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Assuming that the Q/1 particle decays into ordinary hadrons through mixing with daughters of the c»

and/or $ recurrences, we construct the amplitude for $~3tr from a five-point Veneziano amplitude for
KK —+3~. This amplitude well describes the characteristic features of the experimental data on the 3n decay
of Q/J: {i) The pm channel is dominant; {ii) signals of resonances at a&

——even are not seen in the 3m

Dahtz plot.

I. INTRODUCTION

Recently there has been a great deal of interest
in studies of the hadronic decays of $/Z in connec-
tion with the fact that its hadronic decays into
ordinary hadrons provide important clues for
understanding the Okubo-Zweig-Iizuka rule. ' Until
now various attempts to explain the' $ hadronic de-
cays have been made by many authors. ' Especially,
studies based on the dual unitarization scheme"4
give nice interpretations of some features of the

( decays.
Experimentally the decay of g into multihadron

channels has a large amount of branching ratio, .
Dalitz plots for those multihadronic decays such
as g -Bit and P-KKtt have now become available. "'
Since the P is very heavy, kinematically allowed

regions in Dalitz plots are much enlarged and
enough energy is available to reach the higher
resonances. Therefore detailed analyses of the
distributions of final particles in the P hadronic
decays may afford us a deeper insight-into hadron
dynamics.

The purpose of this paper is to present a specula-
tion on the mechanism which governs the hadronic
decays of ( into ordinary hadrons and to study, as
a first application, the (-3tr decay channel.

Analogously to the dual unitarization scheme, we
assume that the ij decays into ordinary hadrons
through mixing with daughters of the &c and/or &I&

recurrences as illustrated in Fig. 1. Hence the
amplitudes for g -ordinary hadrons may be written
as

1
A(g -hadrons) =P g g»„, , A(tc,. s -hadrons)»"' am„'—n ' i

+g g g»» s, i, A(P; s-hadrons)
s its m» —n» t)

where i=positive integer and n„(n»)is the Regge
trajectory of &c (Q). The tc, s (&f,. s) are daughters
of the &c (Q) recurrences, satisfying the equation

n„(m„')=i (n»(m» ') =i),
is/ gag

and having spin one and the same quantum numbers
as &c (Q). In general, daughters are degenerate'
and the subscript P distinguishes one state from
another in the degenerate level. The constants
g„„(g»».) express the strength of the g mixing
with tc, s (Q, s).

It depends on the process which we consider
whether the tc,. s and/or Q, s contribute or not.
For example, only daughters of the co recurrences

contribute to the channels g-odd pions, and both
daughters of the &u and &f& recurrences contribute
to the channel i'-KKtt

In the case when only the daughters of the ~

ord-i na r. y

hadrons

FIG. 1. Quark diagram for + 3&. +-; mixing
effect is assumed to be irrelevant to the final-state
distributions in 3~.
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recurrences contribute, we will find (in the fol-'
lowing section) that the pole term of the daughters

,' 8 with mass of c,„'(i=9) dominates the decay
amplitudes among. others. Then the amplitudes
for such channels will be proportional to the sum
of products of the coupling constants g~„. and
the strong vertices for (d, , ~-ordinary hadrons.
W'e have now no means of estimation for g„„&~c =S,g
But when it is assumed a Pro~i that the only one
state among the degenerate states co, ., z dominant-
ly couples to g (and also to the KK channel), it
may be possible to construct the decay amplitudes
of g into certain channels from the generalized
Veneziano amplitudes.

As a first illustration of our approach to the P
hadronic decays, we shall study'the g- Sv chan-
nel. An experimental plot for the g- Sw decays
in Fig. 2 has the following features"'. (i} The
( decays into Sw mainly through the pv channel
(70%%uq);. (ii) the signals of p& [a daughter of f(1270))
in the Sv Dalitz plot are not seen; (iii) the signals
of g(1680) and p' (a daughter. ofg) seem to be
present but are 'suppressed. In the following sec-
tions we shall show that our approach to this decay
mode can well explain the above features of the
experimental data.

