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Form factors of states bound by attractive potentials
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Various positivity and monotonicity properties are proved for form factors of ground states bound by
attractive potentials. In particular the experimentally observed monotonicity and positivity of the electric
form factor of the proton (and a similar property predicted for the n form factor) can be correlated with the
possible purely attractive nature of the qq and 3q forces.

INTRODUCTION with charges &» . . ~, ~„,

Traditionally dispersion relations dominated
most theoretical investigations of form factors,
leading —among other results —to the prediction of
the low-lying vector mesons (ar and p). ' With the
emergence of quark theories, form factors are
now often studied within the framework of various
bound-state models. ' In particular it has been
suggested that the approximate Q ' asymptotic
falloff of the nucleon electromagnetic form factor
is related to the three-quark picture of the nu-
cleon." Very likely the two approaches (the disper-
sion-theoretic and quark-parton methods) are
complementary. A simple vector-dominance- mod-
el saturation of dispersion relations appears useful
for discussing features of the form factors at low
Q', the second, quark-pa. rton, approach is gen-
erally applicable in the asymptotic regime.

In the following we utilize mainly the second ap-
proach for proving some general properties of
(nonasymptotic) form factors which follow from
certain assumptions about the binding potentials,
and also discuss some mutual constraints which
follow from the application of both approaches. We
will employ the simple nonrelativistic Schrodinger-
equation framework where the proof of most of our
results is essentially trivial. These results often
appear to have model-independent characteristics
suggesting a generality exceeding what is implied
by the derivation, which makes them rather inter-
esting.

I. CHARGE DENSITY AND SPECTRAL FUNCTION

The electric form factor of a particle with charge
e bound in a bound state g (r ) is given by

F (q) =e dr/„'(r)e' "'" .

(The bound-state wave function can be chosen real,
and complex-conjugation signs avoided. ) Similarly
if g„(r„.. . , r„) is the bound state of n particles

& (q ) = P e; d r p;(r ) e' ~ ' ',

p(r) = J dr, dr;dF;, ;., di („(r . .r)'.

p(lri) = e "'
o (V') ~(~') .

o(pP) need not be positive. In the case of a nucleon,
the dipole asymptotic behavior (and also an elegant
treatment of much earlier cruder data') does indeed
indicate alternation of signs in a(p, '). Demanding
that the right-hand side (RHS) of Eq. (3) be posi-
tive for all r imposes a nontrivial constraint on
the models.

As an example, consider a simple case where-

Consider first a two-particle (say g,qb) bound
state. If m, =m&, the particles are symmetric
with respect to the center-of-mass system and
hence p,(r) =pb(r). Thus ps(r) and Ez(q) will be
proportional to the probability density and corre-
sponding form factor [as in Eq. (I)]. If m, &mb, as
is the case for K„a form factor different from
zero may occur. ' Also in the symmetric quark
model' it can be readi)y shown that the electric
form factor of (say) the nucleon is proportional
to the product of its total charge (e =pe;) and the
form factor of total probability density (p„,=gp;).
Thus for e =0 we expect vanishing electric form
factors, as is roughly the case for the neutron.

The first observation that we would like to make
is that when ps(r) = p„,(r) the configuration-space
charge density is everywhere non-negative. This
density can be expressed in terms of the spectral
function in a dispersion relation

" d(~')o(V')Fq' =

as a corresponding superposition of Yukawa-type
distributions
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the dispersion relation is saturated by the contri-
bution of just two narrow resonances (say, p and
p' for the pion form factor)

&('IHI(&= f d&ldk((&1)&(i &)('(&)

~2
+ dp p

e-p&r &-p2r
p(lr I) =r, +z.

