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Dynamical symmetry breakdown in the supersymmetric nonlinear a. model
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The supersymmetric nonlinear cr model is studied to leading order in 1/N. The spontaneous breakdown of
a discrete chiral symmetry leads to mass generation, and the appearance of a supersymmetric pair of bound
states.

I. INTRODUCTION

Several years ago, Gross and Neveu' discovered
that dynamical symmetry breakdown was possible
in asymptotically free field theories. The Gross-
Neveu model consists of X fermions governed by
the Lagrangian

8= gimp+-,'g'(pp)'.

This Lagrangian possesses a discrete chiral sym-
metry g-y, P which prevents the appearance of
masses to any finite order in perturbation theory
in g'. To obtain nonperturbative results they
study the behavior of the model as X-~ with X

=g'N fixed. They obtain an expansion in powers
of 1/N and nonperturbative in g'. The model is
asymptotically free and to leading order the chiral
symmetry breaks down spontaneously. This leads
to a massive fermion and to a gP bound state at
threshold.

Polyakov' has discovered that the O(N) nonlinear
0 model is asymptotically free and that the funda-
mental particle acquires a mass for ~V&2.

Recently, Di Vecchia and Ferrara, ' and Witten
have constructed a supersymmetric version of the
two-dimensional O(N) nonlinear o model. This
model is a hybridization of the nonlinear 0 model
and the Majorana version of the Gross-Neveu
model. There are several questions which mate-
rialize: Do the boson-fermion interactions destroy
asymptotic freedom and mass generation? What
happens to the Gross-Neveu bound state? How
much are the individual characters of the Gross-
Neveu and the 0 model preserved?

The object of this paper is to provide a partial
answer to these questions. We find that in the
large-X limit asymptotic freedom and mass gen-
eration remain. There appears a fermion-boson
bound state in addition to the fermion-fermion
bound state. As N- ~, purely bosonic (fermionic)
amplitudes are dominated by the nonlinear cr-
model (Gross-Neveu) sector, but amplitudes
coupling the two systems are of the same order.
We expect the individual sectors to lose their
character as N decreases.

This paper is organized as follows: In Sec. II,
the model is reviewed. Section IG derives the
main results. In Sec. IV, additional topics are
discussed. In the Appendix the 5 function for
fermions is defined.

II. REVIEW

The Lagrangian for the supersymmetric O(N)
nonlinear a model is given by'

, ( n'f)'n'+ -Pi & P+F'F'),
2g

(2.1)

where n', tI)', and E' transform under the vector
representation of O(N). The fields n and F are
real, and P is a Majorana spinor. The fields n,
P, and E are not aribtrary and are required to
satisfy the constraints

nana y 0

g'n'= 0,
nba yaga 0

(2.2a)

(2.2b)

(2.2c)

5n'= &g',

5P= -sp 4~~n +E 6 y

5F' = i& ffg', -

(2.3a)

(2.3b)

(2.3c)

where c is a constant anticommuting Majorana
splnor.

Since E enters the Lagrangian algebraically, it
may be eliminated by using its equations of mo-
tion. After a rescaling of the fields, the new La-
grangian is given by

Z = 2 [-n's'n'+ gi(f/+ —,'g'(gp)'],

with the constraints

g'n' —1=0,
n ~ /=0.

(2.4)

(2.5a)

(2.5b)

The supersymmetry transformations are given by

The action defined by (2.1) and constraints (2.2) is
invariant under the supersymmetry transforma-
tions

1123
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5n'= Fya

6g = -iy' es,n' +&g'n'(pp)e .

III. THE QUANTUM THEORY

(2.6a)

(2.6b)

c-g N
4

The 1/N expansion is a, nonperturbative way of
studying certain field theories. The expansion is
generated by keeping X =g'N fixed as N-~. The
results are nonperturbative in X and perturbative
to the order of 1/N desired. Lagrangian (2.4) is
not the most efficient way of generating the 1/N
expansion; it does, however, provide a systema-
tic way of doing perturbation theory in g'= }}/N.
In Fig. 1 we have two graphs which are of order
g', but of different order in the 1/N expansion.
The remedy is to replace Lagrangian (2.4) by an
effective Lagrangian that takes into account the
dominance of loops involving isospin traces over
nontrace ones."The perturbation expansion of
the effective Lagrangian will be in powers of 1/N.

