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We discuss an extension of the hypothesis of asymptotic level realization of SU(3) to a certain chiral
SU(3)8 SU(3) charge-charge-. density algebra, which is applied to the ground-state mesons. It produces
interesting dynamical constraints for various couplings of the ground-state mesons which, among other
results, permit us to compute the rate of the /~ed decay. This decay is forbidden in this formulation if the
masses of p and co are degenerate.

I. INTRODUCTION

We present an extension of the hypothesis' of
asymptotic level realization of SU(3) to a certain
chiral SU(3) R SU(3) charge-charge-density alge-
bra. When applied to the ground-state mesons, it
produces interesting dynamical constraints on both
the strong and electromagnetic couplings of the
ground-state mesons, i.e. , the 1 and. 0 ' nonets.
In particular, we give an estimate of the g -try
decay which is consistent with experiment.

The Q-3tt decay is strongly suppressed com-
pared with the tc-3tt decay. Similarly the P-tran
decay rate is much smaller than that of the v my

decay. Usually these processes are made for-
bidden by invoking either the quark-line selection
rule' or Okubo's ideal nonet ansatz.' However,
the origin, the precise form, and the extent of the
workability of these so-called Okubo-Zweig-Iizuka
(OZI) rules are not clearly known. A critical dis-
cussion has recently been given by Qipkin4 about
these rules. Experimentally it is known that they
are certainly violated ta some extent. Neverthe-
less the rules do not prescribe for us a simple
recipe for estimating their degree of violation.
Some theoretical justification of Okubo's ansatz
was provided' in SU(6) for the 1 mesons. How-
ever, besides the inevitable problem associated
with the notion of exact SU(6), the violation of the
ideal nonet structure is not 'prescribed even for
the 1 mesons in SU(6).

An entirely different and more theoretical ap-
proach to these problems was initiated by Mat-
suda and Oneda' in 1968. In this mainly algebraic
approach, the striking suppression of the P- pv
and f '-vtr decays, etc. can be understood and ac-

tually be calculated as a consequence of an intimate
dynamical interPlay among the nonet masses,
SU(3) mixing angles, and c'oupling constants (more
precisely, the asymptotic matrix elements of ax-
ial-vector charges) which is characteristic in this
theoretical framework. This dynamical mechanism
turned out to be also useful' for explaining the new
resonances in SU(4). In contrast no reference is
explicitly made about the masses of mesons in the
quark-line rules. In this paper we wish to treat
the 1 -0 '+y and 1"" 1 +y interactions in this
theoretical framework. Our main concern is the
suppression of the Q -tran decay.

II. THE P -+ my DECAY RATE FROM THE SUM RULES
INVOLVING THE ALGEBRA [V 0 A. ] 0

The theoretical ingredients (introduced so far) of
this algebraic approach are"' as follows:

(i) Asymptotic SU(3), which states that in broken
SU(3) the SU(3)-multiplet classification should best
be carried out in the infinite-momentum limit of
the SU(3) multiplet, taking proper care of the pos-
sible SU(3) particle mixing,

(ii) The chiral SU(3) S SU(3) charge algebras and
their related algebras [valid in broken SU(3)],which
play an essential role in making an extrapolation
from the asymptotic world to the physical world.

(iii) A mechanism of SU(3) breaking character-
ized by the presence of the exotic commutation re-
lations, [V, Vs]=0 and [V„As]=0,involving the
time derivative of the SU(3) charge V, . Here cr

and P stand for the exotic combinations of the phys-
ical SU(3) indices, i.e. , (o. , P) =(IP, If' ), (If', w ),
etc. [V, Vs]=0 is nothing but the algebraic ex-'
pression for the usual octet SU(3) breaking. The
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exotic commutator involving the axial charge 48,
[V,A~]= 0 [which plays a major role in producing
dynamical- information when combined with our
hypothesis (i) j, is a stronger assumption, although
this algebra is Certainly valid for the class of
symmetry breaking usually considered.

