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1mpact-parameter representation for the forward and backward scattering of N-N with spin
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In this paper, an impact-parameter representation for nucleon-nucleon scattering is de-
veloped in detail. Spins, isotopic spins, and the pauli principle are taken into account.
This representation is valid at all energies and all angles. A discussion of the unitarity re-
quirement is also given for high energies only. A method for the dynamical calculation of
the profile functions from the singularities of the invariant amplitudes present in the cross
channels is discussed.

I. INTRODUCTION

In the past few years, various phenomenological
investigations in the realm of medium and high en-
ergies have revealed that a representation for the
scattering amplitude, known variously as the eiko-
nal, the Glauber, the impact-parameter, or the
Fourier-Bessel representation provides an ef-
fective modus operandi to explore particles and
nuclear scatterings. '" The eikonal or the Glauber
representation is usually obtained by approximating
the wave function of the nonrelativistic Schroding-
er equation, "or by approximating the Green's
function" in the integral form of the Schrodinger
equation. The riiain advantage of this representa-
tion lies in satisfying the requirements of asym-
ptotic unitarity, which naturally give rise to con-
siderably better agreements between the calculated
and the experimental results than is possible by per-
forming purely Born-approximatiop calcul. ations. '

However, most calculations have been per-
formed so far by completely or partially ignoring
the spin considerations. The reason appears to
be that an inclusion of spins causes an increase in
the number of independent amplitudes along with
complicated couplings among them. But any study
of physical processes, e.g. ,

' meson-nucleon (m N)-
and nucleon-nucleon (N N) scatterings-, etc. , re-
quires a complete account of the spin dependence.
Further, recent experiments' with polarized beams
and polarized targets have revealed that syin ef-
fects are quite sizable {-30/g around 1 GeV) and
the polarization parameters have interesting struc-
tures. Thus one has to deal seriously with the
spin complications at least in the fundamental pro-
cesses (e.g. , m Nand N-N) at -medium and high
energies.

First Glauber and later Franco' considered
the spin effects in the form of spin-orbit and spin-
spin interactions. But their analysis is restricted

because they assumed a local potential and neglec-
ted general spin-space couplings. A general spin
dependence within the framework of the eikonal
or the Glauber formalism was considered in the
N-Ã problem first by McCauley and Brown" and
later by Dadic and Martinis" and by Geicke' and
in the r-N problem by Arnold. " Although these
works are quite general, they are valid for rela-
tivistic energies but only in the forward direction.
Further, in these works, the exchange symmetries,
e.g. , the Pauli principle in the case of N-N scat-
tering, have not been incorporated.

In this paper, I discuss a'Fourier-Bessel re-
presentation or an impact-parameter representa-
tion for nucleon-nucleon scattering. Although,
the analysis presented here is restricted to the
N-N system because of its inherent importance
in particle and nuclear physics, it could easi, ly
be extended to other systems involving different
spins. The representation discussed below em-
bodies complete spin dependence, exchange forces,
and effects of the Pauli principle. Further, it is
valid for all angles and energies contingent upon
the form of profile functions chosen and reduces
to the .Glauber form as given in Refs.' 10-12 for
small angles and high energies.

To make the procedure transparent, a spinless
case is discussed in the next section. Most of the
expressions presented there are quite well known.
For this reason, I have omitted details of the ma-
thematical steps and instead quote references
where the details can be found. In Sec. III, the
attention is focused on the problem of N-N scat-
tering where full considerations of spin, I-spin,
and the Pauli principle are discussed. The re-
quirements of the unitarity are examined in Sec.
IV. These requirements are quite complicated
and the discussion is therefore restricted to high
ene'rgies where the expressions are simple. Fin-
ally, I conclude with some comments.
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II. SPINLESS CASE

To illustrate the methodology, consider two
spinless nucleons interacting via a potential as
follows:

V(r) = V~(r) + V„„(r).P„;
The operator P„permutes the spatial coordinates
of the two nucleons separated by a distance x. The
interaction (1) has been chosen for two reasons:
First, the treatment followed in this case suggests
a possibility for generalizing semiclassical ap-
proaches in the presence of nonlocal potentials,
and it also yields the Glnuber type representation
for both forward and backward directions. Sec-
ond, the scattering by the interaction (1) satisfies
the Mandelstam representation, which is also
assumed to be satisfied by the relativistic scat-
tering.

In the semiclassical approaches (the WKB, the
Glauber, or the Green's-function eikonalization)
the scattering amplitude is calculated by defining
potentials V'= V„y V,„. The corresponding even
and odd parts of the resulting amplitudes with
respect to c.m. angles 8 and m-0 are""

00

f '(k, 8) = b db[J0(b~t) + Jo(bv' —u)]I"(s, b).
2

Here, J' (x) denotes the Bessel's function of the
first kind. The profile functions I"(s,b) are given

by

f(s, t, u) =
"dt', D(s, t') ' " du' „D(s,u')

7T t —t 7T Q —Q
p Qp

where, D and „Dare discontinuities across the
cuts in the t and u channels, respectively. The
amplitude (5) could then be written as

f(s, t, u) = -ik b db J,(bd t)r, (s-, b)

b db Jo(b&t u)r„(s, b-) (6)

and

I', „(s,b) = —K,(bx't' ), , D(s, x). .