We cannot allow g, to be negative and larger in
magnitude than g, . (g, = -g, would in particular
give dipole-type asymptotic behavior. )

Further constraints on the spectral function
o'((u) follow in more specific cases when more in-
formation on p(r) is available. Thus for potentials
V (r), which are monotonically decreasing with r,
one can show that $0(r), the ground state wave
function, and hence also p, (r), are monotonically
decreasing with r (see below). Taking the deriva-
tive of Eq. (3) and insisting that it is negative for
all r yields then the requirement

o(I1') e "" —+ p, d(p, ') ~0, for all r. (4)r

II. POSITIVITY OF THE FORM FACTOR

Bather than dealwith the conventional configura-
tion-space Schrodinger system, let us go over to
momentum space where the equation reads

&.0 (0) = dk V(p, k)(t (k)+p'l. (p) (5)

with V(p, k) a general real symmetric function.
We can use for the purpose of the present section
this general nonlocal form, though conventionally
one restricts attention (in the nonrelativistic case)
to local potentials

V(i, k) = V(P-k)

and often spherically symmetric ones

V(p-k} = V(lp-kl').

The probability density form factor- is given in
terms of the momentum-space wave function by a
convolution /

E„(g ) = g~(k)g„(k+(T)dk .

Now -the following statemept can be readily de-
monstrated. If V(p, k) is everywhere attractive
(in momentum space)

V(p, k)& 0 for all p, k, (8)

then the ground-state form factor E,((T') is posi-
tive for all q.

Proof. The ground-state wave function g,(p)
minimizes

subject to the normalization condition

&(I«( = f "& ('(f)=&. (10)

If $0(p) flips sign and is (say) negative in some do-
main D of momentum space we can generate a
better (i.e., lower-energy) trial function which is
positive everywhere by choosing g,'(p) =I(,(p)l.

, Clearly (l(0(p) satisfies the normalization (10), and
yields the same kinetic (second) term as
tt(,(p) in the RHS of E(I. (9). Also this replace-
ment will make the integrand in the potential
(first) term in K&I. (9) everywhere negative.
Thus (gal&l(j(0) -(Pol&lgo) and, barring degen-
eracy of the ground state, we conclude that $0= ),
and g,(p) ~ 0 for all p. Using then K&I. (7) we find

b.; =(0, . . . , 0, cT, 0, . . . , 0)

If the potential V(P, K) is everywhere attractive in
momentum space, we conclude by the same argu-
ment as above that the ground-'state wave function
$0(K) and hence from (12) also EOI"~(&I) are posi-
tive everywhere. Note that the "potential. " V(P, K)
is really very general —not only is it nonlocal,
but it could also include genuine many-body inter-
actions, i.e., we need not have

V{P,K)=Q V{p;,k,.). (13)

Also we could'allow more general wave functions
with components of a varying number of particles8
so that, as long as we do not allow the electromag-
netic current to create particles (qq pairs), we
have

E.(a) = g ~,E.'"'(~)
n

wl'tll 1((„~0 (QzU„= 1):belllg 'tile weigllts of 'tile va1'1-
ous n-particle components, and the positivity of
Eo(f) is still maintained.

E,((I) ~ 0 for all (T.

That result generalizes also to the case when we
are dealing with the form factor for probability
density of a many-particle bound state. We now
view g as g(K), a function of a 3n-component
"supervector" K = (k„.. . , k„). The density form
factor is given in this case by a sum of n terms

E~"1((T)= g (t((K+ 6;)g(K)dK,
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III. CHOICE OF POTENTIAL

Since the momentum-space attractive potential
is the key element in proving the positivity of the
density form factors, we would like now to discuss
possible motivations for assuming such potentials.

Let us first focus on just the ground (qq) state-
the pion. If we approximate the f7' potential by
various single-particle exchanges, the force is
always attractive —unlike the particle case (say,
NN) where vector exchanges tend to be repulsive.
The resulting potential is of the form

&(r) =- f ~(u)(~ "/~)du
(15')

are of the momentum-attractive type. They also
happen to be monotonic in both momentum and

configuration space. Finally the spin-dependent
forces are also attractive for the singlet m state
so as to split it down from the triplet p state. '

Most recently there has been considerable inter-
est in confining potentials [e.g., harmonic oscilla-
tor, V(r) =r', and linear V(r) = r, potentials] so
as to achieve permanent quark confinement. This
has been motivated by the experimental evidence
(with one exception) against free nonintegrally
charged quarks and the possibility that the complex
infrared and/or topological structure of quantum
chromodynamics (QCD) will indeed yield such con-
fining which in particular in a nonrelativistic
heavy-quark limit will yield a linear potential.
Such linear potentials have been quite successfu&ly
and extensively applied to the charmonium sys-
tem. "