The generating functional for Green's functions
is given by

FIG. 1. Two diagrams which are of order g4 but of
different order in 1/N.

The integral over Q is a constant that may be
absorbed into q." The theory defined by (3.3)
is equivalent to the one defined by (3.1}. Equation
(3.3}may be rewritten as

Z [J, $]= }} [«][dg][dc}][dP][dg]e"

(3.4)

where

Z[&, $]= }7 [dn] [dg]6(g'n' —1)6(n }j}) + = an(-& g&X)-B+ q $(i(i(-gQ)l(}+ 2 el

Xeh (2+ J ~ n+&((}) (3.1) -2 0'+ gi'4'n'. (3 5)

5(n P) = [dP] e'~' + (3.2)

where P is an anticommuting Majorana fermion.
The generating functional Z may be written as

Zu, f]= }} [«][A][~o'][d4]

&&exp {i[2 ,'io}(g'n' —1)+-i-P}j n

where g is a normalization factor. ' The normal-
ization factor will change from line to line, but it
shall always be denoted by g. The 5 function for
fermions is defined in the Appendix, and may be
represented by

Since the n, P, and Q fields are not coupled to ex-
ternal sources, they represent internal effects in
the Feynman diagram. We shall borrow the
language of gauge theories and call these ghost
particles. At this stage, the n and P ghost par-
ticles do not propagate, but later we shall see
how to define an effective propagator.

Lagrangian (3.5) is quadratic in n and t/r; there-
fore it is possible to do the n and P functional in-
tegrations. The n and P integrations may be done
with sources, but it is more convenient to per-
form all manipulations of the functional integral
without sources. At the end, Lagrangian (4.5) will
be used to determine the effect of the sources.
Doing the P integration we obtain

z=n }& }}& }}do}}&0}ey}'}l l- ~ *-ga')n —ld* ~ ln}}}«t}'a'-gd}}"*y -la* '1. I ').i -glt (3.6)

We only get a (det)' ' since the fermions are Majorana, i.e. , real. This expression is still quadratic in
n; therefore, we can do the n integration:

1 —-j. /2
Z = q [da][dp][dp]exp[i[--, lt}'+ ~n])[det(ig -g4})]' ' det -8'-g'o. -g'tl. i}i -g@
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The effective Lagrangian Q« is given by

=-2Q +2c& —2(iN)Trln(f8-gQ)+&iNTrln -S —, 'a -g'&3.
&

eff l~ —g6 (3.8)

This Lagrangian is the key to the 1iN expansion.
Lagrangian (3.5) seemed to tell us that in addi-

tion to the n and g particles there were additional
particles Q, a „~ interacting via

g', = &o ~n —&-gpss~'p+ gp0' n (3.9)

Z, = (1+a)Z=Z, Z. (3.10)

If the bare fields are defined by p, =Z, ' 'P, »„
= Z, ' -'n, and the bare coupling by «,'=g'Z, ', we
see that (3.10) may be rewritten as

z„=g[»o —9'», + ~t&oiji(q'~+ 4 go""(T(&opo)'],

with the constraints

g, 'n, ' —1=0,
no' &o=0

(3.11)

(3.12-.)

(3.12b)

The action corresponding to (3.11) is invariant
under

5n', =. cP'„ (3.13a)

(3.13b)

Notice that (3.13) is consistent with rescaiing (2.6).

except that & and 9 did not propagate. The correct
way of interpreting this remark is to say that the
particles n and 0 coupt. e to the internal ghosts n,
p 1 &t& via (3.9) and these interact among them-
selves via (3.8). The precise way of computing a
Green's function with a total of 2~» external n and

lines is as follows:
(1) Draw w straight lines and make an arbitrary

number of Z', „insertions on the straight lines.
This will determine whether the external lines are
n or g' particles.

(2) Connect the n, P, Q lines together by using
cC f f only . Do not us e Z,'„to gene rate inte mal
nn, PP, or nP virtual pairs. These are al.ready
taken into account by Z,«. Notice that the ver-
tices in Z,«are nonlocal. For simplicity, we
shall draw these as if they were local.