Zp

The expressions (6) and (7) are defined for all
angular and energy ranges. Also, the unitarity
constraints take the simpler forms

(7)

Imr, = i',*r,+ r„*r„, (8a)

presumes not only the validity of expression (4)
over the whole energy and angular ranges, but
also the knowledge of the scattering amplitudes
for unphysical values of momentum transfers. It
is therefore appropriate to start by assuming the
Mandelstam representation, the hypothesis of
maximum analyticity, and crossing symmetry,
which at least define an amplitude for.all values
of momentum transfers and energies.

Thus, following Blankenbecler and Qoldberger, "
one writes

I"'(s, b ) = exp[ X'(s, b) ]—1,

X'=@+X,„&

(3a)

(3b) Imr„= r,*r„+r„*r„ (8b)

X, .„= de'V, .„[(b'+e")'"].
m OO

(3c)

The sum of the even and odd parts then gives the
following scattering amplitude:

only at asymptotic energies for these amplitudes.
Further, defining signatured profile functions 1 '
= I', +I'„, the expressions (8) reduce. to the un-

coupled form

Imr'= ~r'~'.

f(k, &) =-ik b dbJ„(b~t)(e'"~cosX,„—1)
The constraints (9) could now be satisfied trivially
by writing

b db J,(b~ u)e+a sin—X „. (4)
r'= exp(i X") —1, (10)

The two integrals appearing in (4) dominate in

the forward and backward directions, respectively.
Further, expression (4) is valid only at high en-
ergies and within a small angular range around
the incident beam. This could be an undesirable
feature if the interaction (1) is unknown, which is
invariably the situation. Consequently, the profile
functions are calculated from a knowledge of am-
plitudes in the physical region employing an in-
verse Fourier- Bessel transform. This procedure

X'(s, b) =
"dx—K,(bx't') [,D(s, x) +„D(s,x)].

or 3lternatively writing 1"' in the form analogous
to the K matrix. " If Eq. (10) is employed, expres-
sion (6) becomes the same as (4); but it is now

valid for all angles at high energies. A'iso, one
now has the possibility of performing dynamical
calculations making use of various input informa-
tions in the following Born terms:
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f(k, z) = (2zk) ' Q (2l+ l)f, (s)P, (z), (12)

where f, (s) =exp(2i&, ) —1. Rewritting the sum in

(12) for even and odd partial waves separately,
and using (A5) given in the Appendix for -I & z &1,
one obtains

f(k, z) =--.'ik b dbg J,(b v-f) +J,(b&-u) ]I"(s, b)

But the Mandelstam representation defines the
amplitude only up to an unspecified number of ar-
bitrary subtraction constants in each of the vari-.
ables s, t, and u. Assuming the asymptotic be-
havior of the D functions as polynomial, Henzi"
derived an impact-parameter representation which
does not have the same simple form as that of (6),
besides containing a number of arbitrary subtrac-
tion constants depending on the degree of the poly-
nomial assumed. However, this asymptotic be-
havior is related to the nature of bound states and
resonance poles which are contained in the theory,
i.e. , governed by the dynamics of the problem.
The impact-parameter description should be a
kinematic description in some sense like the par-
tial-wave expansion, and therefore should not
involve detailed assumptions on the analyticity
and the polynomial boundedness. Therefore in
a'n alternative procedure"'" one begins by assum-
ing a partial wave-expansion of the scattering
amplitude:

I";= (kb) 'Z„(2l, + 1)f„(s)Z„.,(2kb),

(15)

(16)

I",=-',i 4 'l, s 2l+1
C r

1
I

A i+i(P)
sinml cosvl '

p
(17)

Here f'(I, s) =f„(s) for l =I„P=2kb, and the con-
tour C encloses the real axis in the complex l

plane in a clockwise sense. The distribution 6
is given by

&(I P) = lim P""J (P)

-p(
&&

i
( y)-t -g /(1~ +e&

2m&

Finally, I wish to emphasize the close similar-
ity between the above discussion and the Beggeiza-
tion procedure. In both cases, one must use the
signatured amplitudes in the presence of exchange
forces to avoid the trouble coming from the (—)'
factor. Further, when the angular momentum is
made continuous, the replacement J', (z) =)-—,

' [J,(b~f +&,(b&-u)] takes care of the mixing
between even and odd l values. This point has
been exploited to incorporate the Pauli principle
in the following analysis.

Expression (13}has the same form as expressions
(2) and (4). But now the profile functions are

I""(s,b) =(kb) 'Z„(2l, +l)f,„(s)Z„„(2kb), (14)

where l+ denotes the even- or odd-integer values
of /. The expressions (13) and (14) are valid for
all angles a'nd energies. At high energies one
could replace j„., (2kb)- &(2kb —2/ —1), which re-
duces expression (14) to expression (3a) and si-
multaneously provides an insight into the notion of
a peripheral interaction due to an enhancement of
partial waves around 2kb - 2l+ 1. However, the
expressions (13) and (14) are not unique. This,
nonuniqueness appears because the summation and
the integration have been interchanged in deriving
expression (13) from (12), without defining the
summation in (12) for unphysical values of angle
angles. "" Hecently, Islam" made expression
(13) unique by specifying the summation in (12}out-
side the physical range of z by means of the Som-
merfeld-Watson transformation. The same pro-
cedure could be carried out here for the signatured
amplitudes. Now the profile functions are given

III. INCLUSION OF SPIN

When the scattering particles have spins, the
discussion of Sec. II must be generalized. For
this purpose, I sha, ll consider the nucleon-nucleon-
scattering as a concrete example, Further, an'

imposition of the Pauli principle gives rise to an
exchange symmetry between t and u variables in
the representation, and consequently in both for-
ward and backward scatterings. Later, a simila, r
representation is obtained by starting from the
Mandelstam representation, which again has both
forward and backward scatterings because of
the exchange forces, even when the particles are
not identical. I begin with a discussion of a, spin-
and isotopic-spin-dependent central interaction
between the two nucleons, eventually leading to
the most general case. Finally, the impact-param-
eter representation for the helicity amplitude is
obtained.

