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Analytic and unitary representation for the pion form factor at all Q
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We propose an analytic parametrization of all data for the pion form factor which can explicitly

accommodate, consistent with inelastic unitarity, both higher vector-meson states and a smooth inelastic

continuum, in a rather economical way. This parametrization automatically gives the asymptotic behavior

expected for a quark-antiquark bound state and is free of complex zeros. We find that the best fit to the

data contains no p'(1250) signal and a possible, broad, p"(1600), but with rather small coupling to the

photon and to the I = J = 1 n-m system.

I. INTRODUCTION

The last five years have seen a substantial im-
provement in our knowledge of the pion form fact-
or E,(Q') and now a very large range of momenta,
10 GeV'& Q'&-4 GeV', has become accessible to
experimental investigation. ' " Such a dramatic
increase in experimental information, both at
timelike' ' and spacelike'" momenta, has not been
matched by an equal progress in our theoretical
understanding of its detailed features. In the ab-
sence of a theory, the step next to the collection of
experimental information is to attempt its class-
ification via some phenomenological parametriza-
tion. This has of course already been attempted
by several authors, ""but in most cases either
on smaller portions of the measured range" "or
in a language difficult to translate into the more
familiar concepts of resonant contributions and
underlying backgrounds. '""

A few recent analyses'"" use almost the same
experimental information we use here, but our
analysis differes from those on two points which
we think mu'st be stressed. First, this analysis
weighs separately the "elastic, " p-meson peak
region and the regions of timelike and spacelike
Q', where the. effects of higher inelastic channels
should be mostly felt, in an attempt to separate
the two effects. Second, we can rely on new,
more accurate i:nformation in the timelike region,
which allows us to put more severe limitations on
the couplings for possible, higher broad vector
mes ons.

%e can summarize our theoretical requirements
by saying that E,(Q') has to be a real analytic
function in the Q' plane cut from 4 p,

' to infinity,
obeying the unitarity relations

l~.(Q') =A*(Q')E,(Q') o(Q')

=A(Q')E.*(Q')+ o*(Q') (l)
on the cut, where A(Q') is the J=I= l vr-v partial
amplitude and the inelasticity function o'(Q ), de-

fined as

(Q') = g A.*, .(Q')E.(Q')p.(Q') (2)

[here p„(Q') is the phase-space factor for the nth
intermediate state in the sum], vanishes below
Q'=s,.„the first inelastic threshold.

Furthermore, general beliefs in the nature of
hadronic constituents and of their interactions
lead us to expect an asymptotic behavior" (up to
powers of lnQ', lnlnQ', etc.):

E,(Q') (Q'~&~') ' (3)

with some "typically hadronic" mass scale M
-1 GeV.

Such a behavior will indeed be built in our para-
metrization. The result we obtain shows, in our
opinion, that more "exotic" behaviors are for the
moment unnecessary.

Despite the wealth of experimental data, our
understanding of the detailed electromagnetic
structure of the pion has not gone far beyond the
initial attempts to solve, more ~' or less suc-
cessfully, the two-pion approximation to the uni-
tarity equations when cr=—0. But if we wish to ac-
count for the features of E,(Q') at least in the
range of Q' already accessible to experiment, we
have to try for a solution of Eq. (1), consistent
in the same range with the available information on
~7t scattering" "and inelastic annihilation chan-
nels. '""" However, it must be noted that such
information is not enough to construct the inelas-
ticity a(Q') from its definition (2), but only to
give the upper bound"

cr(e'e .-hadrons)z. , —v(e'e -~'v )' &I- &lee -p p)
y (] q 2)&~2

where g]y is the elasticity of the I=8 = 1 partial
amplitude A(Q').

Since our interest is purely phenomenological,
we shall limit ourselves to building a model for
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E,(Q') which could satisfy automatically relations
(1) and (3) and to displaying explicitly possible
higher vector-meson states. This will then give
a test on the presence of such states consistent
with general principles, unlike some which can
be found, even in the most recent literature,
which violate even the most elementary require-
ments of analyticity and unitarity. "

As is well known, very- few problems exist for
the solution of (1) and (2) if s,„ is well above any
strongly coupled resonance. The hypothesis
that s, & m, ' is so common in phenomenological
analyses of the n7t I= 1 channel that we mention it
here only because it plays an essential roIe for
our parametrization; we will also show in Sec. II
how one must deal with inelasticity in an optimal
way.