(iv) Hypethesis of asymptotic level realization
of SU(3) in the algebra, for example, [A,A~]
=if oiV'

We note, however, that no reference is made in
our theoretical framework about the chiral SU(3)
8 SU('3) a,nd chiral SU(2) 8 SU(2) symmetry, although
the chiral SU(3)8 SU(3) algebra plays an importarit
role. Also, no perturbation-theoretic treatment of
broken SU(3) is involved. ln the theoretical frame-
work of (i), (ii), and (iii), the realization of the
algebra. [V,A~]= 0 in the asymptotic limit pro-
duces for mesons the following general interplay
of the nonet-meson masses, SU(3) mixing angles,
and asymptotic axial-vector matrix elements. De-
noting a. nonet by (m„K„q„p,') where t denotes the
J~c and othe& quantum numbers we obtai
(writing v for the mass m„et c) .

&q,.IA,- I v„'(p) & e (q,"—m, ') .

&q,'IA, Iv„'(p)& "(q,'-v, ') '

Here t and x are. arbitrary except for C„C,= 1.
8«, is the q, -q,' mixing angle. From the realiza-
tion of the exotic commutator [V~o, Vroj = 0 in the
asymptotic limit, 0«, is required to satisfy
sin'e«, = 3(3q, ' —4K, '+v, ')(q, ' —742) '. Note the re-
markable fact that the right-hand side of Eq. (1)
is determined solely by the structure of the t nonet.
Equation (1) immediately implies tha. t, in the limit
of equal mass g,"=m, ', there appears a general
dynamical selection rule [so far, no approximation
except for the neglect of possible intermultiplet
SU(3) mixing is made] for the particular asymptotic
axial-vector matrix elements involving the q,',
i.e. , &Q,

' ~A; ~w„'(p)&= 0 (p- ~) where x is arbitrarily
provided C„C,= 1. Therefore, the possibility of
having a hidden general (OZI-type) dynamical se-
lection rule is already demonstrated in our theo-
retical framework.

However, the implication of Eq. (1) is much
more significant. Equation (1), in fact, addition-
ally provides us with a realistic estimate of the
degree of violation of the dynamical selection rule
which is exact in the idea/ nonet mass limit g,"

Restricting our selves to the case t = x = 1
Eq. (1) then predicts'

&g IA,-I p'(p)& t „&
(p'-~')

((u IA, - I p'(p)) "(O' —P')

Using the partially conserved axial-vector current
hypothesis (PCAC) for A, - in Eg. (2) we obtain'

SPff g ~ 0 06
&cops

(3)
t

where g~„and g„„are the coupling constants of
the g - pn and v- pw couplings. (Strictly' speaking
for these couplings the pion is off the mass shell,
i.e. , v'=0. ) We have chosen 8~„=—40' (instead
of =40'). The ideal value in our convention is
8~„——35 .

We are now interested in the evaluation of the
rate of the P —vy decay. By exploiting the idea of
vector-meson dominance' (p dominance for the
isovector current) we obtain from Eq. (3)

=g- =R=-O.O6. (4)
g~p~

I'"'

The value of R is sensitive (within a factor of 2)
to the choice of the centere value of the p mass.
We obtain, for example, ~R

~

= 0.06 for the choice
of the masses of 1 mesons, p= 760, z = 783,
P = 1020, and K*=895 MeV. Overall consistency
of our result seems to prefer the value of ~R

~

in
the range of 0.05-0.06. This favors the p mass
slightly smaller" than the value listed by the Par-
ticle Data Group. Experimentally, I'(P -n'y)/
I'(~-vy) =(6+3) x 10 '. Equation (4) predicts this
ratio to be around 8& 10 '. The relative sign of the
g -vy and a-ny predicted by Eq. (4) is als'o con-,
sistent with the recent (preliminary) experiment by
the Rochester group. "
III. DYNAMICAL CONSTRAINTS FOR THE GROUND-STATE

