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By introducing generalized Jost functions with simple analytic properties we express the exact S matrix of
the massive Tkirring model (sine-Gordon model) for the fermion-fermion and the two fermion-antifermion

channels (soliton-soliton and soliton-antisoliton) in a form very similar to that encountered in one-dimensional

potential scattering. Relations between the number of bound states and the phase shifts of the direct and

crossed channels (generalized Levinson's theorem) are discussed within this relativistic model.

I. INTRODUCTION AND RESULTS

At the semiclassical level there has been a pre-
vious investigation of the phase shifts for the s ine-
Gordon theory and comparisons were made with
those of ref lectionless potential scattering by
Jackiw and Woo' and by Coleman. ' Since then the
exact S matrix has been found for the massive
Thirring model which is equivalent to the sine-
Gordon model. 4

In this paper we discuss the relation between
the number of bound states and the scattering
phase shifts (generalized Levinson's theorem} in
the fermion-fermion and fermion-antifermion
sectors on the basis of the exact S matrix and com-
pare it with analogous results obtained in the case
of potential scattering including reflection.

There already exists a discussion of one-space-
dimensional potential scattering in the literature. '
In Sec. II we give a different version by concentra-
ting on the eigenvalues s, of the S matrix andby in-
troducing Jost functions' for these eigenvalues.
(For a symmetric potential, the two eigenvalues
s, correspond to eigenstates of different parity. )
This enables us to derive Levinson's theorem' in
one-dimensional potential scattering for the even-
and odd-parity phase shifts 5, (k) and the numbers n,
of bound states

set of all poles in the physical sheet of the trans-
mission amplitude corresponds to the set of all
(even- and odd-parity) bound states. The energy
values of all bound states are, therefore, fixed
by the scattering amplitudes in contrast to the
three -dimens ional cas e.

Our main concern in this paper is the relativistic
massive Thirring model [with coupling constant
. =(v/2)(X —1) and mass m] which is reviewed in

Sec. III A. For the known exact (on-shell) solu-
tion' we show in Sec. IIIB that one can introduce
generalized Jost functions such that the discussion
of analytic properties (zeros, redundant poles,
bound states) is nearly the same as in potential
scattering. In particular the remarkable property
of the transmission amplitude having poles only at
the positions of the odd and even bound states is
also true in the relativistic model. The essential
difference is the crossing relation between the
fermion-fermion channel (phase shift 5 and no
bound states) and the two fermion-antifermion
channels which are even and odd under charge
conjugation and intrinsic parity (phase shifts 5,
and numbers of bound states n+). This changes
Levinson's theorem to

n~ = —[5, (thr)- 5, (~)]
1

n, = —[5, (0) —5, ( )) + -,' [s, (0) -1], s, = e'""", (1)
+ —[5(thr) —5(~)] s

4 [s, (thr} —1],
1 1 (2)

where the allowed values for the pair (s+(0), s (0))
are (-1, 1}, (1, 1), and (-1, -1). This formula is
completely analogous to the original Levinson's
theorem in three dimensions. There is, however,
an important difference in the analytic properties
of the S' matrix. In three dimensions the eigen-
values of the S matrix may have so-called redund-
ant poles in the physical sheet which do not corre-
spond to bound states. ' This is also true for the
functions s, (k) in one dimension but not for the
transmission amplitude t(k) = [s,(k)+s (k)]. The

where 5(thr) is the phase shift at threshold and
(s, (thr), s (thr)) =(1, -1), (1, 1), and (-1, -1) for
X not an integer, X an odd integer, and A. an even
integer, respectively. For the case of integer
values of X there is no reflection and we have 5,
—= 5 (modv) and 5, —5, (thr)—= 5(mode}. This means
that there is only one phase shift for all three
channels.

The numbers of bound states in the model depend
on i as follows: n, =[i/2], n =[(X+I)/2], n++n
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= [X], where the symbol [a] denotes the largest in-
teger smaller than n.

The dependence of the phases 6, and 6 on the
parameters A. and m are given explicitly in Sec.
III B. Their asymptotic values are not the free
field va)ues but depend on ~ in contrast to potential
scattering. This means that even for arbitrarily
high energies there is a nonzero scattering.

Note that the role of s, and s for the fermion
case in Eq. (2) is interchanged as compared to the
boson case in Eq. (1). This is due to the fact that
a fermion-antifermion state with both particles
at rest has odd parity.

