakes and P. Sorba, Fermilab Report
No. 77/78-THY (unpublished). They consider (3.5)
to hold but all I''s to be different. In the present
formalism this gives results substantially similar
to ours. For example, we get (with F»/F, =1.28
and e'=1.97) F~/F, =2.11, Fz/F, =1.96, a =1.30,
U=-4.0m, o, x=-12.2', y =0.6', and z =1.8'. In
arriving at these values we assumed rn~ =2.03 GeV
corresponding to some preliminary experimental
results. We should also mention similar work by
Z. Maki and I. Umemura, Kyoto Report No. 81FP-
302, 1977 (unpublished) and N. G. Deshpande (pri-
vate communication).

ACKNOWLEDGMENTS

The work of two of us (J. K. and J. S.) was sup-
ported inpartby the U. S. Energy Research and De-
velopment Administration Contract No. EY.-76-8-02-
3533. The work of another (M.S.) was supported
in part by the University of Wisconsin Research
Committee with funds granted by the Wisconsin
Alumni Research Foundation, and in part by the
U. S. Energy Research and Development Adminis-
tration under Contract No. E(11-1)-881, C00-613.

APPENDIX: THE FLAVORLESS SUBSPACE

To treat the flavorless subspace we first assume
that the matrix of decay constants is diagonal,

(Al)

C. Summary and discussion

In this paper we have shown by using the conven-
tions~ current-algebra treatment how the deter-
minant term (inspired by possible pseudoparticle
co'ntributions to the color-gauge-theory vacuum
and previously postulated in the linea, r g model)
solves the U(1) problem by giving a reasonable de-
scription of the four-flavor pseudoscalar mass
spectrum. We have also speculated in general and
shown in a simple case that this term may be re-
sponsible (in part, perhaps) for the violation of the

where F,= I"2= I", by isotopic-spin invariance. In-
troduce the abbreviations

e =F,/F„c' =F,/F, ,

l

y= —,(2m» —m, ), y = „(2mD —m, ).2 2 I 2 2

Now with the assumption (4.1) the mass square-d
matrix for the flavorless subspace in a quark ba-
sis becomes

I



CURRENT ALGEBRA WITH A FOUR-FLAVOR EFFECTIVE. . .

m, ' —(4U/E, ')

-4U/F, '
-4U/F 2E

4U-/F „'e '

-4U/F„

m, ' —(4U/F, ')

-4U/F „2g

4U-/E

-4U/E, 'e

-4U/E 'e

y —(4U/F, '~ ')

-4U/F, 'e c'

4-U/F, 'c '

-4U/E, 'e '

-4U/F, 're '

y' —(4U/F„e' )

(A3)

We can simplify our analysis by noting that (») i's of the same form as the matrix for the case of the
SU(4) a model which has already been treated. 44 To avoid confusion (since the symbols must be trans-
posed) we give the results again in the present context. From the secular equation for (A3) one gets the
sum rules

s,y'e' 2u, U
mz +m& +mz =y', + + F, EC'

s2 y'e ' 2u2U v,Uy'
(m„m„Im„I.) = —+ F„ee' F„c

(m„m„)'+ (m m„)'+(m„m„)'
(A4)

+ye + m m ~ 4e+—

2
—4( n„+m, ) +Is)2 2 mm

2f4, , m„2
d = —(mq +m„') " +I e)

s3 y'e ' 2u, U V,Uy'

where

~t 2
s3 m~ +2

We proceed as follows. Equation (A6) yields an
equation for e" in terms of c, y, and known mass-
es. But from (4.1) we have

1 E=-4 2e+ — u = —v3. 1 2 3

1 2s, =-—u, = —,. r3=2m, yi'E2 / I

(A5)

m, . 6 V2 26/'i
V, =-s 2' +ye,

2E 2

a)m &II +t) |+ I2 (Cim& +d)I

We solve for y' in two different ways to get the

equations '

K =2 -1~ (A8)

so that y is given in terms of known quantities.
Hence the equation of interest gives e" in terms
of just c. By our previous discussion we have an
estimate of e' from the quark model. Thus e. can
be found. Knowing e and e' we can find y' (and
hence ~') by (A4). This completes the determina-
tion of parameters.