Thus far the functional integral has been mani-
pulated in a cavalier manner without regard to
renormalization. The supersymmetrie nonlinear
0 model may be regulated in a supersymmetric
manner by adding higher-order derivative terms
which are supersymmetric. Consider Lagrangian
(2.4) with constraints (2.5). Under a supersym-
metric regularization, the only possible counter-
term is of the form aZ; the bare Lagrangian must
be given by

To leading order it will suffice to use a mo-
mentum-space cutoff. We will discover that the
renormalization to lowest order is supersym-
metric and consistent with the remarks made
above. The actual renormalization will be per-
formed on the effective Lagrangian and afterwards
interpreted in terms of the original Lagrangian.

Before continuing w'. th the discussion on re-
normalization, it will be convenient. to discuss
chiral symmetry. Lagrangian (2.4) and its con-
straints are invariant under the discrete chiral
transformation P-y, ,5. This symmetry forces the
fermion to be massless to any finite order in per-
turbation theory. The fermion can only become
massive if the chiral symmetry is spontaneously
broken. The chiral symmetry manifests itself in
Lagrangian (3.5) in ihe form p&-~, i&, p-
P-tty, . After doing the functional integration over
n and g, we obtain the effective Lagrangian which
should be invariant under Q--Q, P-Py, . The term
in (3.8) involving Pis easily seen tobe chiralinvari-
ant. The term Tr ln(f &( —gp) is also chiral invariant.
This may be seen by expanding the logarithm and
noticing that terms odd in Q disappear since the
trace of an odd number of y matrices is zero. The
chiral symmetry also forces the P particle to be
massless to all orders in perturbation theory.

Chiral symmetry plays a second important role.
It restricts the class of allowed counterterms.
One of the advances of renormalization theory in
the 1970's was the realization that symmetry
breakdown does not affect renormalization. Even
though chiral symmetry will be broken at the end,
the renormalization will be performed in a chirally
symmetric manner.

The first step in any renormalization scheme is
to isolate the primitive divergences. This may be
done by noticing that there is a duality between in-
ternal and external particles. Thus far we have
taken the attitude that the interaction Lagrangian
(3.9) connects the external particles, » and (&, to
the internal ghost particles governed by La-
grangian (3.8). We can also take the viewpoint
that an internal ghost particle can become a pair
of virtual external particles. There are three
primitively divergent diagrams to lowest order
(Fig. 2). Fibre 2(c) is identically zero because
the chiral-symmetric propagator is i/g. Chiral
symmet, ry tells us that we cannot have a counter-
term linear in &b, i.e. , Fig. 2(c). The counter-
terms will be of the form ZcT=cg-1M+de ln&~,
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I'o(4)=54'+ 8, y' ln (3.20)

a(n A
The chiral-symmetric vacuum (P) = 0 is seen to
have higher energy than the asymmetric vacuums
given by

(c) g g(y)2 M2e 4r l-r N (3.21)

FIG. 2. Leading-order, primitively divergent dia-
grams, and their counterterms.

where A is the momentum-space cutoff. The
bare effective Lagrangian is

~oyeff jeff+ ~CT (3.14)

To generate the I/N expansion, functional integral
(3.7) is expanded around the point of stationary
phase. If we use angular brackets to denote the
vacuum expectation of a field, then the point of
stationary phase is given by

We shall break the chiral symmetry by choosing
the positive solution to (3.21):

gy) Me 2tlgrN- (3.22}

g2N Q2™ in~28m AI2 ' (3.23)

The same result could also have been obtained by
expanding Trln(ig -gQ) in powers of Q and follow-
ing the manipulations of Coleman and Weinberg. '
Notice that (P) is of order WN

The stationary point for o. is found in the same
way. The counterterm is

~&o,.ff
&e &, &0f&

=0
7

=0

(3.15a)

(3.15b)

The condition for stationary phase is

8v g'(o) (3.24)

&e ), &tx)

Translational invariance demands that ( Q) and
(n) be constant. Differentiating the Lagrangian
gives

0 or eff
8 &t) &e &~ &0f&

i d'k 1 sacr
(2v)'

This equation has exactly one solution,

~ re 4r Ir x- (3.25)

The vacuum expectation value of e is of order N.
To demonstrate the supersymmetric renormali-

zation of the theory we write down Zo,«as fol-
lows:

g2N A2
o, ff= 2 1+ ln 2

-1+ In, , (P}+ cT . (3.16)4v g' P '
&4) &0I& + 1+

4

Let M be a renormalization mass. By rewriting
expression (3.16}we can guess the counterterm:

grN M'
0= -1+ ln

(3.17)
The bare quantities are defined by

(3.26)