A. Central interaction with spin and I-spin
\

Consider two nucleons (e.g. , 1 and 2) interacting
v~a a central potential
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V(r) = V„(~)P:P;+V„(r)P:P;
(19)+ V„(2 )P.P-;+ V„(2-)P.P;,

where 2 = ir, —r, i. Here, P;, are spin, I-spin
projection operators for the states characterized
by eigenvalues (2S+1,2I+1). These projection
operators are given by P;,=-,'[1+ (12), ,], where
the permutation operator (12) exchanges the co-
ordinates of the nucleons 1 and 2. As the wave
function for the two nucleons should be totally
antisymmetric, it implies that the V(r) could be
partitioned into two parts:

V, = U3, P',P,+ U„P,P', , (20a)

(20b)

which give scatterings in the even and odd partial
waves, respectively. The projection operators
P' satisfy [P', P ]=0,. therefore the states char-
acterized by different values of (2S+1,2I+1) are
orthogonal. One then calculates partial-wave
amplitudes using the interactions given by (20) and
follows similar steps as employed in deriving Eqs.
(12)-(15). The resulting signatured amplitudes
are

the above analysis by adding extra terms in (19).
But to keep the analysis model independent as far
as possible and also to have the possibility of a
relativistic generalization, I shall start with the
N-N amplitude written for a particular isospin
state as a matrix in the spin space~0:

f 1(k,z) =BIP,+I1CI(o'+rr2) ~ n+Nr(o' ~ n)(o2 il)

—:G'[(' ~)(-' ~) (-'P)(.'P)]
+ Hr[(II1 ~ 4)(o

—((I' P)((r'P)]]P: (24)

The unit vectors (2l'2 cos8/2)P =k,. +kr, (2k sin8/
2)n =kr- k„and (lr2 sin8)n =k& xk, form a Cartes-
ian coordinate system, and k& and k& are, respec-
tively, the initial and final c.m. momenta. The
invariance with respect to space rotation, reflec-
tion, and time reversal implies that the coeffici-

-ents B, C, N, G, and& are invariant fbunctions of
k and z. These coefficients (known as Wolfen-
stein amplitudes) have also a simple behavior un-
der the 8-m —8 transformation, viz. ,

BI(II 8) —
( 1)I+1B1(8)

f 'lb, t) =-tb J b db ', [J,(b~t)+ J-(bt tt))t",(tb—)",
0

Cr(11 8) ( 1)r+1CI(8)

Nr(II —8) = (-1)INI(8), (25)

where

(21) Hr(rr —8) ( 1)r+1Hr(8)

Gr(~ - 8) = (-1)'G'(8).

I"(s,b) = F»(s, b)P;P, + F»(s, b)P, P;, (22a)

(23)
and consequently the expression (21) is valid for
all angles and energies. The functions f(l&, , s)
are defined as partial-wave amplitudes for inte-
ger values of I,, , and f,,(l, s)=f(l, , , s) for l=l, ,
Note that there are no coupli. ngs between the vari-
ous partial-wave amplitudes as J, L, S, and I
are all good quantum numbers.

I' (s, b) = I'„(s,b)P;P;+1„(s,b)P,P, . (22b)

The profile functions for the states characterized
by i =(2S+1), and j = (2I+1) are given by

I', , = 2P 'Z, , (2l„+1)f(l„., s)421 .1(P) Br(II, z) =I s (s, z),

Cr(k, z) =I c r(s, z),
NI(b z) Iot 1+1(s z)+I2brbl(s z)

Gr(a, z) =I' "(s,z)+I' '(s, z),
sin 8HI(Q, z) =I '„' I(s, z);

-ik "
( J„(b~t)

2
, (v' ~)m

(26)

( )I m( Itmt I(S b).
(~f)m

Now, starting from the partial-wave expansion'
of (24), one follows exactly the analogous proce-
dure as that of Islam. " The validity of his proce-
dure for the present case is proved in the Appen-
dix. The straightforward application of it yields
the Fourier-Bessel representation for (24) given by

B. Allowing spin-space coupling

In 3,ddition to the above example, the N-N in-
teraction also involves coupling between spin
and space variables. Consequently, one does not
have the orbital angular momentum as a con-
served quantity. This fact could be reflected in

I'"„' (s, b) = I'"'r(s, b) + F" (s, b)

I m, I(s b )
—i (Z2b )m+1

I'(1+j—n2)

„I( )
J'2I+1(P)

A, j Pfg+1

(27)

(28)

(29)
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and

( t)m22mkm+&
pm& l(s 5)

ing five independent amplitudes in the s channel for
an isotopic-spin state I to describe the nucleon-
nucleon scattering:

I'(1+m+ v)1 (m —v)

co s'il v

(30)

(31}

x p "&(v,p);

S(v, p) = h(v, p) —p 'Z, „., (p) .

g,'(k, ) -=(++ I++), P,'(k, z) =(++ I.
—-)

0,'(k &) = &++ I+ -) .