In summary, the two-particle S matrix of the
massive Thirring model has a simple structure
and far-reaching similarities to nonrelativistic
potential scattering in spite of its relativistic kine-
matics.

W(f(x, k), f(x, -k)+f(-x, -k)) f (0, -k)
W( f(x, k), f(-x, k)) f(0, k)

)
W{f(x, k},f(x, -k}) 2ik

W(f(x, k), f( x, k))-2f, (0, k)f(0, k)

(6b)

(«)

Let us introduce the Jost functions

„) f, (0, k)
+ ~u

E &0 or real k. They may be expressed in terms
of %ronskians evaluated at x =0 or x = ~,

W( f (x, k), f(x, -k) —f (-x, -k,} ~f (0, -k)
W( f (x, k), f ( x,-k)) f„(0,k)

II. POTENTIAL SCATTERING

In this section we consider potential scattering in
one space dimension' in close analogy to the well-
known theory in three dimensions. ' %'e confine
ourselves to suitably well-behaved symmetric po-
tentials, or, more precisely, potentials satisfying

dx(1+ [x()( V(x)]& and V(x) = V(-x).

We consider the Jost solution f(x, k) of the Schr5
dinger equation

f {k}=f(0,k},

leading to the relations

.f, (-k)s, (k)= '(
)

f { k)-
s (k)-

(k)

1

f, (ls) f (k)
'

The properties

f.*(k)=f.(-k*)

(ib)

(8a)

(Bc}

with the boundary condition

f (x, k) = e"* as x- +~.

It satisfies

f +(x, k) =f (x, -k*)

and is analytic in the upper half of the complex k
plane with the estimate

f(x, k)=e*'*+a(e *' ')
for (k)-~. This can be seen by iterating the
Volterra integral equation of the Jost solution.
Since for real values of k the functions f (x, k) and

f (x, —k) are linearly independent, they form a fund-
amental system. The even- and odd-parity solu-
tions of the Schrodinger equation and the solution
corresponding to an incoming wave only from the
right are given by

g, (x, k) =f (x, -k) + s,f(x, k) = +f (-x, -k) + s,f(-x, k),

P„(x,k) =f(x, -k)+sf(x, k) =t f(-x, k),

lim f,'(k)=1 for Im k~ 0
lbl

follow from Eq. (4} and (5). For real positive k

we write

s (k) =e"'"' (10)

defining the real phase shifts o, (k) modulo v from
the observable S matrix. If the phase shifts are
defined (consistently with Eq, (10] by

f, (k)= ff, (k) fe-"'"',
they are known modulo 2v for given f, (k).

It can be shown' that in the upper half of the k
plane the functions f, (k} can have only a finite num-
ber of simple zeros on the imaginary axis which
are different for f+ and f . Iff, (ix)=0 or f (6&)=0,
the Wronskian W( f(x, ix), f(-x, ix)) = 2ik f+(ix)
f (ix) vanishes, which tells us that f(x, ix) is pro-
portional to f(-x, ix) with the asymptotic behavior

where t and r are the transmission and reflection co-

efficientss

and s, = t + r are the eigenvalues of the S
matrix obeying the unitarity relation ( s, (

= 1 for
f (x, &c) =

e "' as x-+~

k8 as x
(12)
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Hence, the zeros of the Jost function f, (k) at k

=Ac, e&0, correspond to bound states with even
or odd wave functions, respectively. In the upper
half of the k plane the transmission coefficient, t(k)
is nonzero and has only poles corresponding pre-
cisely to the even and odd bound states. The spec-
trum of all bound states can, therefore, be ex-
tracted from the transmission coefficient t =-,'(s,
+ s ) in contf'ast to the three-dimensional case. '
The reflection coefficient r and the functions s„
however, may have both zeros and redundant poles
originating from the functions f, (-k} in the numer-
ator of Eqs. (8a} and (8b).

We now derive Levinson's theorem which relates
the scattering phage shifts 5, to the numbers n,
of bound states with even and odd parity, respect-
ively. As the functions f,(k) are regular in the up-
per half of the plane, we can apply the argument
principle with a contour C enclosing the upper
half of the plane to get

This is peculiar to scattering in one space dimen-
sion.