Of course, owing to the high inelasticity of the
proposed states, '""'"only a detailed study of
Eq. (1) can ensure that their production phase rel-
ative to the p meson is consistent with unitarity
and analyticity; this is what Sec. II will be dealing
with.

II. INELASTIC UNITARITY AND ITS INFINITE
TAUTOLOGIES

P,(Q') =S.(Q')P.*(Q')+ 2ie."(Q'),

&with the following definitions:

(6)

It is well known that a knowledge of bah A. and
o overdetermines the solutions to Eq. (1); it is
much less known that such solutions can be writ-
ten, apart from the well-known polynomial ambi-
guities of Omnes-Muskhelishvili equations, "in
infinite tautological forms.

Let us begin rewriting Eq. (1}as

&,(Q') = S(Q'V'.*(Q')+»~*(Q')

= S*(Q') '[P,*(Q')+»e(Q')],

where 8 = 1+ 2iA. = q»exp 2i6», and introducing the
arbitrary, complex phase a as

fl (Q')=S (Q')fl*(Q') exp[-»4(Q )]

2i~(Q') ' .*(Q'). (8)

This equation clearly. displays two classes of
tautologies: the first class generated by the in-
troduction of arbitrary complex phase n(Q') which
does not even need to be continuous on the cut,
and the second class generated by all possible
continuous choices for Q(Q'), obeying only the
limiting condition for g»- 1 on the inelastic cut.

Equation (8) has not in general a simple solu-
tion; however, we can eliminate the tautologies
of the first class fixing a = n, so that the first
term on the right-hand side of Eq. (8) becomes
simply Q~~, namely

exp[2~'(g —5„]]—q„)'~'

1 —q„exp[2i($ —5„)]
for which choice Eq. (8) becomes then

e*(Q')ll —q„e~[2i(y —6„)])
(1 —]I„')C (Q')

and the most general solution to Eq. (1) will then
have the form

S = S cos'n + (S*) ' sin'o',

e*=g*cos'&+ (S*) 'g sin'e].

Let us now introduce an arbitrary continuation

Q of the phase shift 5» from the elastic region in-
to the inelastic one Q'& s,.„subject to the only
limiting condition

lim Q = 5„(mode)
) ll

and the corresponding Omnes function 4(Q'),
properly normalized at Q'= 0,

~(Q.) Q 0( )
g qg2S(S —. Q ) l

Writing E,(Q') = 4(Q')Q~(Q'), where Qo(Q'} is
then real analytic in the Q' plane cut from s, to
infinity, we derive the unitarity equation for Q~,

C'(Q')P, (Q') 2Q'P, (0) " v*(s)(1 —q„exp[2i(4 —6»)]] ds
P,(0) ]],, (1 —]I„')C(s)P,(s) s(s —Q')

where we have collected all zeros of E, in the
polynomial factor P„so that Q~ can then tend,
without loss of generality, to a positive constant
as Q' tends to infinity.

Tautologies of the second class are'still present
since p is still completely free for ]I„A 1. If cr(Q')
were known, we could choose a Q = Q, such as

ImD~ = 0 everywhere, and obtain then the "Omnes
solution" E,= C (Q')P, (Q')/P, (0). Since there have
recently been many attempts"'" (including one of
our own") to treat y= argo(Q') as a very small
"perturbation, "'"' let us have a closer look at
the behavior of Q, = argF, (mode) for small y. %'e

have from Eq. (9)
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lim Q = 5„(mode)

requires pcosy=sinP and psiny=0. If we are
interested in the region Q'& 1 GeV', where the
phase 8 of the partial amplitude is practically
unmeasurable since ~A~ is very close to zero, we
have to fix P so that dQ/~ d8~ has an absolute mini-
mum for small but nonzero ~A~ . This happens for
P =m/2, which corresponds to the "old" Goldberg-
er-Treiman choice" for Q,

P = Q» = arg(1+ iA) . (10)

In the case of the ~-m I' wave, it can be easily
checked that almost all inelastic phase-shift ana-
lyses" "indeed give values of Q» close to each
other and to a simple p tail in the manner of
Gounaris and Sakurai. 22 Note that stability of P«
at the p-meson is automatically ensured assuming
s„&m, ': The rather good experimental bounds
on the p-meson inelasticity (typically & 2 x 10')
corroborate the hypothesis, common to all ana-
lyses, ""that no inela. stic channel opens below
the (dn threshold. ,

, cosy —q„cos(25»+ y)
siny+ q» sin(25»+ y)

and $0 can differ arbitrarily, even for very small
but nonvanishing y, from argA around any reso-
nance or whenever 5» approaches any multiple of
m/2.