These amplitudes are normalized such that

(32)

Here f~',~(s), used for compactness, denotes a
combination of partial-wave amplitudes for a state
characterized by total angular momentum j and
isotopic-. spin-f. The explicit form off„'I(s) could
be identified from Table II in Ref. 20, e.g. , fos',
= (2ik) '(2l+ 1)R,. The representation given by ex-
pressions (26)-(31) is valid for all angles and all
energies. However, it should be noted that in de-
riving these expressions, restrictions due to the
Pauli principle are built in quite transparently as
forward and backward exchange symmetries.

Finally, if the particles are not identical, it
is easier to define exchange terms starting from
the Mandelstam representation. For this purpose,
it i.s appropri. ate to start with helicity amplitudes
whose kinematical singularities are known ex-
plicitly. " The kinematical- singularity-f ree am-
plitudes defined from the helicity amplitude, have
only dynamical singularities, and by the hypothesis
of maximum analyticity they satisfy the Mandel-
stam representation. Therefore in the following I
shall discuss the Fourier-Bessel representation
for the helicity amplitudes.

C. Helicity amplitudes

As in writing down the Hegge representation,
one uses the helicity amplitudes defined by Gold-.
berger et al." (GGMW); it is also appropriate
to employ them here. Therefore I use the follow-

and

Further, the requirements of the Pauli principles
are satisfied by demanding that

Q~(n —8) = (-1)~"P~(8), (f&21(m —8) = (-1)~"
Pf (8)

0,'(v 8) = (-—I)'0,'(8), 4,'(v —8) = (-I)'4,'(8)

Further, following Wang, " the kinematical-
singularity-free amplitudes are defined by

EQ~I, E(f&21, E(f) 3/(1 +g), E(f)~/(I —z),
(34)

By the assumption of maximal analytipity, these
amplitudes satisfy the Mandelslam representation:

«e (
gg+]('sy Q )

7T Q —Q

(35)
Since the parity and the total spin are good quan-
tum numbers, the following linear combinations"
of the amplitudes (34) respecting them could be
defined along with their partial-wave representa-
tions as follows:

E(e,' e.') = g (2i. +-I)[h:(i., s)p/~, , +h.(j,s)pj~,.]d.'.(8),
i

' E(0'+ e.') =g (2i+1)[h' (i. s)pg~i, +h (i , s)p/61, ,]d,',(8)-

(2j+ I)f[h;,(j„s)~1,+h;(i., s) ~, .lp,'+ [h,(i,s) ~1,, +h-(i- s) ~z,.]pg dl (8)
(36)

E$41 =
2 g (2j+ l)([h;, ( j„s)&I, —h;( j„s)&I o]p,'. + [h»( j,s) &I o

—h, (j,s) &z,]p&]d '»(8),

@'=' g(2i+1)[h (j- )6 Pj+hl, (j„s)~ .P,
']dl.(8), .

where &z» &z o are Kronecker 5, and p', = ~[1 + (-)'] are the projection operators for even and odd integer
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values of j. Here j, denotes even and odd values of j. Further, the rotation functions d „(8) used here are
the same as the ones in GGMW.

To derive the impact parameter starting from the partial-wave expansion, one could follow the proce-
dure as discussed in the later part of the Appendix, which is similar to the one used in Sec. II. Thus one
obtains the following impact-parameter representation for the. helicity amplitudes:

E [Q, (k, z) —(t(,(k, z)]= -ik bd b [J,(bkj-t) + (-1)I"J,(by' u)-]I'I,

E [Qkr(k, z)+ jfj21(k, z)] = -ik bdb [J~(b~t + (—1)I"Zo(b V'—u)]I'k~„

~ 00

Eg(k, z) = ' bdb([cos'e/2 Z, (ba-t) &, ,+ (-1)sZ, (by-~) b, ,] [,r,', b„,+,rfb„„,]],
0

(37)

OO

Eg(k, z) = bd bgJ,(b ~t &~, + (-1)"sin'(j(/2 Z, (b k('-u) &,] [ I'1,5» —I'Ib». ,]],
0

IO

m/5~(k, z) = - bdb([ cos0/2J, (b~t —. (-l)~sin8/2 J,(bk('-u)]1'k~, ] .
0

The corresponding profile functions are given by

l~r I, ~+F21~ forN 0 11 12

and

(38a)

where

(38b)

(39a)

i, + p] ~ I 0, for X= 12

p'j, ~=,l'j ~(b~ 22'~. + b, .bso)+,I'; ~(4 22b. .+ b~.brk) (39d)

The explicit expressions of the profile functions in terms of the partial wave are obtained as discussed in

the Appendix. These expressions are given as follows: For ~Z ~(1, we obtain

I'; „(k,b) =2ik g (2j+1)h'„(j, s) "",for N=0, 11 (40a)

I'kk»(k, b) = 2ik p -(2j+1)[j(j+1)] '~'h"„( j,s)Z, .„(p), for N =12 (40b)