Recently, Cohen- Tannoudji et al.' have proposed
to use Virasoro amplitudes for,certain decay chan-
nels such p.s P-Sv or g-KKv. The reason pointed
out by them is that the duality properties of these
processes are ver& rljfferent from the ones en-.
countered in (d-3m. Also, the Virasoro amplitude
does not have the undesired poles at even integers
of n, . Our approach is quite different from theirs.
We propose that the Dalitz plot for g-Sv is well
described by the amplitude constructed from a
five-point Veneziano amplitude for KK-Sm. '. In
fact our amplitude for g-3v does not, have the un-
desired, even. poles in the limit of zero pion mass.

In Sec. Q we describe the way to construct the
amplitude, A, ($- Sw) . Evaluating this amplitude at.
the pole of n, =1, 2, and 3, we show in Sec. GI
that the gross features of the experimental data
are well explained by our amplitude. Ratios among
various coupling constants are also obtained. Sec-
tion IV is devoted to some concluding remarks
and discussions.
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FIG. 2. Experimental 3& Daalitz plot.

fix the slope and the intercept n, (0) by re-
quiring"" (1}c., (m, ')=1 and (2} n, (m, '}=—,'; the
latter is implied by Adler's PCAC (partial con-
servation of axial-vector current) consistency
condition. " Then we obtain

c.„(s)= o.,(s) =0.48+0.89s . (2.1)

When we evaluate Eq. (2.1) at s =m~', we find
n„(in&')=9.0. Therefore the contribution of the
daughters e,-., z with mass n„'(i=9)dominates
the amplitude for P-Sm. If the level &a, ., 8 is
nondegenerate (i.e., composed of only one state),
we. can construct the desired amplitude from a
five-point Veneziano amplitude for the process
KK-:3m by taking the pole residue at n„=-9,pro-
jecting out the 7=1 state, and finally using fac-
torization. However, - daughters may be de'gen-
erate' and the factorization does not hold in gen-
eral. Here we make an ad hoc assumption; Only
one state among the degenerate states co, .9 p
dominantly couples to $ and three pions, and also
to the KK channel. Under this assumption, the
factorization procedure is permitted and the am-.
plitude for P-Sv is approximately proportional
to that for ur, ., -Sv (hereafter we omit the sub-
script P),

II. CONSTRUCTION OF THE AMPLITUDE FOR P ~ 3m
A(()-Sv)~A(ur, .9-3w) . (2.2)

As stated in Sec. I, only daughters of the ~ re-
currences contribute to the process P -Sm'. We
determine the co trajectory o.

„

in the following way.
We assume that trajectories are linear rising with
universal slope n' and also that the exchange de-
generacy of the ~ and p trajectories is exact. W'e

Incidentally, we have checked that the daughter
ur, , (dominant one) is not a ghost state by using
the amplitude for KK-KK trajectories given in
Ref. l1.

Next we construct the A(&u, , -3v). from a five-
point function for the process KK-3g which is
given by Bardakci-Huegg as follows'.
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A(ZZ-3v) ~ Q Z; v, v,. v', Z, a „„„P,&P~2P3~3P~~B,(n,", —1, af, .—1, c.,', —1, o.'', , —1, n» —1) .
P(3y4y5}

(2.3)

The indices 1, . . . , 5 label the particles in Fig. 3. The sum is over all permutations of the three pions. The
function B, is defined as follows:

1

du, du, u,-~»(l-u, }»u,~45(1 —u, ) ~s4(l —u,u, ) "»'- »t~s4 ' .