MESONS FROM THE HYPOTHESIS OF ASYMPTOTIC

LEVEL REALIZATION OF ALGEBRA

We now study an extension of our hypothesis (iv)
to the processes involving helicity change. In-
stead of charge algebra [A„A~]=if V~„previ uosl y
studied, we now turn to a realization of the follow-
ing charge-charge-density algebra:

[[j.'(o), A, ],A,-]= 2j'.(o),
'-

(5)

j', is the isovector charge density. We consider all
the possible matrix elements of Eq. (5) inserted
between the pseudoscalar meson P(p) and the 1
meson V(k, 1= 1) with helicity X= 1 and also be-
tween V(p, X=0) 'and V(k, &=1). We, of course,
take the asymptotic limits p ~ and k

&voJ [[j'„A, ],A,-] )a)(X=1)&=2&v'Ij,'/io(X=1)&, (6)

&v'/[[j,',A„],A, ] [yp=l)&=2&v'/j', /yp. =1)&, - (7)

&K'/ [[j'„A, j,A, ] /
K '(X = 1)&

= 2&K'Ij,'/ K*'(A. = 1)),
(8)

(K'
) [[j'„A,.],A.,-] )

K*'(X= 1)&
= 2&K

)
j',

)
K*'(X= 1)),

(9)

&n ( [[j;,A;],A;] )
p'(~= 1)&= 2&nl j3)p'(~= 1)&,
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&rl' [[j'„A, ],A,-] p'(~=1)&=2&8' j.' p'(~=1)&, (11)

and

(p (lI. =0)
I [[j'„A,.],A,-] I p (&=1)&

= »'(~=0)
I jul p'(&=1)&,

&K*'(x=0)
I [[j,A +],A -] IK '(x= 1,))

=2(K*'(1=0) j,lK" (X=1)&, (l, 3)

(K"'(X=o) [[j'„A„],A,-]]IK*'(&=1))

= 2&K*'(A. = 0) I
j', K*'(X= 1)). (14)

The right-hand side of these equations can be pa-
rametrized, according to asymptotic SU(3), by
the usual prescription of exact SU(3) plus SU(3)
mixing where p -~ and k- ~. The useful algebra

to be used for this purpose is

[P3, Vr+], Vr-]+ [[j3~ Vzo], VXo]=Js

On the left-hand side of Eqs. (6)-(14) we insert a.

complete set of single-particle intermediate states
among the factors jo(0), A, +, and A,-. Among the
above intermediate states, we distinguish the
block contributions coming from various combina-
tion of the levels of mesons, i.e. , the ones coming
solely'from ground state (l=0), from /=0 and
l = 1, l = 1 only, . . . . In this paper we consider
only the contribution coming from the ground state
(l=0 level" in the simple qq quark model). For
illustration, we show explicitly the ground-state
contribution to Eq. (6),

j, ~p =1)&&~(~=. 1) A,. p-(~=1)& &p-(~=1) IA,-I~(~=1)&

+&v j3lp(~=1)&&p(~=1) IA" p (~=1)&&p (~=1)IA.-I~(~=1)&

-&v IA, p(~=0)&&p (~=0)lj.lp (~=1)&4 (&=»IA,-I~(~=. »&

-& ' A.- P'(~=0)&&p'(~=0) j lp (~=1)&&p (~=1) A, (~=1)&

+Q'IA, p'(~=0))(p'(~=0) A,. vo&(v' j, l~(~=1))

+contributions from higher levels=2(w' j, lv(X=1)).

The parametrization of relevant matrix elements of j„A.,+, and A,- in the limit p- ~ and k- ~ is given by

&v'lj3I~(~=1)&-=(')'"s, &v'I j.Ip(&=1)&=(-')'"d,

(K' j, K*'(X=1))=2(2)' '(cos6' d- sin&'„s), etc. ,

(0 Ij IP )=(-')'"d', &n'Ij, lp'&=(-')'"s',

with a relation cos~~„d —sine~„s = cos~», d' —sin~~, s',

&p (~=0) j3lp (~=1)&=( )'"f &K"(~=0)ljslK"(~=»&=--,'(I/2)'~'f, etc. ,

(p A,- &(x=1))=S, (p- A,- y(x=1)&=D,

(K*' A, + K*'(&= 1))= (2)' '(cos6o „D —sine'„S), etc. ,

(v'IA, -IP'(X=O))=E, (K' A, + K*0)= (
—')'i'E etc.