SN 2 2
— 1+—Tr ln Q2 g20 g2P p

The P counterterm will be chosen to be

(3.18}

Z l/2y

Qo =Z3Q,

p =Z l/2p
0

(3.27)

With this choice of ZcT, the condition for a sta-
tionary point is given by

g 2 Z lg2

g'N M'0= -1+ ln,
( }, (P) . (3.19)

where the field renormalization constant is given
by

This equation has more than one solution. To
choose the correct solution, we integrate (3.16)
to obtain the effective potential' for Q:

g2N A2
Z, = 1+ ln

4~

Equation (3.26) may be rewritten as

(3.28)
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2, „,= —2 $0'+ 2 n, —2 iN Tr ln(i9 —g,Q&&)

+-,erTrln -~ -go &0-gopo ~ ~0 ~

(3.29)

5n'= eg',

6 l/ = e (z ik -m )n

If the vacuum is supersymmetric then

e(n), = -5(g), /m = 0,

(3.33a)

(3.33b)

This equation has the same form as the effective
Lagrangian (3.8); therefore by proceeding back-
wards along the steps which led to (3.8) we dis-
cover that the bare Lagrangian is given by (3.11).
The renormalization is supersymmetric.

The vacuum is not chiral invariant. As a con-
sequence, the fermions p and g may acquire a
mass. We shall expand around the asymmetric
vacuum by considering fields Q', n' defined by

4=(4&+ 0',
n =(n)+ n'.

(3.30)

m„'=g'(n),

m„=g(4) .
(3.3la)

(3.3lb)

Using the expressions for the vacuum expectation
values we learn that the n particles and the P par-
ticles have the same mass. Their common mass
is given by

~n =~re-"" '» (3.32)

Supersymmetry requires the masses of the n
and the |t) to be equal. This may be seen by notic-
ing that to leading order in 1/N, transformation
laws (2.6) may be written as

fly looking at (3.5) we learn that the masses of the
n and the g particles are given to lowest order by

~l., = --'g'n'n'--'g4'8+gp4 n. (3.35)

The propagators for the ghost lines may be
found by computing the quadratic part of Lagran-
gian (3.26):

5(T fn'(x), t{ '(0)}),= 0 .
The last relation leads to the Ward identity

(T{p'(x),p (0)}),= (i2/+ m ) (T (n'(x), n (0)}),.
(3.34)

Therefore, n and g must have the same mass.
The supersymmetry of the vacuum will be demon-
strated later. Since n is massive we do not ex-
pect long-range correlations; this is consistent
with (n), = 0.

The ordinary nonlinear 0 model has mass gen-
eration, and the mass is precisely given by (3.32).
The Gross-Neveu model with Majorana fermions
also has mass generation with the mass given by
(3.32). The constraint n /=0 which couples the
bosonic sector to the fermionic sector does not
seem to play a role in affecting the masses of the
fundamental particles to lowest order.

The coupling of the external particles to the
ghost particles is given by

1+ ln, Q" ——,iNg'(-2) Tr .4n' M» 2iii —m 1 -m
1 1, , 1, 1

ig NTr» P .„P--ig'NTr» n'
»
n'.—8 —'p'H 2p —m m» ' 8» m» (3.36)

The propagators are given by

D, , (k') =, I(k')

S2(k)=, (k' —2m) I(k'),gN

D .(k') =, 2 (4m' —k') I(k'),
(g2N 2

(3.37a)

(3.37b)

(3.37c)

The best way of checking whether the above re-
sults are consistent is to use the Ward identities.

By using the formalism of Ref. 3 it may be shown
that (2.1) belongs to a supermultiplet where n ~ F,
p ~ F —ni{//1{1, and (-ns n+ijrip'/+F2) are, respective-
ly, the analogs of n, p, and F. The classical
equations of motion obtained from Lagrangian
(3.5) (Ref. 9) tell us that the multiplet may be
written as -P., P, g(n —P2), where

where

I(k') =
k2 1/2 (4m2 k2)l/2 ( k2)1/2 1

ln4m2 k2 (4m2 k2)1/2+ ( k2)l/2

(3.38)

0= --'gA,

p= n ~ i/'g, -
n = (a„n)2.