,i'; (k, k)= —g(kj+1(k (j,s('„,i, il, + —o„,)J....(l((, forN=kk, l;. (40c)

for ~z ~&1, we obtain

k (2 v+ 1)hkN(v, s)n(v, P)
2 sln7l'v cos1T v

(4la)

( b)
-kp (2v+ 1) h'„(v, s) S(v, p)

2 [v(v+1)]'~' sinzvcosw(v 1) '— (4lb)

(
1 (2v+ 1)h'„(v, s)n(v, p) p'

8k sin7('(v- 1) cos7I(v- 1) v(v+1)
(41c)
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In expressions (40) and (41), I have used signa-
ture partial-wave amplitudes defined, respectiv'ely,
as

h'„( j,s) =h„( j,s) for even and odd values of j,
(42)

.h'„( j,s) = 0 for odd and even values of j.
Note that the kinematical singularities appear

explicitly in some of the terms of (37). In others
it is in the Bessel functions and could be made ex-
plici, t by using polynomial expansions for them.
Thus the amplitudes satisfy Q, -0 at 180', $, -0
at 0', and &f&, -0 at 0' and 180'. This behavior is
not quite transparent in (27), e.g. , C~ should van-
ish at 0' and 180' which is not obvious by merely
observing {28), but could be checked using (A5)
for x and y -1. This explicit kinematical behav-
ior makes representation (37) quite useful for
phenomenological analysis.

Before leaving the present section, I would like
to discuss a couple of important points. First, I
am not presenting the proof of the uniqueness of
the impact-parameter representation derived for
the va, rious cases. The proof of the uniqueness can
be trivially carried out with the help of the expres-
sions given in the Appendix in exactly the sa~e
manner as given in Ref. 19. Second, the above
expressions are exact, therefore one could de-
velop various approximation schemes to calculate
the profile functions depending on the choices of
angular and energy regions. Thyrse are discussed
in the concluding section.

Finally, the forms of the profile functions as
given by (40), (41) could further be chosen so that
the unitarity is automatically satisfied. In gener-
al, the unitarity requirements yields very com-
plicated expressions which reduces to simpler
forms for the asymptotic energies. Therefore,
I shall restrict myself to the discussion of it for
the helicity amplitudes at high energies.

IV. UNITARIAN~

In order to satisfy the unitarity requirements, .
the following two observations are quite helpful.
First, the signatured amplitudes satisfy the unit-
arity independently as could be noted from the dis-
cussion of the spinless case in Sec. II and also em-
phasized by Froissart. " Second, the total spin S,
the total angular momentum J, and parity are good
quantum numbers in the present case. That is,
the states with different spin and parity do not mix.
This fact allows one to satisfy the unitarity separ-
ately for the singlet S =0 and triplet S=1 states.
Further, since the states with J=L and J =L +1
for S = 1 have opposite-parities, the corresponding
amplitudes again satisfy the unitarity separately.
Thus the appropriate amplitudes for this purpose

are the ones given in (36),"where the first one is
a spin-singlet amplitude, the third corresponds to
the triplet amplitude for J= L state, and remaining
amplitudes form a 2&& 2 matrix for J=L +1,8=1.
The corresponding impact-parameter S matrix is
written following Blankenbecler and Goldberger"
as

8'(k, b) —1 = 2iI'(s, b) (43)

at high energies, where the profile function Fl is
a matrix:

I'(s, b) =

0

0 l"I 0 0

O 11 12

0 0 I'12 I',2

S=O, J=L

J=L,
S =1, J=L+1,

J=L —l.

To satisfy the unitarity automatically, the impact-
parameter S matrix could be defined as

x.(k, b) 0 0 0

x(k, b) =
0 x (kb) 0 0

Xii(k, b) X„(k,b)

X,.(k, b) X..(k, b).

(46)

Using the usual trick of define the mixing angle to
diagonalize the phase matrix, one writes

fx„x,.) (x„
{,x',. x'., f ( o x.'. p

(47)

where the unitary matrix U is defined as

icos& (k, b) -sin&~(k, b))
U=

~sine~(k, b) cose~{k,b) )
(48)

with &(k, b) as the mixing angle. Then by expanding
the exponential in (45) and using (43) one obtains

S'(k, b) = exp[iX'(k, b)].
fi

But the structure of I' suggests that X should also
have the similar form
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and

2iI'I =
exp [iXI(k,b ) ]—1,

2ii', = exp[iX', (k, b) ]—1,

2iI'I„= cos'&I(k „b) exp[iX„(k,b)]

y sin'e~(k, b) exp[iX»(k, b)] —1,

2ii'2~, = cos'e~(k, b) exp[iX', ,(k, b)]

+ sin'e'(k, b) exp[iX'„(k, b)] —1,

2ii'I„= cosa'(k, b) sine (k, b) [exp(iX[,)- exp(iX„)]

Note that these expressions become the same as
those of Geicke's' for forward amplitudes by de-
fining as follows:

2 - . 2COS X»+ Sin X22 CQ+ E3,

sine cose (X„—X,2)
=—e„

~„„(P) 5(8 —2j —1),

$(j, P) 0 ~

(5la, )

(51b)