&n practice we used the computer to carry out
the numerical work. Calculations were made for

a2m„+b22

2
C2m~ +d2

The constants a, through d2 are given by

a, =-,' —(1+2m')c, /[6~(m„' —y)'],
m 2

b, = — " +ye c m„—y ',
2E

(A6)
~ I ~ I5

4

2

W = 1.90

I ~ &

f
I I I I

i I I I

c,=-—c, (m„'-y)',

E.
(f, = ——d, (m„' —y)', o

t.o
I I

I, ) t.2
~ I I I I I I I I I I - I I I

1.3 t.4 ).5

a, = —,
'

d, + ~ (m, '+y),

2m yc
2 2

(AV) FIG. 3. q
' plotted as a function of q for +z/+,

=1.204. The dotted line corresponds to q'=1.86. Of
the three possibilities A, B, and C, case B is the
physically reasonable one.
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TABLE II: Predicted parameters for various values of E~/E„and e' =1.78.

/E ED /E E.„/E

U
in units
of m„,

Mixing angles in degrees
g g 8

1.140
1.151
1.204
1.245
1.304
1.360

1.520
1.519
1.518
1.518
j..517
1.517

1.616
1.622

, 1.659
' 1.689
1.733
1.775

1.6
1.65
1,g
2.1
2.4
2.7

3.6222
3.617
3.611
3.607
3.605
3.603

1.226
1.289
1.470
1.585
1.737
1.873

—3.67
—3.96
-4.50
—4.75
—5.0
-5.19

—16.5
. -12."f8

—2.47
1.02

+ 3.52

0.66
0.63
0.56

.52

.48
0,45

1.80
1.95
221
2.32
2.42
2.50

TABLE IIl. Predicted Parameters for various vR]ues of E&/E e.nd p =]

U
in units

0

Mixing angles in degrees
x . 3j 2

l.140
1.151
1.204
1.245
1.304
1.360

1.574
1.574
1.573
1.572
1.572
1.571

1.666
1.674
1.710
1.738
1.781
1.822

1.6
1.65
1.9
2.1
2.4
2.7

3.957
3.954
3.947
3.944
3.941
3.939

1,226
1.289
1.470
1.585
1.73'7

1.873

—3.67
—3.95
—4.5
-4.~, 4

- --F&.00
--5.18

-16.5
-12.79
—5.72
—2.47
+1.02
+3,52

0.63
0.61
0.53
0.50
0.46
0.43

1.73
1.87
2.11
221
2.32
2.39

TABLE pj'. Predicted parameters for various va.',ues of E&/E„and e ' = 1.97.

U

in units
of m~0

Mixing angles in degrees
g '

p 8

1.140
1.151
1.204
1.245
1.304
1.360

1.650
1.649
1.648
1,648
1.647
1.647

1.738
1.745
1.78
1.807
1.847
1.888

1.6
1.65
1.9
2.1
2.4
2.7

4.444
4.441
4.434
4.433
4 4'g8

4..426

1.226
1.289
1.470
1.585
1.737
1.873

—'3.67
—3.95
—4.49
-4.74
—4.99
—5.17

—16.5
-12.79
-5.72 .

'

—2.48
+1.02
+3.60

0.60 1.63
0.57 - 1.76
0.50 1.99
0.47 2.09
0.43 2.18
0.40 2.25

TABLE V. Predictecl parameters for the special case & =.