(2.4)

The Regge trajectory a;& which is transmitted through the ij channel is written with the universal slope
n' [=0.89 (Geg/c) '] and the intercept n, ,(0) as

Q)~ = D((( 0)+ Q S)~ (2.6)

where

s; =(P)+Pq) (2.6)
I

The Z* trajectory nr~(s) is determined" by requiring the universal slope and orq(mr') = 2, which is also
implied by the Adler condition,

nr*(s) =0.28+0.89s .

In the amplitude of Eq. (2.3), the I=0 part for three pions (and also for two kaons) is

(2.8)

which contains the desired process KK- co, , 3m' corresponding to Fig. 4. Then evaluating the amplitude
of Eq. (2.8) at the pole of o.,",=9, we obtain

(2.9)

where B, is defined as

B, .= .du u ~»B (2.10)
0

The explicit form of Eq. (2.9) is shown in Appendix A.
In order to obtain the desired amplitude A((. -: 3n}, we next project the 8=1 'state out of the pole residue

of Eq. (2.9) and factorize out the ZZ&a, , vertex. In general the pole residue at n =l is composed of a
superposition of spin states with J=/, (I —1), (I —2), . . . , 0. In our case, because of a symmetry property
of Eq. (2.9), only odd-spin states appear, i.e. , 8=9, I, 5, 3, and 1. Projection of the J=l state can be
achieved by using the rotation matrix $~,(8, Q).» From general arguments on the Lorentz structure, the

704

34

S-)

~ ~FIG. 3. Variables for the KE&«. x'eaction.

T3

FIG. 4. The process KK co; 8
—3&.



amplitude corresponding to Fig. 4 with the pole of the J=1 state co, .9 has the form

(2.11)A(KK. (o1 2-311)=constx e„„„P1P2 P33P44, A((o, .2-32'),"1I'2"3I'4 1 2 3
S12 —ni

CO
~

where A(&o, 2-3') depends on the variables s„,s„,s» only. The KK&u,. coupling constant fear-„, is in-
cluded in a normalization constant. Then we' can pick up the amplitude A(~, , -3 v) by comparing the
following two integrals:

dQ~„*,'(0, p) x [right-hand side of Eq. (2.9)], (2.12a)

O~„*',(8, P) x [right-hand side of Eq. (2.11)], (2.12b)

where the integration is performed in the center-of-mass frame of the two kaons and 8 and Q are the polar
variables of one of the kaons. Integrations are very tedious but straightforward. Noticing that the KK~,
vertex is a mere constant and also that the amplitude for g-32' is aoproximately proportional to that for

, -3w, we find that the amplitude for $-32 can be written in the form
9

A(p-32) = Ca,„,1P,"P;P5e1 g C„(s,t, u)B( 21—n(s), 1 —n(t)) + (t, u) terms+ (u, s) terms, (2.13)
-n 2-. 0

where e is the polarization vector of P, C is a normalization constant, and we have redefined-the variables
as s=s„,t=s„,and u=s». The coefficient C„(s,t, u) are eighth degree polynomials in s, t, and u, but
their expressions are very complicated. The pole structures come from the Euler beta functions. We can
show that Eq. (2.13) is indeed symmetric in s, t, and u, although it does not seem to be so at first glance.

With tliis amplitude we can proceed further to intr'oduce the imaginary part into the trajectory n, (s) and
to calculate the Dalitz-plot density for (-3 5'. This will be reported elsewhere. In the next section we

evaluate A(g-3m) at the poles of p, pz, and g and obtain the ratios among various coupling constants in
order to see whether or not our amplitude can reproduce the gross features of the experimental data.

III. EVALUATION OF COUPLING CONSTANTS

To obtain the relations among coupling constants, we may straightforwardly evaluate Eq. (2.13) near the
poles of n, (s) =1, 2, and 3. But we choose a different way here: We first evaluate the I=O amplitude for
KK-32, Eq. (2.8), at double poles of n,",=9 and n,'4=k (k is 1, 2, and 3); then we project out the J'=1 state
in the KK channel. This way it is much easier to see that the undesired even poles disappear in the limit
of zero pion mass.