We are interested in deriving constraints among S, D, and F as well as among s, d, and f With these.
parametrizations, Eqs. (6)-(14) become (8 now denotes the P-&o mixing angle)

1+ — —+2 — — + — +' '

+ +2 ~ ~ ~ + ~ ' + ~ ~ ~

d . D . , E f D . d . 1
3 cos8 — —siri8 cos~ ——sin& '+ — — cos~ ——sin8 + = 4 cos~ -- —sin&

S S 8 S ~ S2'

cos~ ——sin~ + — cos~ — —sin8 + ~ ~ = 4 cos~ — —sin8 —,

0+."=2«l j,l, (.=1)&,

=2&1'Ij.lp'(&=1)&,

(6')

(6')

(10')

(11')
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1 + + + + 2

3 cos~ ——sin~ — + 3 — cos~ ——sin6) cos — —sin6) + ~ ~ ~ = 4

I

3 — cos6) ——sin~ cos~ — —sin& + — — + ~ ~ =4—

(12')

(14')

We now extend the hypothesis of asymptotic level
realization of SU(3) previously applied to the alge-
bra [A,A2]=if 2, V„ to the algebra, Eq. (5). We
assume that for Eqs. (6)-(11) the fractional con-
tributions from each level [i.e. , ground states
(l =0), l =Oandl =1, statesl =1 states, . . .] tothe
left-hand side of Eqs. (6)—(11)are the same. For ex-
ample, the ratio of the contribution from each
level to Eqs. (6) and (7) should be equal to the ratio
of 1 to d/s unless the contribution is zero. If one
equation has no contribution from a certain level,
neither does any other equation. The same as-
sumption can also be made for Eqs. (12)—(14).
First of all, we immediately notice that from Eqs.
(8') and (9') we obtain a constraint among D, S,
and I, i.e.,

(15)

In deriving Eq. (15), we have assumed that
cos8(d/s) —sin8& 0. Actually cos8(d/s) —sin8= 0
contradicts experiment [Exp.erimentally d/s = 0
and sin8~ =(2)'t2. ] Impressively, we also find
the same constraint Eq. (15) from Eqs. (13') and
(14') provided f/se0. f=0 is physically unaccept-
able. According to our constraint Eq. (2) ob-
tained from th'e commutator [Vxo, A,-]= 0,

gn+~0~-
2 2 2

g + =3slIl ~ 2 2
—1

MP 2 p2

= 0.986, (20)
or using Eq. (16),

g~p+q =3sln ~ —
2 2

—
2

—1 . 21 '

(22)

We also define D/S =y(y= 0 in —the ideal limit of
1 ), d/s =-x and f/s =—y. We now return to Eqs.
(6')-(ll'). FromEqs. (10') and(11') we realize that
the contributions of the ground-state mesons (i.e. ,
0 'and 1 nonet) to Eqs. (10) and (11) are, in fact,
zero as long as we keep SU(2) symmetry. This
implies, according to our hypothesis of asymptotic
level realization of SU(3), that tbe net ground-
state contributions to Eqs. (6)-(9) should also van-
ish. Hence, our independent realization conditions
[in addition to the constraint Eq. (15) or Eq. (22)
already obtained] are

To simplify our notation, we define u = @ 3 [cos8(D/
S) —sin8) (n = —1 in the ideal limit of 1 ) and

P = &3 [cos8(d/s) —sin8]. Equation (15) then be-
comes

p2 ~2
=tan8, , —=R.P—

Equations (15) and (16) reduce to a constraint

=3sln P (17)

(6') 1+yx+ 2eny+ a2= 0,

(7')-y + y'x + 2& nyy + c.2x = 0,

and

(8') n (P 2ey+) = 0 (o.'20 0).