The substitution of (51) into expression (23) yields
the profile functions for the states characterized
by i=28+1 and j =2I +1:

high energies. For example, the nucleon-nucleon
scattering using polarized beams and polarized
targets could be analyzed at the phenomenological
level by parameterizing the profile functions, or
at dynamical level using one-boson exchange m'od-

els or Regge poles and cuts exchange models.
Since the expressions obtained in Sec. III are

exact, one could develop an approximation proce-
dure depending on the energy and angular region
of interest. Thus for high energies and small
angular range near 6-0' and 180', one could sub-
stitute as follows:

sin Eg»+ cos fx22 =&P2 2

where

e&xgj 1 (52a)

where c,. forms a four-vector whose E2 component
is zero. Further, the inelasticity could easily be
taken into account by merely making the X's com-
plex or by making use of the overlap functions de-
fined bjr S'S = 1 —2I . Finally, to perform dynam-
ical calculations, one may use'»

X = ,'B —,'(-i) ln(1 —2F)+ ~ ~ ~, (5o)

V. CONCLUDING REMARKS

In this paper, I have extended the impact-para-
meter representation by explicitly taking into ac-
count spins and the Pauli principle. The details
of the procedure have been outlined here using the
nucleon-nucleon problem. But it is not difficult
to apply the technique to other problems involving
different spins. The nonconservation of the orbi-
tal, angular momentum and the consequential mix-
ing of partial waves present no difficulties. This
representation has the potential of synthesizing
the scattering phenomenona at low, medium, and

where B is a Born amplitude, and I' represents an
inelastic amplitude in the S channel. In this model, ,

the imaginary part of the phase function is com-
pletely determined by E because 8 is usually a
real function.

X;,(s, b) = dz'U;q[(b'+z")' l'] (52b)

The expressions (52) are the same as one would
obtain following Glauber's procedure discussed in
Ref. 14. Similarly, substituting (51) into (29) and
(30), one obtains

g i2 m+ykgmbm-y m, l
~f,j kb= j+1/2 ~ (53)

d'2beI 5'5[ed)(( sb)
1], (54)

Then expression (24) for the amplitude f '(k, g)
suggests that the eikonal phase function should
satisfy the same invariance requirements as- im-
posed on the amplitude. Thus one writes"

Substituting (53) into (27) gives the eikonel repre-
sentation of (24), which is similar to the ones ob-
tained in Befs. 8 and 10 starting from a spin-spin
and @ spin-orbit interactiori. But in the present
case, the effects of the Pauli principle are present
even after making the approximation (53) besides
the spin-space coupling, i.e., an additional ex-
change symmetry t u is present. It would not be
out of place to mention an alternative procedure
of Ref. 11, where Eq. (24) is written in the form

X (s, b) = Xs P, + (y~(o'+ o') ~ b x P+yi~(o' ~ b x p)(o' ~ b x P) + —,'X~o[(o' ~ b)(o' ~ b) +(O' ~ P)]

+ —,'X„[(o'. ~ b) (o' ~ b) —(o~ ~ P) (o '
~ P)]]P' . (55)

Now, substituting expression (55) into (54) and ex-
pariding the exponential in the power series, which
is nontrivial because of the presence of noncom-
muting operators but straightforward, one obtains

I

equivalent expressions to those obtained from
(53), (26), and (2"I). However, note that (55) has
been written exploiting the fact that momentum
transfer ~ and impact parameter b are canonically



IMPACT-PARAMETER REPRESENTATION FOR THE FORWARD. . .

conjugate variables and P is orthogonal to them.
This makes it difficult to incorporate the effects
of the Pauli principle which requires that, the
4 =Ij exchange symmetry be built into (54) and
(55) from the very beginning.

Finally, in the case of the helicity representa-

tion, one can perform dynamical calculations of
the profile functions as defined in expressions
(40) and (41), by taking the Froissart-Gribov pro-
jection of expression (S5) which yields the signa-
tured partial-wave amplitudes (GGMW notation):

J' p7'x~ (s) =— dg x-A. '
D t -

g

+(cosmX —sinn')(-) " „Dj,z.(s, u)e& j,.(&,)
2 2

Alternatively, one could pursue a phenomenologi-
eal approach fox' writing the profile functions, as-
suming Regge-pole dominance from the expres--
sions which are an analog of expressions (4.5) and
(4.7) of Ref. 11. An application of this formulation,
the nucleon-nucleon charge-exchange scattering
has been investigated using a one-boson exchange
model in the medium-energy region. This study
will be submitted for publication soon.
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APPENDIX

M(k, z) = g f,.(s)P, (z) . (Al)

The procedure of Ref. 19 is extended below for
problems involving spins. The scattering ampli-
tudes for these problems are expressed in the heli-
city representation involving rotation matrices
d& q(8) or in the representation involving associated
Legendre polynomials P, (z). The later represen-
tation involving associated Legendre polynomials
P, (z). The later representation will be consi-
dered first, where azimuthal angle dependence
will be ignored without loss of generality. Then,
a physical amplitude may be written as

which could be analytically continued to specify
the amplitude for the unphysical angles. The con-
tour & goes around the real axis clockwise, en-
closing all the poles at integral values of j.(j =-0,
1, 2. . . ). The amplitude f(j, s) represents the
analytically continued partial-wave amplitude
coinciding with the physical amplitude f,(s) for the
integral values of j. For the physical scattering
region (s is always considered above threshold)
-'1 &(z =1 —2y') &1, the contour C is collapsed
on the real axis and (A2) reduces to

jj
M(k, z) = dj f ( j, s)P +(-z)