(3.39a)

(3.39b)

(3.39c)
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The Green's function satisfies the classical equa-
tions of motion, and it is legitimate to use the
equations of motion in deriving the Ward identi-
ties. To leading order g(o. -4') equals gn' —2m/'.
The transformation laws for this multiplet lanalog
of (2.3)] are given by

5Q= -&P

i5p = E(-tIf'+ 2ln)(b + ggQ

5(go' —2nl p') = 1Y-S'p.

(3.40a)

(3.40b)

(3.40c}

By taking vacuum expectation values of the above
we see that the vacuum is supersymmetric to
leading order.

Since the vacuum is supersymmetric we have

~&r 8 (x), P(0)j&,= 0

and

6(T(gn'(x) —2m/'(x}, P(0)j),= 0.
From these two relationships we obtain the %'ard
identities:

S,(k) —(k'- 2m)D, , (k') = 0, (3.4la)

kS&(k) g'D .(k')+-2m(k -2m)D», (k')= 0. (3.41b)

These relations are satisfied by the propagators
given in (3.37).

Propagators (3.37a} and (3.37b) diverge as k'
-4m'. This indicates the appearance of a bound
state at threshold. Normally, the signal for a
bound state is the appearance of a pole in the scat-
tering amplitudes. Vixen the bound state appears
at threshold one no longer gets a pole." This is
tI}.t behavior in the Gross-Neveu m.odel. '

In the supersymmetric nonlinear cr model there
are two bound states. The Q' particle corresponds
to a fermion-fermion bound state created by the
operator PP. The P particle corresponds to a
fermion-boson bound state created by the opera-
tor n'iffy". To leading order, the P' particle is
due entirely to the Gross-Neveu sector. The I3

particle is a new feature of the supersymmetric
nonlinear v model. This is the first and the most
pronounced example of interaction between the
ordinary o.-model sector and the Gross-Neveu
sector. The amplitudes for the creation of a Q'
particle and a. P pa. rticle are both of order I/v N

The allowed particle spectrum of the theory is
determined by the symmetry group that acts on
the physical Hilbert space. The vacuum to leading
order in I/iV' is found to be isospin, Poincare,
and supersymmetry invariant. The allowed par-
ticle spectrum for X&3 (Ref. ll) will be deter-
mined by the possible ferrite-dimensional unitary
irreducible representations (FDUIR) of the con-
tinuous symmetry group (we shall not discuss the

implications of the discrete symmetries). The
FDUIR's of O(N) are well known and will not be
discussed. The FDUIR's of the remaining con-
tinuous symmetries are easily constructed. The
generators Q, &=1, 2, of supersymmetry and the
generators of translation P, satisfy the algebra

Qs) = 2(&'&').s&» (3.42a)

(3.42b)

Since the little group of the two-dimensional
Poincare group consists of the identity (there is
no spin in two dimensions), its FDUIR's are
labeled by one invariant, the mass squared, and
the different states within the representation ma, y
be taken to be momentum eigenstates. By (3.42b)
the momentum eigenstates are invariant under
supersymmetry. %hen restricted to fixed-momen-
tum eigenstates, (3.42a) defines a Clifford algebra.
The only finite-dimensional representation of the
Clifford algebra is four dimensional and given by
2 x2 matrices. For a fixed momentum, super-
symmetry demands the existence of two possible
states. %e expect particles to come in multiplets
which are twice the dimension of the isospin rep-
resentation.

The n' propagator does not exhibit bound-state
behavior. This is fortunate because the two bound
states that were found form a complete represen-
tation of supersymmetry. If the n' ghost particle
manifested itself as a bound state then there would
have to exist another bound state.

+P(Z)—- k~(. )~
r'"'(p, ~,M) = 0,

(4.1)

(4.2)p(g) =M
'g yAflx&d

~(g) =.~f
9lnZ,

9AI

The last of Eqs. (3.27) says that P and y are re-
lated by y(g) = 2P(g}/g. By using (3.28) we learn
that P(») is given to lowest order by

(4.3)

p(C) = -g'&/4& (4.4)

IV. MORE ABOUT THE QUANTUM THEORY

The renormalization of the quantum theory re-
quired the introduction of an arbitrary renormal-
ization mass, M. Standard arguments tell us that
the one-particle irreducible (1PI) Green's func-
tion must satisfy a renormalization-group equa-
tion. If I ' ' is a 1PI Green's function consisting
of a total of 2k external n and P lines, then
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Since P(g)&0, the model is asymptotically free.
lt is also possible to determine the P function by
realizing that the mass of the P or n is a physical
parameter, and must satisfy a renormalization-
group equation of the form

/

/
a 8

M +P(g)—m=0
BM Bg,

(4 5)

Expression (3.32) for m, in eonjuction with the
above renormalization-group equation, yields
(4 4).