An interesting case is the ref lectionless poten-
tial with r(k) = —,

' [s,(k}—s (k)] identical to zero.
Then we have

s, (k}=s (k) =t(k),
in spite of the different bound states in the two
channels. From Eqs. (17}and (8) we get

f (k) =[f,(-k)] ', (18)

III. SINE~RDON THEORY OR MASSIVE THIRRING
MODEL

which implies that s, (k} has redundant poles [poles
of f, (-k)] at the odd bound-state energies [zeros of
f (k)] and vice versa. . An example for a reflection-
less case is the potential

X(X —1}
2 m cosh2ox

for A. a positive integer. '

f.(k)

=-[o,(o)-o, ( )] —la, .
7r

(-13)

In this section we generalize the discussion of
Sec. II to a relativistic field model in 1+1 dimen-
sions, the sine-Gordon theory, which is charac-
terized by the equation

Q
g p = ——,sinPQ .p'

(a„)o=(-1,0), (-1, 1), and (0, 0) (14)

corresponding to the threshold values

(s+(0), s (0)) = (-1, 1), (-1,-1), and (1, 1), (15)

respectively. The correspondence between (14)
and (15) may be expressed by the relation

Here the properties (9b) and (10) have been used.
The term -~n, arises from a small detour around
k =0 where f, (k) has the behavior f, (k)~k~~ for
k-0 or s,(0)=(-1) '. Since kf, (k) and f (k) are
continuous' and ~f+f (=1/(t

~

~1, we have the three
conditions a, & -1, a &0, and n, (j. &0, which
[if the functions f, (k} are meromorphic at the
origin) allow only the pairs A. =1+—.2g

7T
(21)

In particular the soliton, antisoliton, and the ele-
mentary boson of the sine-Gordon theory may be
identified with the elementary fermion, antifer-
mion, and the lowest fermion-antifermion bound
state [cf. Eq. (34)] of the massive Thirring model,
and the coupling constants are related by

It has been established' that this theory is equiva-
lent to the massive Thirring model defined by

i y&b "g ™4)=g, y&p+" p .
In the following we use, instead of g, the coupling
parameter A related to g by

a, =+,'-[s, (0) —1]. (18) (22)
Equations (13) and (16) give Levinson's theorem
in one-dimensional potential scattering in the form
of Eq. (1).

The total number of bound states n, +n couM
have been obtained directly by applying the argu-
ment principle to the transmission coefficient t (k}
[cf. (8c)]which is meromorphic and nonzero in the
upper half plane. This shows that the number n+
+n is determined by the phase 5+(k) +5 (k) of
t(k) and the threshold behavior t(k)o-k + - for
k-0 which couM also be checked from Eq. (13).

In this section we shall use the language of the
Thirring model and restrict ourselves to the scat-
tering of two particles (fermion, antifermion). As
there is no particle production in this model we
have only elastic scattering.

A. The Two-Particle Scattering Functions of the Model

~e scattering of a fermion and an antifermion

fV, ) TV.)-f(p,')+TV.')
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is given by boundary values of two analytic func-
tions t {8)and r(8), the forward- and the backward-
scattering amplitudes, respectively,

'"'&f(P„)f(pl) If(P }f(P.)&
=6(P', -P', )5(P,' -P.')t(p)

—5(P.'-P,')6(P', -P.') (p),

dition

r(e) =r {iw —8) .
Both functions t and r are real analytic in the
variable i 8,

t +(8) = t (-8*), r +(8) = r(-e*) .

(29}

(3o)

where p is the modulus of the rapidity difference,
p = Ip, —p, I, of the incoming fermion and anti-
fermion (P,

' =msinp;) which is connected to the en-

ergy by

(P, +P,)' = 2m'(1+coshp) . (24)

s, (e) =t(e)~ r(e) . (25)

For 8 = p ~ 0, the unitarity of the S matrix gives
real phase shifts 6, (p) defined by

Let us consider the conformal mapping s
= 2m'(1 +cosh8) which relates the Mandelstam
variable s in the cut physical plane to the complex
rapidity difference 8 in the strip 0& Im8& r. It
maps the upper (lower) rim of the positive (s
—4m') axis onto the positive (negative) 8 axis and

the lower (upper) rim of the negative s axis onto
the negative (positive) (8 —iw) axis. The prescrip-
tion 8 = p =

I p, —p, I, therefore, corresponds to the
usual s +is rule. The functions t (8}and r(8) of the
massive Thirring model have the remarkable pro-
perty of being meromorphic in the whole 8 plane.