Near the double poles at n,",=9 and n,', =k (k=1, 2, and 3) the I=O amplitude for KK-311 becomes

1 1 2
t = ~~ v ~ ~ 1 2 3 4 9 n 1 31 1~

n34 =1 12

1 1 1

34

A' '(KK-311)i„„-,~~. .., P,'1P,'2P,"3P,"4

(3.la)

(3.1b)

1 1 1 1 1
5 +45 35 ™35 1 3 (3.1c)

B,=n„(n„+1)~ (n„+7)+n„(n„+1) ~ ~ ~ (n„+7),
2= [ 45( 23

— 15- 45+ )+ 35( M- 15- 35+ )] 15( 15+ ) "'( 15+ )

(3.2a)

(3.2b)

(3.2c)

+ [Q45 (Q13 —Q25 —Q45+ 1)+ Q35(Q 14
—Q25 —Q35+ )]Q25(Q25+ 1) ' ' (Q25+ 6)

B3 = [(Q23 —Q 15
—Q45+ l)(Q33 —Q15 —Q45 + 2) + (Q24 —Q15 —Q35+ 1)(Q24 —Q15 —Q35+ 2)]Q15(Q15+ 1)' ' ' (Q15+ 5)

+ [(Q13- Q25- Q45+ 1)(Q13 —Q25- Q45+ )+ (Q14- Q25- Q35+ )(Q14- Q25- Q35+ 2)]Q25(Q25+1)" '(Q25+ 5) ~
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2
@45+@35—8+ Q Bl» (3.4)

In general there is a relation among trajectories
0 .

~~ l.e.,
2&45+ %35 = Q ~2

—&34+ 1 + Q Pl »

%hen e» ——9 and Q. 34=2,

obtain the amplitude A(g-Sv) evaluated near poles
of n34=1, 2, and 3, which correspond to p, p&, and

g(p,') poles. Calculations are done with the use of
Eqs. (2.1) and (2.7) for the p and K* trajectories
(i.e., we use the value of physical pion mass).
The results are

Hence in the limit of zero pion mass, we find
from Eq. (S.lb) that the residue of Al=o(KK-Sm} at

9 and @34= 2 turns out to be exactly zero. Also,
in the same limit it canbe shown that the residue of
A~=a(KK-Sm) becomes zero at c.»=9 (more gener-
ally any integer) and &~=any even integer. This
means that the (d recurrences and their daughters
decouple with the even integer poles of the p tra-
jectory in the limit m, =0. This is just a general-
ization of the fact that the even poles disappear in
the Veneziano amplitude for mr r& under the con-
dition'4

A(p-Sm) ~ C,e» „,P3&P42P;~e"4
e(s)=1

100
1 —n(s) '

A(g-Sm) ~ C,e, » „P3jP,'2P,"3e'&
n (s)=2

0.46
X

2 —n.(s) '

A(y-Sv) C,~. .., P;u;"2P,"3e"
n(s)W

(3.6a)

(3.6b)

n, (s) + n, (f) + n, (u) = 2; (3.5)
3.0[o.(t}—n(u) j' —4.4x

)
', 36c

Recall that we have assumed the exact exchange
degeneracy of the p and u trajectories and Adler's
condition. Under these assumptions the above
condition Eq. (3.5) is reduced to m, '=0.

When the amplitude A(g- Sv) is constructed from
A~=a(KK- Sv), it takes over the. above-mentioned
property: All the even poles disappear from
A(P -3&) in the limit m, ' =0.