The hypothesis y «5» for Eq. (9) is then bound
to give highly unstable predictions whose local
success may be purely accidental and whose fail-
ure is instead highly probable. However, we wish
to point out that our problems are not limited to
our ignorance about v(Q') outside of specific mo-
dels, but also to our too limited knowledge of
A(Q'), and in particular of its phase 8= argA in
the inelastic region.

We shall then propose to use the tautologies
still present in Eq. (9), not to simplify its formal
solution, but to minimize the' effects of our ignor-
ance of A. If we regard the introduction of the
Omnes function C(Q') as a way of separating the
supposedly understood elastic channel from the
mysteries of the high-energy inelastic contribu-
tions, we may expect that, in order to conserve
the information contained in our measurements
of ~E, ~, we shall have to use that continuation P
of Bye into the ine 1astic region which is less- affect-
ed by the uncertainties on ~A

~

and 8.
P may be related to A by the general linear

transformation

Q = arg(Ae'~ + pe'"};

when the parameters p, y, and p are constants,
the condition

What if s, „=16',' and the four-pion continuum
gives a small, nonvanishing contribution to Eq.
(2)? Again the condition for Q to, be stable with
respect to uncertainties in ~A~ and 8 gives, for
points close to A=i in the Argand plot, the con-
dition p=P=0 and

Unfortunately, even the bound (4) soon becomes
useless as new I=J= 1 channels open, such as
p'zv (or p'e) and p'p .

However, constructing a phase &f&oT and its
Omnes function 4GT, we can rescale the measure-
ments for ~E,

~

and thus obtain "experimental" in-
formation on ~Q» ~. This can in turn be analyzed
in terms of functions, analytic in the Q' plane cut
from s,, to infinity and consistent with what we
expect from Eq. (11), in order to gain some indi-
ca,ti.ons on possible resononant structures at c.m.
energies from 1 to 3 GeV.

III. THE REPRESENTATION AND ITS FIT TO jF i DATA

C(Q') has to be a solution to the elastic unitarity
problem

ImC = 4*A=A*C,
(i2)

at Q'- s,, Since we have already observed the
closeness of Q« to a simple Breit-Wigner tail (see
Fig. 1), we shall assume 4 « to be a solution to elas-
tic unitarity at all Q' and write a resonant%/D de-
composition for A,

A=N(Q')/D(Q'),

where we recall that both D and N are real analy-
tic functions in cut Q' planes, with cuts running
respectively from 4p, ' to ~ and from 0 to -~. A
solution for C», properly normalized at Q'= 0,

which is nothing other than what we had to choose
using Watson's final-state-interaction theorem.

Of course keeping P, y, and p constant we can-
not accomplish maximum stability of &p every-
where on the Argand plot. But since for Q'&s, „P
is subject only to a condition for gory 1 we can
always find three continuous functions of Q', sat-
isfying p cosy= sinp and psiny= 0 anywhere q»
reaches unity, that will ensure stability of P with
respect to experimental uncertainties at least in
a portion of the Argand circle.

+lith the choice s,,~ (m„+ p, )'& m ' and Q = Q»,
A~ is defined in terms of the inelasticity function
by the equation

Reo
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channel, l* is an orbital angular momentum in
that channel, and R is a skewness parameter to
be fixed by the scattering length (for the elastic
channel only).

D(Q') then obeys the asymptotic constraint (15)
automatically and has a resonance of mass M and
width I' if

ReD(M') = 0,
ImD(M') = -MI',

requiring furthermore that

FIG. 1. The GoMberger- Treiman phase for J=I=1 m7t

partial amplitude plotted versus c.m. energy. Here the
dashed line is the energy-dependent fit of Bef. 22, the
open circles are the results from Ref. 23, and the
shaded area is the region covered by the ambiguities of
Bef. 24. On this we superimpose as a full line our
ansatz 4GT=Dp{0)IDp(Q ) where D& (Q ) is given by Eq.
{17).