E,/E,

U
in units

' of9%~

Mixing angles in degrees
x 8

1.78
1.86
1.97

1.519
1.574
1.649

1.621
1,673
1.744

3.617
3.954
4.440

—3.93
—3.92
—3.92

-13.16
-13.16
-13.16

0.63
0.61
0.57

1.94
1.85
1.75

TABLE VI. Predicted parameters with the (unphysical) choice A of Fig. 3 for &' =1.97 and
various values of Ez/E,

Eg/E „ED/E., E~/E

U
in units,
ofm, 4

0

Mixing angles in degrees
X P 2'

1.140
1.204
1.245
1.304
1.360

1.650
1.652
1.652
1.652
1.652

1.738
1.783
1.811
1.852
1.892

1,6
1.9
2.1
2.4
2.7

4.447
4.455
4.457
4.458
4.459

1.185
1.173
1.203
1.254
1.308

-3.42
—2.80
—2.66
-2.53
—2.44

—19.9
—29.9
—33,3
-34.2
—36.0

0.63 1,5
0.69 1.13
0.71 0.96
0.71 0.92
0.72 0.84
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TABLE VH. Dependence of parameters on the mass of g~ for +E/&~ =1.225 and c'=1.97.

Mass of
g, (in MeV) z~/z, z~/z„

U
in units Mixing angles in degrees
of m (7t'0) x 8

2800 MeV
3085 MeV
3455 MeV

1.648
1.775
1.953

1.793
1.910
2.077

1,529
1.529
1.529

-4.62
-4.61
-4.60

-3.96
-3.97
-3.97

0.48
0.40
0.32

2.04
1.67
1.31

(A9)

various values of Fr/E„and e' =E(q, )/E, The. re
is an ambiguity in that there are generally three
solutions for e corresponding to a given ~'. This
is illustrated in Fig. 3 where we have used the
parameter values in (4.6). The three solutions for

are denoted by A, B, and C. %e can rule out C
by noting that it leads to ' & w, which would lead
to violation" of the positivity of the squared mass-
es of the scala~ particles of the theory. Further-
more, we can rule out A in most cases by calcu-
lating the mixing angles [see (3.11) and (3.12)] and
noting that A leads usually to a rather large value"
of x, the qg' mixing angle. This can be under-
stood in the following way. Solutions A and B oc-
cur when c, of (A7) is approximately equal to
zero. The equation c,= 0 is the secular equation
for the q and q' masses squared in the SU(3) mod-
el. From our knowledge of the SU(3) q and q'
states. we can rule out solution A since it leads
there to a large value of the g-g' mixing angle.
The condition that c,= 0 then tells us that we have
a solution where the SU(3) states q and q' are
slightly mixed with the cc state.

The. numerical results are presented in Tables
II, III, and IV, corresponding respectively to

e'=E(q, )/E„=1.78, 1.86, and 1.97.

These values correspond to our quark-model-cal-
culation parameter o.' (Regge slope parameter)
equal to 1 GeV ' (rule of thumb), 0.89 GeV ' (p
trajectory), and 0.76 GeV ' (fit to $ mass spec-
trum). Alternatively these values may be inter-
preted as spanning a physically reasonable range.
In each table the results are given for five values
of Ez/E„ in the range 1.14 to 1.36. Generally Er/
I"„is estimated from experiment to be somewhere
between 4.20 and 1.28. It is also interesting to
note that there exists a solution where e. '= ~,
which leads to the sum rule (E,)'+ (E„)'=2(EI;)'
which is similar to the SU(4)-o -model rule F,
+I'„=2E~. As can be seen from Table V this sol-
ution gives rise to physically reasonable values of
the q-q'-g" mixing angles. There is no solution to
the problem where both e'= w and (e')'= w'.

To see why point A in Fig. 3 is ruled out we pre-
sent for comparison the calculated values of decay
constants and mixing angles in Table VI for the
typical choice c' = 1.97.

In our calculation we ha.ve used 2830 MeV as the
mass" of the q". However, the results for U are
not very sensitive to the choice of mass in this
range. This is illustrated in Table VII computed
for the typical values E~/E„= 1.225 and e' = 1.97.
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