~f0

(
1

X
sinn j, sinmj

(AS)
where j, =j +zc and 0& jp& -1. The distribution in
(AS) could now be rewritten as

-) Pj -z)
sinsj, sinsj )

=2jji Q P j (z)6(j —n). (A4)
n=0

Now, using the Weber-Schafheitlin discontinuous
integral [Eq. (29) in Sec. 7.7.4 of HTF'4 and Eq.
(2) in Sec. S.&. l of HTF"], one writes

Here, j is the total angular momentum, f,(s) is the.
partial-wave amplitude, and z = cos 8, s = square
of the c.m. energy. Expression (A1) defines the
amplitude for -1 &z &1. To derive a unique Four-
ier-Bessel representation for M(k, z), one needs
to specify the amplitude M(k, z) for cos8& (1~.

Following analogies with the Begge theory, and
using the Watson-Sommerfeld transform, one
writes

~~(W')~~ j+,(P) j
0

j,. I'( j s M s (j „ i - s
Ir(j —M+ i)

. X dP J~ x J~
0

(A5)

(A5')

g pjf
M(k, z) ={-)"— dj '. , f(j,s),

2 c sin mj
{A2) where z =1 —2y' =1+2x'. The va'nishing of (A5)

for x or y=1 could be checked using Eq. (SO) in
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dP PJz(P sin(z 9)) I &(s, P), (A6)

Sec. 7.7.4 of HTF. Further, for large j and P one
obtains the MacDonald's small-angle approxima-
tion for I'; (cos8) [see Eq. (10) in Sec. 3.5 of HTF]
by substituting J„„(P)-&(P- 2j —1). Finally, one
gets the Fourier-Bessel (FB) representation for
—1 ~z ~1 from (A3), (A4), and (A5):

-V/2
M(k, z) =(-ik)

and

)
i(-2)" g I'( j+M+1) J„„k,. I'( j —M+1) ' p""

(A7)
To.. specify the amplitude in the unphysical re-

gion cos0& ~l(, one writes the FB transform of
I'p(2y' —1) =- I', (z) for y & 1 with the help of ex-
pressions (3), (36), and (37) from Sec. (3.3.1) and
Sec. 3.2, respectively, of HTF and the Vfeber-
Schafheitlin integral:

M

[sinn( j +M) Q~"(z) —sinn( j —M) Q", ,(z)],cos~j (A8)

P,"(21' —1) = . ( )
res-j)r(j+nr+t) z„„z.;,

]
(8) (8)

I'(M+j )I"(1-j+M) P P
(A8 ')

dz~(j P') =limP"+'J . (P)
' ', ( ~) 'z -'"-'+-"

-2/-1 2 ~j

The limit e-0 is to be taken after the FB integration has been carried out. To see that this replacement
in (A8') gives back the left-hand side, one has to evaluate

~(v) = — . ' ' .
)

&PS' "& (N)&(iP'), ,I"(j —M)I'(1 —j+M) cosvj 2
(A10)

for y & 1 and also for y & 1. First consider y & 1, then using Eq. (2) in Sec. 7.2.1 of HTF, and denoting
the integral in (A10) as I,(y), one has

(-)"(2y) '" "
z I'(- j)I,(y) = lim, „g --, , dp p'-"J,(py)

q y „,n! I'in —2g 7tZ vo

0+ .dA.
( !) i 2n -B /(xymwe )

P e

Expression (A8), however, cannot be extended to Rej & 0, because the singular behavior of J,J,(p) at the
.origin (-p " ') prevents the existence of the integral. Following Islam, "one could again smooth out the
singular behavior so that the FB transform is defined and the asymptotic behavior of I'& is reproduced.
This is achieved by replacing J „,(P)/P in (A8) by

2'" ' g (-)"(2y) '" I'(-j)
y'. '" „0 I'(n —2j) 2'

" dz
, (—A.) e ~Fi M n, 1+M,

[using Eq. (22) in Sec. 7.7.3 of HTF]
y2'+z ~ (—)"y '" ~ I'(M —n+r)(n+r j)—

2"I'(1+j) ~ I'(n —2j)I(M —n) ~o r!1(M+r+1)

[using Eq. (1) in Sec. 6.1 and Eq. (1) in Sec. 1.6 of HTF)

V. (-)" (.-j) -" E „„M,l. l
2 I'(1+j)1'(1+M) ~ I'( —2j)

[using Eq. (1) in Sec. 2.8 of HFT]
y'~'" ~ I'(n —j)I'(1 —M- j)

2 I (M+j+1) ~ n! F(n- j)I'(-M- j)
[using Eq. (46) in Sec. 2.8 of HFT]

F(-i)
2 I'( '+M 1) I'(-2j)

( )&2&-z z
r( j+M+1)r(M- j)

[using Eq (36) in Sec.. 3.2 of HTF].
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The above expression when substituted in (A10} gives
M

f(y) = 0"&,(z)AI'(j- M)l'(I- j+M)],

as required by the second term in (A8).
Further, for y &1, the expression for f, (y) becomes

f,{y)= lim- (-)" y
" I'(-i)

n!I'(M+n+1) 2 2@i

[Using Eq. (2) in Sec. 7.2.1 of HTF]

dp pm~+2i+mg(8) e-&ml(~+&&
-2i-Z

(Al 1)