We can diagonalize the S matrix (23) by intro-
ducing eigenstates of the charge conjugation oper-
ator and obtain the corresponding eigenvalues

B. Generalized Jost Functions

The explicit form of the amplitudes t (8) and r(8)
were first given by Zamolodehikov'

t(tw —8)= --, t(e) = . „. t(lw-e),g(-8) sinhke

ge slllhk(iw —8

(31)

8
x sinhx~ —.

Z2r
(33)

valid for
I
Im81& w min(1/X, 1). By inspection of

Eqs. (31) and (32) one sees that in the physical
strip the function t(8) has no zeros and only simple
poles at the positions

where

ge =P~ (2l + 1+k/A+ 8/iw)(21 +1+ (k —1)/X+ 8/iw]

. (2t+k/l. + 8/iw)[21+2+(k —1}/X+8/iw]

(32}
Another form is due to %eisz'

"dx s inh(x/2)(1 —A)

x sinh(x/2) cosh(x/2)X

(p) e2llq(P)

For the scattering of identical fermions (anti-
fermions)

(26} 8, = iw(1 —k/X }, k = 1, 2, . . .& A

corresponding to the energies

xk
m =2msin—

(34)

t (iw -o) =e"' ' c ~ 0 (28)

with the real phase shift 5(c) for fermion-fermion
scattering. Different boundary values of the func-
tion t (8) describe different processes and for the
function r(8) crossing symmetry leads to the con-

f (P, ) +f (P.)-f(P,')+f (P,"),
there is no distinction between forward and back-
ward scattering. By means of crossing symmetry
this process is described by another boundary
value of the function t(8)

"'&f(P,')f {P;)If {P,}f(P,)&'"

=[5(p', -p,')5{p.'- p.')

-5(p,"-p, )5(p,"-p.')lt( — ),
where 0 is the modulus of the rapidity difference
o = Io, —o, I of the incoming fermions (P! msinho;).
Unitarity leads to sinh(A/2)(8 +iw)s, (e)= — .

( /2)(
.

)
t(iw —8),

sco(ah/2)( 8i +)wt,
cosh(X/2)(8 —iw)

(35)

With Eq. (32}and the product expansion of the hy-
perbolic functions one can write simultaneously

These values coincide with the spectrum which
was calculated in the WEB approximation" if the
parameter A, is related to the coupling constants P
and g as in Eqs. {21}and (22). The energies m„
are known as the masses of the bound states in the
even and odd channels for even and odd values of
k, respectively. The transmission amplitude t (8)
has only these poles which is already reminiscent
of potential scattering.

The amplitudes s, (8) [Eqs. (25) and (31)] are ex-
plicitly given by
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, (8) = g'(
g, (8)

I
g, (8)g (8)

(36}

(37)

The functions g, (8), obtained by splitting the prod-
ucts over k [cf. Eq. (32)] into even and odd k, are
regular in the physical strip and have zeros pre-
cisely at the positions of the bound states of the
corresponding channel:

g, (8)=EL HvT TT (2l —1+2k/X+8/iw)[21+1+(2k —I)/Xi 8/iw]

(2l + 2k/X + 8/iw )[ 2 l + (2k —1)/X + 8/i w]

[2l +2 + (2k +1)/X —8/iw] [2l +2 +(2k —2)/A. —8/iw]

[2l+ / +(2k+1)/A. —8/iw]'[2l+3+(2k —2)/X —8/iw]
(38)

g (8) =g, (8 —iw/x) and g (iw —8)=[g, (tw+8)] '.

An integral representation similar to Eq. (33)
reads

"dx sinh(x/2)(1 —X)

x sinhx cosh(x/2)X

using the argument principle for a contour C en-
closing the physical strip,

1
&

g', (8)
2wi c g, (8)

ap

A.g ].x sinhx
im 2

(40) g, (iw +o)
+ ' dO ln

2wi „, g, (tw o)-
valid for ((X/w)lm8+ —,

'
(& +min(A. , 1).