( 4/12 )2/2N(Q2)" &. .„'Q'-4u' D(Q')

fixes all parameters in D(Q') up to an arbitrary
normalization. "

Owing to the high inelastic threshold s„~(m
+ }{1)',we can directly fit the formula

is then

= lD(0)&.(Q )]/lD(Q )&,(0)], (14)

with z complex zeros in the Q' plane. If C oT has
to satisfy the asymptotic condition (3),- we must
then have

D(Q', M, r;t, ft;I*)
h(Q ') —Re/2(M2)

1m|2(M2) —(8Reh/&Q') {}/2Mr

lim
~

D(Q')/(Q')"'
~

= constant
Q2~ oo

(up to powers of lnQ', inlnQ', etc.) and for Q'
+~ 4p,

ImD(Q') = N(Q'), -(16)
so that in principle the left-hand cut discontinuity
of N(Q') will determine, together with the complex
zeros in D(Q'), all the dynamics of the }/1/ system.

We shall then write a simple one-level resonant
formula for D, parametrizing it as (fixing z = 0,
i.e. , no zeros in E,)

D(Q') = a+ bQ2+ eh(Q2),

where

}I{Q'}=—(, ) (1-—,)
; x jf(Q') P(Q')].

here f and {t} are defined as

Q2 t 1/2 (t Q2)1/2 ( . Q2)1/2
f(Q') =

Q2

and

where t is a threshold of the resonating two-body

to the unnormalized e'e -m'm cross section at
the p-meson peak. Including p'-v mixing and
constraining R to give p2a» = 0.048 (i.e. , the "cur-
rent algebraic" value), a fit to the results of Ben-
aksas et al. ' gives for the parameters in D, (Q')
=D(Q' mQ, I'P, 4t12}R;1)

mp= VV2 MeV

1,=136 MeV,

R/4{{12=+0.85,

reproducing the results of the original paper. '
Note that R/4@2 can be varied considerably with-

out spoiling the fit on the p peak: Only the region
from just above threshold down to very low space-
like Q' is really sensitive to this parameter (or
alternatively to p, 'a»). However, this region has
data coming from four sources with different sys-
tematic uncertainties, i.e., e'e" annihilation, in-
verse electroproduction, electroproduction at
threshold, m'e scattering. This latter source
has, in most recent fits, too large an impor-.
tance owing to the narrowbinning and the very low
statistical errors.

As we can see from Fig. 1, 4oT(Q') gives a»o
a good fit to QoT values from the recent analysis
by Hyams et al. ,

"and we shall then use it as the
"elastic" contribution to E, to derive, from the
measurements of Ref. 2-10,

~
&oT(Q2)

~
outside the

p-meson peak.
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Hescaling the variable x to x =x(Q')/x(s, „):=(s,,
—m, ')/(Q' —m, '), we will parametrize a "back-
ground" from si„ to infinity as

B(x)= -x[(1-x)"ln(1 —1/x) —Q.(x)],

(18)

(19)

which has the smooth discontinuity

across the inelastic cut, and where Q is a poly-
nomial of degree m —1 fixed by the condition
lim„„B(x)= constant, and both the scale P and the
threshold behavior can be accomodated to fit the
data.

Recalling the definition (2) for o(Q'), we expect
an inelastic resonance p,. to appear in the shape
of a Breit-Wigner structure .(over some back-
ground) in Reo, and taking formula (17) and im-
posing R=O, we can writt.'

2 D;(0)
;(Q )-

D (Q, ), (20)

where D, (Q')=D(Q', IVI, , I',. ;t, , 0;I,). Note that we
must then have the inequality

A plot of
l
itoT

l
versus the variable x= m 2(Q'

—m, ') shows marked, systematic deviations from
unity which we choose to explain as inelastic ef-
fects. Since all expected vector mesons have to be
highly inelastic, from both the analysis of the
elastic channel" "and their detection in inelastic
channels, ""we decompose ~3« into the sum of
one or more resonant terms C, (Q') and a smooth
"background" B(Q') and write, to enforce norma-
lization at Q'= 0,

l.,(Q') =1+VIB(Q') —B(o)]

of e'e - 4m at Novosibirsk'. do not contain the strong
p'(1250) signal claimed by Ref s. 29 and 33, while a
previous CERN-Prascati experiment" failed to see
any clear indication of either p'(1250) or p"(1600).
Looking only for these two effects, since the inter-
ferences we are looking for in the "elastic" mm chan-
nel will not be very sensitive to the masses, we can
fixM, =1.25 GeV/c' (with Wt, =m„+ p and I, =1)and

M, = 1.60 GeV/c' (with 0 t, = m, + 2 p, and I, = 0), since
the two main decay channels are claimed to be p'- mm

and p"- pmm, while for s,.„inB(Q2) we shall try either
choice sin tz or sin-t

Th'e only free parameters left are then the
threshold exponent m in B(Q'), the widths I', and
1"„and the scale factors P, n„and n, .