Because of the infrared (long-distance) singular
nature of the confining potentials they cannot be
readily included in the above [Eqs. (15) and (15')]
class of positive Yukawa superpositions and re-
quire a more careful discussion. To be specific
we will restrict ourselves to

Pq(r) =cr, c&0, 0 &A &2, (16)

or positive superpositions of these. From a cer-
tain point of view [concentrating the (color) line of
force into a zero-width string] the linear growth
of v(r) is maximal but we would like to include the
harmonic. -oscillator case as well because of the
large amount of work done with it (and Gaussian
propagators and distributions). '~"

V(r) =- g a'e "'" r, V(q) =- ga' (u +q').

(15)

Clearly such potentials —or more general Yukawa
superpositions

The Fourier transform of (16) is"

„„,&, r((x+ )/ )
I'(-A/2)

(16')

The spherically symmetric inverse power of P on
the RHS has to be interpreted as a generalized
function" and as such has added "residue" correc-
tionsfor A. =0, 2, 4. Inparticularfor &=2(i.e., the
harmonic-oscillator case) the expression on the RHS
of {16')vanishes (because of the 1 -function pole in

the denominator) and only the correction residue
[=—V~'P(p )] survives. Indeed in this case we have a
complete r —p symmetry and, as expected, we have
the same Schrodinger equation in both r and p space.
The positivity of ((),(p) could now be deduced from
the general well-known theorem that the Schrod-
inger ground state with a local potential has no

nodes. Indeed both wave functions and form factors
are simple Gaussians.

In the interval 0& ~& 2 there are no correction
terms and because of the sign of I"(-A/2), V),(p) is
negative, which suggests that our proof of the
positivity of the ground-state wave function will
hold. Amusingly &q(P) alternates in sign as A.

varies between 2, 4, 6, . . . , etc. so that this prop-
erty is not shared by all potentials r . This is
quite gratifying since for an infinitely deep square-
well potential of radius 1 [which is the formal lim-
it of V~(r) as X-~], (l),(r) = sin))r 0(1 —r) 8(r), and

g, (q) is not nodeless. '

Unfortunately the proof of the theorem cannot be
carried through directly because, while ($0(H~PO)
exists both in configuration and in momentum
space, the singularity of V(P- k) prevents us from
exhibiting the latter as the first term in Eq. (9).

Th'is difficulty is circumvented by letting

= v&&'(p),

a natural infrared regularization which is sug-
gested if screening occurs at a distance I/p. ."
For the specific case of A =1, Vz(p) =-[1/(p'
+ p,')] ', and the corresponding Viq~(r) =-e ""/p.
This potential, which -0 at ~ is nonconfining, has
depth = p, ', and a linear portion extending to a dis-
tance O(g ') which for sufficiently small p ' ex-
ceeds the localization distance of low-lying wave
functions. The formal -I/(((, divergence of

1
"p«[(p q)a „2) 4.(p)0.(q) .

reflects the depth of the potential viewed from a
reference point V(r =~) =0 which is appropriate
for nonconfining potentials and can be avoided by
adding a constant I/g. This adds (1/((()6(P) to
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g,(p+q)dp, the reverse is not true. The convolu-
tion integral may be always positive even when
(j(,(p) has nodes, and also g,{p) can be always posi-
tive when V(P, q) is not. While this is an aesthetic
drawback, it strengthens our belief in the predic-
tions (1'I) and (18).

FIG. 1. A diagrammatic illustration of the conyolution-
fo rmula.

Vq(P) and, as expected, does not effect the proof
of (j(0(P) & 0. Indeed the proof of Sec. II goes through
if instead of the nonrelativistic kinetic term P /
2m in Eq. {9)we use any positive function which
in particular would allow for some relativistic cor-

. rections.
Also the convolution formula ('t) which corre-

sponds to the NR diagram (Fig. 1) can be corrected
by introducing propagators as ezra positive
weights so as to incorporate some recoil effects,
without changing the conclusion that a nodeless
g,(P} implies a,

'
positive E,(p}.