In view of Eqs. (36) and (37) we would like to call
the functions g, (8) generalized Jost functions.
They are real analytic in the variable io and their
asymptotic values are given by Eq. (40):

lim g, (8) = exp[ —i (A. —1}]-independent of Im8..w

Re 8~ ~ 4
(41)

In view of Eqs. (25), (28}, (30), and (37), this
leads to

5, ( ) =-5 ( ) =-- 6( )=--(~- I) (modw) . (42)

=-[6,(0) —6, ( )1+—[5(0)-5( )]--'&„(44)
g ' '

7l

using Eqs. (26), (28), (41) and (43). The terms
--,'a, result from a detour around 8 =0, where

g, (8) may have zeros or poles. At 8=iw the func-
tions g, (8) are regular and different from zero
From the representation (33) one sees that

g, (8}~8 ' for 8-0,
with

The relations (39) between g+ and g may be com-
bined with Eq. (37) to give

(n„n ) = (0, -1), (1, -1), and (0, 0),

corresponding to

(45)

g, (iw+8) g (iw+8)
g, (tw —8) g (tw —8)

(43)

(:omparing Eqs. (36) and (37) for the fermion-
antifermion channels with Eqs. (8a), (8b}, and

(8c), and comparing (39}and (43}for the fermion-
fermion channel with Eqs. (17) and (18), we ob-
serve a far-reaching analogy between the rela-
tivistic model and potential scattering.

C. Generalized Levinson's Theorem

The numbers n, of bound states in the even and
odd channels are equal to the number of zeros of
the generalized Jost functions g, (8) in the physical
strip. Since the zeros are simple, we get, by

(s, (0), s (0)) =(1, -1}, (-1, -1), and (1, 1),

if A, is a noninteger, an even, and an odd integer,
respectively. The correspondence can be expres-
sed by the relation

n, = ~-,'[s, (0) -1] (46)

leading to the generalized Levinson's theorem
stated in Eq. (2).

The total number n„+n given by Eq. (44} de-
pends only on t (8) since 6, (p)+ 5 (p) is the phase
of t (p), (p ~ 0), 5(o) is the phase of t (iw —o) (o ~ 0),
and t(8)~8 "+ - for 8-0, due to Eq. (37). It is
notable that we have exactly the same peculiar
situation as in one-dimensional potential scatter-
ing, namely there are no zeros and redundant poles
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in the forward-scattering amplitude.
Within our model we can discuss the contribu-

tions to Eq. (44) from the fermion-antifermion and

fermion-fermion channels separately. From Eqs.
(33) and (35) we get for noninteger values of A the

following:

5(o) =--.'

and, in view of Eq. (35),

5, (p) = 5(p) +
3

(& - I)

"dx sinhx(a —1) sin2xx sinhx cosh@A. m
(49)

+Q (+ 1)" —e ""~sinzvn.n 1 -nx
n

(50)

—(5(0) —5("))=-'(&- I)

j. 1-- --(Z-1) (47) The well-known semiclassical limit of the phase
shifts (see, e.g. , Ref. 1) is the first term in the
expansion

where [n) is the largest integer smaller than n,
and for integer A

arith Eqs. (44) and (45) the explicit values (47)
give, of course, the known numbers [determined
by Eq. (34)]:

A. A, +1

ln the semiclassical limit (A. -~), we have

in accordance with Ref. 1, Eqs. (3), (Ba), and (8b).
The ambiguity of phases (modv) cancels in the

differences in Eqs. (44) and (47) since 5(0) and
5(~) are defined as boundary values a continuous
function 5(o) for c ~ 0. It may be convenient to
remove the ambiguities in the phases as in Ref. 1.
For the free theory (X =1) the 9 matrix is equal to
one. A natural convention is, therefore, to con-
sider 5(o, A. ) and 5+(p, X), (p&0), as continuous
functions of X which vanish identically for A, = I.
This prescription gives

"dg 20. n
5(u) = —— —tanhx sinx —+—+0 — for o w 0.

Q X w 4

This shows that even in the limit A. -~ the scatter-
ing amplitude does not have the semiclassical val-
ue, the term v/4 survives for o 0 0.

Since

we get from Eqs. (44) and (50)

—5, (0) =n +-,' o., an-d 5(0) =0.r (51)
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The latter equality may be related to the absence
of fermion-fermion bound states. Equations (51)
are identical to Eqs. (13) if the phase shifts in
potential scattering are defined relative to the free
case which, in particular, means 5(~) =0. Note
that with this convention Levinson's theorem (51)
relates the numbers of bound states to the phases
at threshold of the corresponding channels only,
in contrast to the general formulation (44) where
both the direct and the crossed channel contribute.
This is in agreement with the semiclassical Lev-
inson's theorem of Ref. 1.
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