[Using Eq. (22) in Sec. 7.7.3 of HTF]

~

~

~

~ ~

[Using Eq. (1) in Sec. 6.1 and Eq. (1) in Sec. 1.6 of HTF]

N

F(1 )
'2Eg( J J +1 1 +M S )

[Using Eq. (1) and Eq. , (46) in Sec. 2,8 of HFT].
I

Therefore the expression (A10) for y &1 becomes
y+ M/2

I( )
(-) ~~( )2

(A13)

vanishes for y &1, but gives P", (-z) for y &1. Similarly, one could write the analog of (A5) for x &1.
Finally, the substitution of (A5) and (A13) in expression (A2) gives a unique FB representation for the

amplitude.

But the first term in (A8) gives the same result, i.e. 2((-)"'+']P,"(z) as can be seen by using expression's
(A5). Thus the expression

„(, )
2" ' I'(M j)1'(j +M-.+I) z —1 "~' "„,„)Z„,, (P)

cosmj I'(j —M)I'(M -j +1) 2 "
p

-N/2

M(k, z)= ik PdP—J~(Py)I'(s, P),
0

I"(s, b) =I",(s, b) I', (s, b),

where I', (s, b) is given by (A7) and

+i ~, „, . f{j,s) I (M- j)I'(M +j +1) J„„(p) b. (j, p')
sinvj cosvj I'(j —M)1 (M —j+1) p

+'
p

A similar expression could also be written to reflect forward and backward symmetries. '

Now, in the case of the helicity representation, an amplitude could be written as follows:

(A14)

(A15)

(A17)

(A18)

Again for the physical values of z, one has, following Ref. 18,

Mxi x(k, z) = Q A;(s)dxix(z),

where ~&„=Max{)a'),~~)), and&„„=Min((&'(, (~)). As shown by Charap and Squire, "Eq. (A17) allows the
Sommerfeld-Watson transformation, viz. ,

'

)
(-)i „.A. (j, s)dpi q( z)-

2 stnz(j —A „}
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dP P" ~v ),(A'}J,y+, (P)
0

(A19a)

x!-~/
( )y+k (I ) (j + ) ' 2-{x-. u dp px'; kJ' (~)i (p)g)) ( (j g) ( 2 )). +)(. 2j+g (A19b)

These expressions have been derived assuming Re(&'+~}&I for (A19a) and Re(&' —&) &1 for (A19b), but
these restrictions could be relaxed as will be shown later. Substituting (A19a) into (A18) and collapsing
the contour C to real axis one obtains

j, +z Ix +~Ig,
hf„«~(k, z) =-ik

2
dPPZq' q(Py)F, (s, P), (A20)

(A22)

and

i( )1 -1 ~ -
(j gI)f (j g)( )/2

I', (&, P) =
I,2m+~ Z i; ~)i, I; ),), &,(s)&' "" '~„+i(P).

Although expressions (A20) and (A21) are derived under the assumption that Re(&'+&) &1, the restriction
could now be relaxed because for large P and p; the approximation J,&+, (P)-&(P —2j —1), yie'lds

I', - ' -'- A. (P, s}2

which maintains the convergence of (A20) for all values of ~+&'. Note that Eqs. (A19) have the correct
kinematical singularities.

For z, in the unphysical region, one replaces"

)
sin){(j —~„„) - e'

~), ( )z e)~)-, (z)
cosw(j — z„} cosz(j — z„)

(A23)

which is an analog of the expression (AB). The functions eq ), are related to d)«q(z} in the similar way as
the functions Q, (z) are related to P, (z). Again following the procedure similar to one discussed in the case
of P", one arrive. s at the form for z & ~1~:

(j+ ')l(j+ )l ' 1+ "'"' (7- .)
)«'x

( g )~y sinn(j- ~„„)cosm(j—&„„)

)(, Qp pl a+A)j'
(py)

2l'+1 ( } g (j p2}
g.+ () (A24)

1I„"P(x)]=
~( )

Pf f(y)(~-~)" '
kc

Note that in the derivation of (A24) we have not
assumed that Re(~'+~)&1, as in derivation of
(A19). If the same restriction is imposed, we get
the matching expressions. Now, one follows a
similar procedure as employed in deriving Eqs.
(A14), (A15) and (A16), and thus obtains an analo-
gous unique representation.

Most of the results in the case of belie. ity am-
plitudes could also be derived using operators I,"
and &," of Riemann-Lionville and Acyl fractional
integration, respectively. These are defined by
equations (see Secs. 13.1 and 13.2 of TIT")

and

&!If(«)l= )'ff f())() «)~'~-1
I'(I )

p, 0, -1, -2, . .. ,

n

( . ) &."If(«)) )."If(«)-1 =(~ f («)=

n =0, 1, 2, . ..
As shown by Andrews and Gunson, ' all the prop-

erties of &~q~q and e~)~q could be derived from those
of P&(z) and Q;(z) by defining operators i ' and

Without going into details, all the expres-
sions derived above, could then be obtained with
the help of r.'qs. (63) and (94) in Sec. 13.1, and Eqs.
(34), (59), and (VV) in Sec. 13.2 of TIT."

)
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