All these considerations and our above result
therefore suggest that even for light-quark sys-
tems the ground-state electromagnetic pion form
factor will never vanish and we expect that

F„(q') ~ 0 for all (f .
Within the framework of QCD in which the inter-

actions are purely color independent there is con-
siderable similarity between the (Tq (35) mesons
and the gqg (56) baryons. The color singlet (f(I(f

state is a symmetric superposition of the three
possible diquark-quark configurations, where in
each diquark the (3+3) quarks couple to a 3.
Each of the diquark-quark configurations is there-
fore a color 3-3 just like a fvq meson and we might
expect again a purely attractive interaction. Coup-
ling this with the argument of Sec. I for the pro-
portionality (within the symmetric quark model)
of charge and probability density we would then
predict the positivity of the proton electric form
factor

IV. MONOTONIC DECREASE OF THE FORM FACTOR

Another striking feature of E~~(Q') is its mono-
tonic decrease. We would now like to show that
the density form factor [Eq. (1}]for the ground
state decreases monotonically with Q' if j V((K
—P)') jdoes. . Note that in this section we will con-
sider expl'icitly only the two-body. case with local
spherically symmetric potentials though we be-
lieve that the r esults can be more general.

The assumption of monotonic decrease of V(Q')
is motivated by the fact that all the positive V(Q')
discussed above actually do have this property.

Again it suffices to show the monotonicity for
the ground-state wave function (j(0(g). Since if
(j(,(q) is positive and monotonically decreasing, so
ls

I".(K'.),=, J dq((.(f ((,((V+K('1;:'
where we exhibited explicitly the spherical symme-
try of the ground state.

Proof: Let r;, r;„be the (unique) radii (in mo-
mentum space) between which (((„j(q)j decreases
fromm b, to (i-l)h [where nh=g(0)] (Fig. 2). We
can approximate 4, jq j as P „f; jq j„with f(( jq j)
= ae (- jq j+r;). [This approximation becomes ex-
act when n -~, 6-0, and na =(j((0).] The convolu-
tion integral in Eq'. (19) then breaks down into the .

sum of n' (f,*f,) terms Each .of these convolu-
tions is proportional to the geometrical overlap
volume between two spheres of radius'r; and r,.
which clearly either stays constant or is mono-

F (Q ))0 (18)

which appears to be the case experimentally.
In spite of their humble nonrelativistic Schrod-

inger-equation origin, the results (17) and (18)
are rather model independent 'and should hold for
any (momentum) positive potential, and some of
the generalizations above suggest that they may
actually carry into the relativistic domain.

It should be pointed out that, whereas th|. mo-
mentum positivity of the potential does guarantee
the positivity of go(p) and hence of E(q) = fP(p)

~l+I

FIG. 2. A (one-dimensional) illustration of the
"slicing" of g(k) into a sum of many equal-height rec-
tangles involved in the proof that the convolution of two
moriotonic functions is monotonic.



IRA HERBST AND S. N USSINOV ~

tonically decreasing when the distance ([k ~) be-
tween the centers is increased. Hence follows the
monotonic decrease of Eo(K) of Eq. (19).

Now we only need to show that P, ~P I is monotonic.
This can be done by using monotonic or "spherical
rearrangement" techniques —a classical tool" in

proofs of inequalities most recently used and im-
proved by Brascamp, Friedberg, Luttinger, and
Lich (see Ref. 16 and references given therein).

