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This note investigates the possibility of quantum nondemolition measurements on an oscillator in a coherent
state by means of first-order interactions with a probe particle.

Work by Braginsky and co-workers' has aroused
interest in the possibility of experimentally mea-
suring the state of an oscillator without altering the
state of the oscillator. In a recent paper?® I showed
that the interaction must be of second order in the
generalized coordinate (e.g., electric field in an
electromagnetic oscillator, displacement of the
ends in a bar, etc.) if such a scheme is to work.
That work was done assuming that the oscillator is
an energy eigenstate. Moncrief® has suggested that
the oscillator is more likely to be in what is called
a coherent state, and that a first-order interaction
might work in that case. This note will examine
the effect of an interaction linear in the general-
ized coordinate on such a coherent state.

I shall use a similar model system to that pro-
posed in my original paper with a Lagrangian ac-
tion given by

I= [ 36+ + 8+ (@ - 0)
—aV(x,y,z)q]di .
Here, x,y,z are the coordinates of the particle,
and g is the generalized coordinate of the oscillator.
The system can be quantized in the usual way.

The initial state of the oscillator is assumed to
be the coherent state

b.(q,t) = exp(ce™ita’) (g, t) /e %2,

where ¢, is the ground state of the oscillator, c is
a constant, and a' is the creation operator

(I will work throughout in the Schrddinger repre-
sentation).
The wave function ¢, obeys the equation

a(pc = (ce-‘t)(pc’
where

1 d
(.4
7z \U"dq

a=

and is a solution to the Schrddinger equation for the

free oscillator. Another normalized solution to the
free oscillator equation is

¢p= (ate-“ - C*)(»bc'

This function has unit norm and is orthogonal to ¢..
¢, is chosen in this way because

1 - 1
qd,= —ﬁ(ce ttc*ett)p + -Ee”du,.

Let us assume that the particle is initially in some
state i, (assumed to be a normalized wave packet).

Now, because of the interaction, the particle can
be scattered into some orthogonal state ), either
leaving the oscillator in the state ¢, or by altering
that state. To lowest order in «, that altered state
must be ¢,. The amplitude for a nonperturbative
scatter is therefore

dt
A = ——-[(ce'“+c*e“
)T :

X fdxdydz V¥(x,y,2,0)V(x,y,2)

Xwo(xay:Z,t)]-

The first term represents an interaction in which

the particle has gained energy from the oscillator,
while the second represents an energy loss to the

oscillator. The perturbative scattering amplitude
is given by

* dt
Ap= . ﬁe“[fdxdydzﬂ(x,y,l,t)

XVm%dMWL%ﬂ-

Note that A, is equal to 1/c* times the second term
in A,. If c* is large, the probability of a perturb-
ative scatter is much less than that of an energy-
emitting nonperturbative scatter.* As |c |2 is just
the mean number of particles in the state ¢,, we
find that in the region of interest, i.e., small val-
ues of |c[?, the ratio of perturbative to nonper-
turbative energy-emitting scatterings is approxi-
mately equal to one.

The energy-absorbing scatterings can only be
nonperturbative. If the energy of the particle is
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much greater than that of the oscillator, and if
V(x,v,2) is reasonable, for any final state 3,,
which corresponds to an energy-emitting interac-
tion, there will be a similar final state §] corres-
ponding to energy absorption. In other words, the
particle will have roughly equal probability of scat-
tering nonperturbatively through an energy emis-
sion or absorption, and for small |c|?, also ap-
proximately equal probability of scattering per-
turbatively. Using high-energy particles to attempt
to measure the state of the oscillator will result in
a large probability of altering the coherent state

of the system (if the detection of scattered par-
ticles is inefficient, as it will be, the probability
of altering the state will increase).

If the energy of the particle is less than the en-
ergy of one quantum of the oscillator, both the en-
ergy-emitting nonperturbative scattering and the
perturbative scattering have zero probability. In
this case the oscillator is left in its coherent state
by any scattering.

However, this does not seem too helpful for any
practical scheme for measuring the state. Any
mechanical oscillator has a low frequency, and

even the electromagnetic oscillator used would
probably have frequencies less than 10'? Hz which
would imply electron energies of less than about
10™ eV, a rather difficult requirement.

Furthermore, the above analysis is true only if
the oscillator is in a coherent state. It is not at all
clear to me that this is a reasonable expectation
for a real oscillator with very few quanta. The ef-
fects of thermal fluctuations will be to destroy the
coherence of the state.

One comment is appropriate here regarding the
situation investigated by Moncrief. He investigated
the use of electrons to study a coherence state of
a free electromagnetic field. For this situation
momentum conservation completely suppresses
the interaction to first order in the field. The in-
teraction is thus effectively of second order, which
can allow nonperturbative measurement even of
energy eigenstates.

For a unidirectional plane wave or wave packet,
this does not occur, again because of momentum
and energy conservation. However, the Kapitza-
Dirac® effect can be regarded as such a measure-
ment for two oppositely traveling plane waves.
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