Our data selection for
l
QoT

l
includes: (a) at

Q'& m, ', three points from ACO (Ref. 6}at Q'
& 0.8 GeV', 23 preliminary datafrom VEPP-2M (Hef.

. 7) up to Q' = 1;69 GeV', 13 points from the Bologna-
CERN-Frascati collaboration' from 1.44 to 9.0
GeV' and the SPEAR measurement at the g reso-
nance, ' and (b) at Q'( m, ', the lowest energy point
from ACO, (Hef. 5) three points from analysis of
inverse. electroproduction' ~ p —e'e n, one from
an electroproduction'sum rule at threshold, ' four
obtained at very low Q'& 0 rebinning the original
ne elastic scattering results' and 17 points, down
to -4 GeV', from electroproduction isovector con-
tributions in the t channel" (including a reassess-
ment of previous CEA" and Cornell" results).

From Fig. 2 we may easily isolate the main
features of lQl: It tends to be systematically
above unity at positive, sufficiently large x (at
least for x& 0.1) and below it in the interval 0&x
&-1 [implying then a mean-square radius larger

' lim QoT = 1 —Q o.,[D,.(0)/m —1]—PB(0) & 0
q ~~

if complete absence of complex zeros in E, has to
be guaranteed.

Since fqrmulas (17)-(20) introduce a wealth of
free parameters, let us restrict our search to
those effects whose, existence may be inferred
from other processes. Two higher vector mesons
have been claimed, a p'(1250) claimed in both '

pp- (dm'm annihilation 'and inacompilationof e'e- v'm e'n' data, ""and a p"(1600) found inn'~ n'm

photoproduction"'" and inc'e -m'm n'v (Hef. 27)
and shown to be mainly in a p m'm state. 2'," Of the
two, only the p"(1600) shows up inn-m phase-shift
analyses" "where it seems necessary to satisfy
backward dispersion relations' with an inelasti-
city of at least 75%. Note that recent measurements

I

0.5
X

. 0
-0.5 I.O l.5

)I4P$1

FIG. 2. Data for the inelasticity factor OG& around ~.
=m /(Q —m ) =0, compared with our two models of
a pure background (dashed line) and of a background
plus higher vector mesons (the full line shows the best
fit, with the p" only). Solid circles are data frozp Ref.
4, the squares come from Ref. 6, the cross is the SLAC
point at the g resonance, Ref. 8, open circles at x&0
are electroproduction results, Ref. 10.
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TABLE f. Pion mean-square electromagnetic radius.

Q range (F ) (~ 2)i/2 (F) Ref.

(-3.0, .-1.0}

{-0.9, -O.3)

( 0, 1.1)

( 1.7, 2.9)

p-meson domi. nance
only

Our inelastic fits
(ail Q2)

0 74+0.ii

0.78 +0.03
0.71 + 0.05

0.98 +0.24

0.75'+ 0.14

0.695

45
9
46

2

1-10

than expected from thb approach followed by Goun-
aris and Sakurai in Etls. (14)-(17)—see Table 1 for
a comparison with experiments at low Q' —and an
asymptotic scale sinaller than D,(0}=,m, ']. Note
that these effects are correlated by analyticity to
predict an essentially, non-negative discontinuity
for 0 across the inelastic cut Q'& s„iri Etl. (9);
their relative size arid shape are further useful
to constrain the size and (less} the shape of such
a discontinuity.

Furthermore, data from Adone4 suggest the pre-
sence of at least one strong dip in

~
QI at x = 0.3

(the region where this experiment has the highest
integrated luminosity), or Q' —2.5 GeV'.

The best fit to the whole' set of 66 points with a
pure smooth background as given by formula (19)
is obtained with m = 3 and s„=f,= (m, + 2 p, )' for a
value P = 2.1, and gives a very low probability of
3.6 x 10 ', however, the elimination from. the fit
of the points at 0&Q'&-l.5 GeV' (where there
seem to be inconsistencies between data at very
close values of Q') produces the more acceptable
probability of 2.6 x 10 '. At a purely statistical
level, we do not have compelling evidence for
additidnal timelike structures beyond Q'= s„since
most of the X' for the previous fit on all the 66
points came from data at Q'&0.