To illustrate this method in a simpler context
we prove our claim [see Sec. I prior to Eq. (4)]
that if (-U(r)) is monotonic, so is g, (r), the con-
figuration- space wave function. Consider first a
one-dimensional case with U(x} = U(-x) and g,(x)
=()),(-x). If the positive g,(x) is not monotonic
along (0, ~) we can rearrange it as follows: ima-
gine dividing the area under g, (x) into small rec-
tangles and permuting those so that they are de-
creasing in magnitude. If the function ()),(x) is
smooth there will be a unique limit g"(x), the
monotonically rearranged function which is mono-
tonic with all "P norms" the same as those of
()l(x)

(t (x))'« Jt'(=x)~x
kp 0

' The ground state minimizes

(20)

t'(x)i),'(x)+ f ( ), with f t '(x) =1.
(21)

Because of the monotonicity of ~ the first term
is evidently smaller when g„(x}is substituted for
go(x}, since more of the normalization of the wave
function is shifted towards the region where the
potential is more attractive. Also in the discrete
version, since we put [in g„(x)] next to II); a g;„
(or g;,) which are closer to it in magnitude,

g(g; —P; „)', which in the limit is proportional to
the second term in (21), is smaller for II)s than for

Hence fromthe variational property of g,(x),
P,(x}=g„(x) and g,(x) is monotonous. The proof
for the three-dimensional spherically symmetric
case is very similar; we permute into a monotonic
decreasing sequence the function values P; on
shells of'equal volumes 5m=4„r (br(} The nor. -
malization gg; & & is invariant, the potential term

U(r;)&& and the kinetic term =Q((; —. g;„)'&U
both decrease. The radial part of the kinetic ener-
gy ls

arrangement on

(t. Itt(lt. ) = J ax f dxt, (h)t, (() v()t

+ d pe%(f).

The second term clearly decreases. The rear-
rangement also decreases (i.e. , increases the ab-
solute value of) the first term.

To prove this we note that this term represents
the interaction energy of a fictitious system of
density ())o(P). [Remember that P(P) & 0] The per-
mutation (in the process of rearrangement) of
g(x;) and g(r, )wit.h r; & r~ and g(r;) & P(x~} is equiv-
alent, then, to a shift of a mass element & =P(r;)
—)()(r;) from a larger, to a smaller radius ("fall
towards the center").

Starting with an initial g we can do partial re-
arrangements, i.e., any number of permutations
of the above type, until the potential energy is
minimized and g-g&(r}. We claim that this occurs
only when the new function is completely monoton-

ic, i.e., when rearrangement has been completed.
In general, mass points far out (at the end of the

distribution) will be attracted towards the origin.
Let ro be the radius [for the gz(r) distribution]
where this tendency reverses for the first time
and a particle at r =rp —e is pulled out by the at-
traction of exterior shells. (The monotonicity of
the potential means ~'& 0 for all r, i.e., a pure
attractive central "force" ) (See .F'ig. 3.}

gz (x) must then be monotonic to the right of r,
since otherwise we could still improve (U) by
appropriate rearrangement. Also, for the same
reason, gz(ro) must not exceed mino „„gz(r).
In this case, however, the force exerted on a par-
ticleatrp due to concentric shells around some
r, (~r, j =r,) is nonzero. There will be a net attrac-
tive force towards the origin. To show this we
divide three-space by a plane at rpperpendicular

Returning now to the momentum-space case let
us examine the effect of a similar spherical re-

r; ro

FIG. 3. A (one-dimensional) illustration of the re-
arrangement method which involves transfer of matter,
the crosshatched region, into location closer to the or-
lgl.n.
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to r,. There will be more "matter" on the origin
side of this plane thh, n on the other side, leading to
attraction towards the origin. This, however,
contradicts our assumption about reversal of sign
of the net force at r, . Hence r, must vanish and

g~(q) -=P,(q) must be always monotonic. This com-
pletes the proof of the statement made at the be-
ginning of Sec. IV.

While this proof has not been made [like, the mo-
mentum-attractive V - Fo(q) positive, proof j for
the most general conceivable (nonrelativistic)
case, we bt.lieve that it could be extended to at
least the case of a symmetric many-particle sys-
tem'with spherically symmetric pairwise local
potentials and, with appropriate definition of mono-
tonicity of the potential, perhaps much further.

We thus believe that the experimentally observed
Eg (q') monotonicity could also be traced to the
general monotonic nature of the basic interconsti-

-tuent interactions. We also predict then that the r
form factor will be monotonic in the spacelike re-
gion.
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