It is also interesting to know that the residue
of A'~(KK-Sv) vanishes at the double pole of n»
= even integer and e34= any integer in the limit
m,2=0. The proof is illustrated in Appendix B for
the case n» = any even integer n and @34=1. Phys-
ically the pion mass is nearly equal to zero.
Therefore the above argument approves of our
picking up a single term with i= 9 in Eq. (1.1) for
the process g-Sv. A little change in slope para-
meter makes the value of n„(m.„')depart from 9.0,
and it seems that the contributions of other terms
with i =7, 8, 10,- and 11 may be also important.
However, both amplitudes A(v, 8-Sm} and A(~, ,o
-Sm) are proportional to m, ' (here we have as-
sumed )hat only one state is dominant among the

' degenerate states ~, , ~ and a&, » ~), and their
magnitudes are very small. The contributions
of the terms with i =7 and 11 are expected to be.
small because of the propagators 1/(m„2—a.„'(i))
in Eq. (1.1). Hence we conclude that it is a very
good approximation to take up a single contribu-
tion of ~; 9 for the amplitude P -3&.

Now going back to Eqs. (3.1a)-(3.1c), projecting
out the J=1 state in the KK channel in just the
same way as we did in Sec. II, and factorizing out
the KK&u,., vertex (this procedure amounts to
changing only a; normalization constant), we finally

1

where Co is an appropriate normalization con-
stant.

We have changed variables s~, s4„s35to s t Q.
Because of cyclic symmetry for three pions, the
amplitude has the same forms near the poles in
the t and u channels as those in the s channel.
Note that two resonances g(J= 3 state) and p,'(J = 1
state) are overlapping at the pole n(s) =3 in Eq.
(3.6c).

The squares of the residues (including the kine-
matical factor) in Eqs. (3.6a)-(3.6c) roughly ex-
press the densities around

(3.7b)

fey ~ ~ uz (&gs s s (' )(s g('"') (3.8a)

s=mp', mp. ') aadm, '
(mp, ')

in the Dalitz plot of the p-Sv decay. The Eqs.
(3.6a)—(3.6c) tell us that (i) the p& signal can hard-
ly be seen; (ii) the g and p,

' signals are present
but are suppresse'd in comparison with p. Thus
our amplitude for the g-Sv decay can well ex-
plain the gross featur es of the experimental data,
especially the fact that the P decays into three
pions dominantly through pm channel.

From Eqs. (3.6a)-(3.6c) we can further obtain
the relative strength of the coupling constants,
whose normalizations are defined as follows":

f&.,'e..&.(s"0')(&' pl)~;, (3.7a)

and the same forms for the gp&m and gp'v coup-
lings,

I
As~2~f&(viss~g)pk

and the same forms for the p&m~ and p'~m coup-
lings, and
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f glflf 8 Uk( f Il V 1 j)gk (3.8b)

Wi.th these coupling constants, we obtain the fol-
lowing relation:

fgqw'fprt':fop 'fp'. m':flu fi&',r':fog'fg-'
1:2.2 x 10~:2.6 x 10 2: 1.4 & 10 ' GeV '.

I'(4- p,'~)
r(q- p~)

(3.17)

r(I - ~(s))1 (I —n(t))
I'(1 —o' (s) —o.'(t) )

I'(1 —o. (s)) I'(1 —o, (u) )
r(l —o. (s) —o. (u) )

They are

2

2 r2 1 58 G V-4 (3.11)

'
2 =4'a~I+So'(0)]'+8ll+o'(0)]'-2ll+o. (0)]+1

= 0.048 . (3.12)

Using these values, we obtain the ratios

. 2
=9x 10 2 GeV 4

PS'

(3.13)

p. 2

=5.4 x 10 '. (3.14)

Finally, we can predict the ratios among the par-
tial decay widths of g into pw, gm, and p~m. Using
the width formula

r(y-P~)=12' Z,',

f ' m4
1(y ~) Isa ~ 7

45~

(3.15)

we find

(3.16)

(3 9)

The ratios f„,'/f„,' and f,, „~/f„,2 can be obtained,
for example, from the Verieziano amplitude for the
~~ elastic amplitude with the I=1 state in the s
channel":