However, such a fit does not follow the detailed
features of ~E, ~

at.Q'& 1.8 GeV'. We then insert
the p' and p" states at their "claimed" masses of
1.25 and 1.60 GeV/c', in addition to the same
background. " We find that the data reject any
appreciable content of p'(1250), but the dip in

~

fl
~

displayed by the Adone data' requires the inclusion
of a p"(1600) in the fit with a marked prefer'ence
toward a rather broad state, I', = 750 MeV, much
broader than the p" seen in the mm phase shifts. ""

The best fit for the widtli is reached [indepen-
dent of ~, as long as it is not as large as I'„but
no one has ever claimed a p' much broader than
the p [Refs. (29, 33, 37, 39)] for the "coupling
constants"

o'.,(=1 14.gp.„/f;) = 0.00,
o'. ,(—-1.12', „/f,„.) =—0.15

(where finite-width effects have been included in
parantheses to trarislate our o.„ into the coupling-
constant ratio g„/f„used in "extended" vector-
meson dominance models), with a "background
strength" P = 5.5 which has, however, a strong,
negative correlation to , as a consequence of
analyticity and our ignorance of argQ. The proba-
bilitv of such a fit is rather high, rea, ching 5.1
x 10 ' on all the 66 points (despite the decrease
in the number of degrees of freedom); if only
the data outside the region 0& Q'& —1.5 GeV are
corisidered, the probability of the fit reaches the
rather satisfactory value 0.23.

This remarkable improvement comes mainly
from the timelike region Q'&s„: from Figs. 2-4,
one can see that data in the "elastic region" Q'
&s„(both timelike and spacelike) do not con-
strain strongly the behavior of

~

Q
~

on the inelas-
tic cut. , Therefore, any claims of the presence of
higher vector mesons based on analytic extrapo-

r

I I I I
I

I I I I I I I

0.5—

0.2—

O.I—

0.05—

I I I

0.5 I

I I I I I I

5.
I

2
2 2

IO

Q (GeV )

FIG. S. I E„I versus Q
t (see caption of Fig. 2 for the

meaning of the two lines) for Q ~~& . Circles are from
Ref. 7, squares from Ref. 6, diamonds from Ref. 4,
and the cross from Ref. 8.
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2—
I I I I I I I

0.5—

0.2—

O.I—

0.05—

I I I

0.5 0
I I I I I I I

-5-I

Q (GeV )

lation techniques, '""which expand either E, or
0 in a series of functions of some variable s(Q')
(which converge everywhere but on the inelastic
cut) are particularly unstable since only conver
gence in the mean exists on the cut, 4' and the
shape of W on the cut will be critically dependent
on the particular truncation criterion used.

It becomes particularly difficult to decide if a

FIG. 4.
~
FJ versus Q2 pines have the same meaning

as in Figs. 2 and 3) for Q —~& . Note that to represent
all data we had to shift the origin of the logarithmic
scale to Q =1 GeV . Circles at spacelike Q are from
Ref. 10, the solid square. from Ref. 5, open squares
from Ref. 2, crosses from Ref. 9, and the circle at
timelike Q2 from Ref. 3.

rapid variation in ImQ has to be associated with
structures in the data or has to be ascribed to
such a truncation. Furthermore, in such an ana-
lysis, it is hard to constrain the production phase
of a possible higher inelastic resonance to the
value expected from unitartiy.

The present approach has evidently the draw-
back of automatically associating sharp structur-
es in the data with such resonances. Despite
this, we feel it presents two main advantages:
First, it yields in a very simple'way the essential
parameters of a possibly higher resonance p„,
namely mass M„, width I'„, and coupling ratio
g„,/f„, without any conflict with general principles
or drastic approximations. Last, but not least,
the model, at variance with more sophisticated
expansions'"" can be built free of both unusual,
far-away zeros in the Q' plane" 4' and of unex-
pected asymptotic behaviors, '""different from
what quark-gluon theory" dictates.

We gladly point out that the good probability
level reached with the present model (=23/o at
timelike and high spacelike Q') shows, much to
our taste, that none of such features is required
by present data.

It is also to be noted that a quite satisfactory
value for the pion radius (r, )= 0.483 F', close to
the estimate by Dubnicka and Dumbrajs, "0.50
+0.07 F', has been found with a small scattering
length, much smaller indeed than the one advoca-
ted by Ref. 19, indicating that finite-width effects
and the treatment of inelastic contribution may
explain most, if not all, of the discrepancy be-
tween(x, ') and the simple p-meson-dominance
prediction 6/m, '.
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