The P function to lowest order is identical to
that of the ordinary nonlinear v model or to the
Majorana Gross-Neveu model. This is seen by
remembering that to leading order the masses of
the n and P particles are identical to the respec-
tive masses of the regular o model or Gross-
Neveu model. This fact and the analog of Eq. (4.5)
applied to the respective model yields the desired
result.

The above and several other results may also
be explained by noticing that to Leading order, the
renormalization of the supersymmetric nonlinear
o model is identical to the renormalization of a
regular nonlinear 0 model and a Majorana Gross-
Neveu model which are not coupled together.

We began with a formally massless theory con-
taining one coupling constant, g'. Ultraviolet di-
vergences required the introduction of a renor-
malization procedure requiring an arbitrary mass
parameter. The renormalization group tells us
that the physics would remain the same if we had
renormalized at a different mass, but had used a
different coupling constant and a rescaling of the
fields. Since the value of M is arbitrary, it will
be convenient to eliminate this ambiguity by
choosing g'N = 4m. This means that m and M are
related by M = e' 'm. The theory now depends on
one dimensional parameter m (or M). This is the
phenomenon of dimensional transmutation dis-
covered by Coleman and Weinberg. '

The masses of the fundamental particles and the
P function to lowest order are identical to the ones
obtained if the ordinary 0-model sector and the
Gross-Neveu sector were not coupled via n ~ /=0.
A generalization of this statement is possible. The

osasI
a

(a)

FIG. 4. Order-1/X corrections to the self-energy of
the g particle.

2', -particle connected Green's functions (not LPL)

for n andlor g particles are of order N' '. The
ones containing only n (P}particles are described
to order N' " by the o-modeL (Gross-Neveu} sec-
tor of the theory. The mixing effects on the pure
n (g) sectors from the n /=0 constraint are of
order S ~. This does not mean that the model is
"trivial" to lowest order. The statement made
above also implies that a connected Green's func-
tion containing 2j of the n lines and (2k —2j) of the
g lines is of order N' '. We expect that as N de-
creases, purely n (g) amplitudes will resemble
less their e-modeL (Gross-Neveu) counterparts.

The most remarkable manifestation of the cou-
pling of the two sectors of the model is the ap-
pearance of the n /bound -state. This bound state
appea, rs to the same order as the LIg bound state
which in leading order is due entirely to the
Gross-Neveu sector.

The coupling of the two sectors to higher orders
is best demonstrated by the 1/N corrections to
the self-energy of the n (g) particle. To order N',
we already learned that it was given by the pure
o-modeL (Gross-Neveu} sector. For the n ((() par-
ticles the relevant graphs are given in Fig. 3
(Fig. 4). Figures 3(c), 3(d), [4(c)] describe the
mixing between the n and P sectors of the theory.
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APPENDIX

(G) (b) (c) (d)

FIG. 3. Order-1/N corrections to the self-energy of
the n particle.

To incorporate constraint (2.2b) it is necessary
to define the 5 function over anticommuting num-
bers."
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Let ~ be a single anticommuting real variable.
The fundamental property of 6 functions is that

(Al) and (A2) yields

5((d) =(d.
d" 6(&u —",)f(&u) =f(~,). (Al)

If &u and $ anticommute then Jdu& e$ is ambiguous.
The double valuedness of the integral in question
is resolved by defining

Having written 5 to the right of f in (Al) would
have led to a factor of (-1) in (AS).

For the fields n and P, constraint n ~ /=0 may
be written as

d(d (d$= — d(d $(d. (A2) a(n ~ g)= [dp]e"'". (A4)

In (Al) it is important that 6(&u —",) is to the left
of f. Expanding 5 and f in powers of &u and using

As long as we are consistent, the normalization of
(A4) is irrelevant.
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