IV. CONCLUDING REMARKS AND DISCUSSIONS

In this paper we have made a speculation on the
mechanism of the hadronic decays of P into ordi-
nary hadr. ons and have analyzed, as a first appli-
cation, the final-state distributions in the P- 3&

channel. In constructing the amplitude for (-3w,
we have started from the five-point Verieziano
function for the &K- 3r process. Our numerical
results give good explanations of the character-
istic features of the Dalitz plot for the P- Sm decay.
In particular, the absence of signals at o.~(m, „')
=even is a consequence of the very small contri-
bution of the odd daughter trajectories (in the limit
m, '=0, there is no contribution). The signals of

g and p~ mesons appear, but they are suppressed
in comparison with those of the p meson.

Finally we comment on the work by Cohen-Tan-
noudji et a&.' They. proposed to use a Virasoro
amplitude for g- Sx rather than a Veneziano am-
plitude. This Virasoro amplitude does not have
pole's at even integers of e~, which is consistent
with the experimental data. However, this am-
plitude predicts an enhancement in the central re-
gion [o.(s)= o.(t) =3] of the Sn Dalitz plot. Although
the signals of the g meson are predicted to be
small, the p~ signals are predicted to be larger
thari that of p. This fact is inconsistent with the
experimental data. They also proposed that the
Dalitz .plot for g-KKw exhibits characteristic
structures described by a Virasoro amplitude.

In our approach, the amplitude for tj)-KKn may
be constructed from the five-point Veneziano am-
plitude for the process K&-K&m. The kaon mass
is far from zero, so the appearance of &**signals
can be expected. It may be also possible to apply
our idea to the study of final-state distributions
with more than three particles.

A further complete description of the Dalitz plot
for g-Sw and the analysis of the final-state distri-
bution for the g-KKn decay will be reported else-
where.

Note added. After the completion of this work
we found that a similar analysis had been done by
Z. Z. Aydin, "using the Virasoro amplitude. He
did not discuss the decay width of g- p~s. But we
find that its predicted value by the Virasoro am-
plitude is much different from ours. Experimen-
tal data seem to prefer our result.
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The explicit form. of Eq. (2.9}is

APPENDIX A

A(ZZ- ~,. —3~)~~ P~u "2P~~P~4 1 1
5=9 PluRP3P4 1 2 3 4 9-Q 8112

x a,(a„+1)(a„+2)~ ~ ' (n2, +7)B(1—n~„1-aM)

+ a„(n„+1)' ~ (n„+6)aB(2—a„,1 —n~)
8

+ a»(a»+1) ~ ~ ~ (n»+5)a(a+1)B(3 —a4„1—nM)
8

+
3 a,,(a„+1) (n„+4}a~ (a+2)B(4 —n„,1 —n„)8

+
4 a„(n„+1)''(a„+3)n (n+3}B(5—a„,1-n„}8

+ a» ~ ~ ~ (n»+2}n (a+4)B(6 —a„,1 —n„),8

+ a,(a, +1)a(a +1) ' ' ' (a +5)B(7—n4„1—nm)
8

+ a»a(n+1)'''(a+6)B(8 —a„,1-n~)
8

+ a(a+1) ~ ~ (a + 7}B(9—a„,1 - nM)
8

+ (other five permutations of the three pions}

where B(&,g) is the Euler beta function and a —= n„—n» —aM+1.

APPENDIX B

We show that the residue of Al o(&g'- 3m) at the
double poles of Q» = even integer and QM =1 van-
ishes in the limit m, '=0.

The residue of A~ o(&&- 3w) at the double poles
of Q» =+ and Q~=1 is yroportional to

a =a„(n„+1)~ ~ ~ (a„+n-2)

+n»(a»+1) (n„+&—2) .

When & =even, G is proportional to

(a +a +n 2).
On the other hand, there is a general relation,

Q~~ + Q25 = Q~~ Q» +1 + Q m7f
2

So we get in the limit m, '=0,
Q„+Q„=2-&.

Therefore G becomes zero.
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