(61i)

(7 lt)

(8II)

In the ideal limit' of the vector meson, i'. e. ,
p'=&@2 and sin'8= 2, Eq. (17) becomes

E'=S' (in the ideal limit of 1 ). (18)

Using PPAC in Eq. (18) we are led to a prediction:

We also notice that the ground-state contribution
to Eq. (14) is Pen'+n2y=(o. '2/e)(P+ey) which van-
ishes according to Eq. (8"). Therefore, we see
that the net contribution of the ground state' to Eqs.
(12)-(14) should also vanish according to the hy-
pothesis of asymptotic level realization. Thus,
Eq. (12') gives rise to another constraint,

( =g ~ -' (in theideal limit of 1 ).
p idP fi'

(19)

(12') (1+y2)y+ en+ onyx=0. (12")

From the constraint Eqs. (6"), . (7"), (8"), (12"),
and (22), we obtain simple relations,

Without the approximation of ideal structure of
1 we obtain instead a prediction from Eq. (17),

Dx=y i.e. —= —(or n= p) (23)
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g = —&Q 1.e. y
—= - EQ~,
S

(24)

whereas F/S= en from Eq. (22). In the ideal limit
of the 1 nonet [i.e. , p'=w' which implies D=0
from Eq. (16)] where y - 0 and n - —1, we get
x-0 (i.e. , d- 0) and y - e. x = 0 implies the pres-
ence of a general selection rule for the particular
matrix elements of j„(v'(p)

~
j',

~ g (k, X = 1))= 0
for p -~ and k- ~. However, Eq. (23) actually
prescribes the way in which this dynamical selec-
tion is violated, i.e. ,

(v'(p) I j', I y(k, ~ =1)) (p- IX,- I y(k, ~ =1))
(w'(p) Ij', I~(k, &=1)) (p IA,-I&a(k, &=1))

for p-~ and k-~. The last equality of the above
equation is obtained by using Eq. (2). We define

gr~, (t) by

(4pP, )'~'(P(p) f',
~
V(k, X = 1))=-g „„(t)~,„,.~„(k)P,k„

where t= (p —k)' and e„(k) is the polarization vec-
tor of the vector meson with helicity X = 1 and k,
=(0, 0, k, k,). Then the above constraint reads

(25)g„(t)
I

For t= 0, i.e. , for the ratio of the coupling con-
stants of the P -my and ~-my decays, Eq. (25)
takes the same form as Eq. (4) and, therefore,
predicts the ratio of 1 (P -7ry)/I" (&o - vy) consistent
with experiment as discussed in Sec. II. However,
there are important theoretical differences. In de-
riving Eq. (25) in this section, the assumption of
vector-meson dominance is not made. Further-
more, PCAC is not used so that no soft-pion ex-
trapolation is involved in deriving Eq. (25). Never-
theless, the result demonstrates that the vector-
meson dominance" neatly connects our [V,A~]= 0
constraint, Eq. (2) with Eq. (25) for t=0 obtained
by exploiting the hypothesis of asymptotic level
realization for the algebra, Eq. (5)—within the un-
certainty involved in the soft-pion extrapolation.

Actually the implication of Eq. (25) is more gen-
eral. Equation (25) predicts that for any momen-
tum transfer t, the ratio of the amplitude for the
Pv production to that of rom production by a virtual
photon is always suppressed by a factor 1/ ~R I if
we neglect intermultiplet SU(3) mixing. ~R~ is
probably in the range of 0.05-0.06. This predic-
tion can be tested experimentally. - For another
model to explain the rates of the g - pw and Q - vy
decays see, for example, Ref. 14.

Finally our prediction on the strong-coupling
constants of ground-state mesons, Eq. (20) or (21},
is an important one. One can, for example, test
Eq. (21) by using the rates of the p-m and P- pv

decays. For the value of R~ in the range 0.05—
0.06, Eq. (21) can be said to be well satisfied with-
in the uncertainty associated with the soft-pion ex-
trapolation.

The ideal limit (go„=0, etc )o.f this sum rule,
Eq. (19), is in fact an SU(6)~ result. However, EII.
(19) could be one of the good results of SU(6)~ be-
cause this result; as shown in this paper, can also
be derived by using a much weaker assumption
than SU(6)~. We may illustrate the somewhat deli-
cate situation in an algebraic way. If we insert
the algebra. [A, ,A, ]=if,»V, between the ground-
state mesons [corresponding to the 35EBI-piet of
SU(6)], i.e. , between (V(k, X)

~
and

~
V'(k, &)) or be-

tween (P(k) and P'(k) )with k - ~, and dema. nd that
the algebra is saturated by the same ground-state
mesons, we then also obta, in Eq. (19)assuming g»,
=0.
However, the saturation assumption used can hard-
ly be justified. If we use, instead of saturation,
our hypothesis of asymptotic level realization of
SU(3) to the same algebra, we do not obtain Eq.
(19) but we do obtain some other good constraint. '
To obtain Eq. (19) we need to resort to the algebra
Eq. (5). Equation (19) then implies that the frac-
tional contribution of the ground state to the reali-
zation under consideration is independent of the
helicity of the vector mesons. The fraction is in
fact around 50Vo which hard&y supports the satura-
tion by the ground states.

IV. FURTHER REMARKS

We have shown that the hypothesis of asymptotic
level realization of SU(3) in the algebra, Eq. (5),
produces remarkably consistent and simple
dynamical constraints and enables us to make a
realistic estimate of the rate of the Q - my decay
which turns out to be forbidden dynamically in the
ideal limit where p'= oP. The predicted rate
(based on the actual ~ —p mass difference) is in
reasonably good agreement with experiment. We
stress that only the concept of levels of hadrons
(which groups the 0 ' and 1 nonets together as
the ground-state mesons) is added to the purely
algebraic theoretical framework. No higher sym-
metry such as SU(6)~ is imposed, from the outset
upon our mesons. SU(6)-like constraints are, in
fact, cfiscovexed in the process of realizing
algebra by levels of mesons. Since SU(6} is cer-
tainly badly broken our method seems to provide
a promising approach to the problem of finding
SU(6}-like constraints among hadron interactions.
The study of realization by higher-lying levels
which is not undertaken in this paper should be
interesting and will provide useful information on
the pseudoscalar-meson and photon couplings of
the mesons belonging to the levels l =1, 2. . . . Its
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computation is not simple, but we do not need to
make any apology for assuming exact symmet jy
such as SU(6). Our result seems to suggest that
the notion of /evels of mesons is more fundamen-
tal and information oA the couplings among vari-
ous levels may be extracted from the algebra as
we have illustrated in Sec. ID. The choice of our
algebra, Eq. (5), which is essentially a type of
chiral SU(2) S SU(2) algebra, was made because
of the expectation that the effect of SU(3} breaking
will be least important for the matrix elements of
the axial charge A., as compared with the ones
involving the charges A„and A, There is a
growing feeling"' that for the ground-state
pseudoscalar mesons (especially for t} and t}') the
effect of SU(3} mixing with the radially excited
states could be important, Our result is free
from this problem since in our Eels. (6)—(14) no
intermediate states involving g and q' appear.
The information which comes from Eqs. (10) and

(11) is based on G-parity conservation and is in-
dependent of the presence of possible mixing
among g, q' and their radially excited counter-
parts.

With a suitable consideration about (the pos-
sibly important) intermultiplet SU(3) mixing, the

idea of equal fractional contribution may be ex-
tended to other commutators. In general, the
fractional contribution will be labeled by the
helicity, orbital and radial quantum numbers of
the external and internal particle levels and not
those of the individual particles themselves.
Clearly, this is a great simplification since par-
ticles then enter into particular commutation rela-
tions in groups (i.e. , levels} only. This paper
showS —at least for the ground-state mesons-
that our extension applied to the commutator

[[j'„A, , ],A,.] =2j,' is powerful and produces re-
sults consistent with experiment. Further ap-
plications of this idea will be discussed in the
future.
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