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We analyze models of quark matter appropriate to the description of matter at densities found within
neutron stars. We consider in detail two models: quantum chromodynamics with a bag constant B = 56
Me&/fm', and quantum chromodynamics with B = 0. Both models are consistent with the strength of the
quark-quark force found in high-energy particle phenomenology. The pressure, energy density per baryon,
and baryon density are calculated. An interesting prediction of our models is that a quark star should have
strangeness comparable to its baryon number.

I. INTRODUCTION

Recent work has explored the conjecture that
there is a phase transition between nuclear matter
and quark matter at high densities. '-' Such a
phase transition might occur in the core of a pul-
sar, or during a heavy-ion collision.

Theoretical work in this area is most useful if
it is developed so as to allow testing of theoretical
models against empirical observation. Quark
matter should have observable characteristics
which distinguish it from nuclear matter. For ex-
ample, theoretical predictions of upper mass
limits, moments of inertia, and luminosities of
neutron stars should differ between quark-matter
and nuclear-matter models.

We would expect that a, phase transition to quark
matter occurs when nuclear matter is compressed
so tightly that the hadronic constituents of nuclear
matter overlap. In such circumstances, quarks
in different hadrons may be freely interchanged,
and the degrees of freedom of the matter are
those of quarks. The matter is thus more directly
described by the quark constituents of hadrons
than by individua. l hadrons.

The density of matter at which hadrons overlap
is given by the density of matter inside a hadron,
K„-1/,—m „'. A typica1 hadronic radius is that
of a proton, r„- 1 fm, giving hadronic matter
density as St„--,' baryons/fm'. Since the density
of matter in a heavy pulsar may be as high as
%, -1-2 baryons-fm', we should expect that quark
matter may be found in neutron stars.

Of course, a. phase transition would occur at
densities higher than those of conventional nuclei.
In conventional nuclei, quarks are bound together
as neutrons and protons. Nuclear-matter density,
St~M-0. 16 baryons/fm', thus provides a lower
bound on the phase-transition density. It should
be emphasized that nuclear-matter density is only

slightly lower than that of hadronic matter. Ha-
drons in nuclei are almost overlapping, and if only
slightly compressed should make a transition to
the quark phase. We might expect, therefore, that
unconventional quark nuclei could be produced in
a heavy-ion collision. '

Logically, to determine whether a phase transi-
tion takes place between nuclear matter and quark
ma. tter, the energy per baryon of quark matter
should be determined and compared to that of
nuclear matter. The density at which the energy
per baryon of quark matter becomes less than
that of nuclear matter would be the phase-transi-
tion density.

Unfortunately, this estimate of the phase-transi-
tion density is very sensitive to a number of small
uncertainties in hypothetical energy-density re-
lationships of different nuclear-matter and quark-
matter models. ' '

At the phase-transition density, the extended
structure of hadrons is important, and nuclear-
matter model. s do not take this extended structure
into account. Moreover, at densities greater than
nuclear-matter densities, models based on po-
tential theory and those based on variational meth-
ods give different energy-density relation-
ships. " ~ Only at nuclear-matter densities
may different models be directly compared with
observation. At higher densities, the disagree-
ment between the relationships given by different
models is not surprising.

Quark-matter calculations have uncertainties
arising from imprecise knowledge of the strength
of the quark-quark interaction. Further, quark-
matter calculations are perturbative in the strength
of the quark-quark interaction, and many effects
associated with nonlinearities of the interaction
are ignored in this method of calculation. Since
the quark-quark force increases with the dis-
tance between quarks, these nonlinearities are
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most important at the lowest density at which
matter may exist in the quark phase, that is, at
the phase- transition density.

At low densities, Ots s —,
' baryons/fm', nuclear-

matter calculations are intrinsically more accurate
than quark- rnatter calculations. The large st con-
tributiops to the energy per baryon of nuclear
matter are proton and neutron rest masses, m
-940 MeV. Kinetic and interaction energies are
small and are measured in tens of MeV's. Even
large errors in nuclear-matter calculations of
this small energy can yield only errors of the
order of tens of MeV's for 8/st.

On the other hand, fits to hadron spectroscopy
suggest small up- and down-quark masses, per-
haps as small as 50 MeV. '4 Almost all the en-
ergy of quark matter resides in quark kinetic and
interaction energies. Small errors, perhaps of
10%„result in errors of the order of 100 MeV in

the determination of g/61-1 GeV.
%e should thus be cautious about drawing any

conclusions from a comparison of quark-matter
and nuclear-matter calculations. In this paper,
we shall not attempt such a comparison, nor shall
we try to prove or disprove the existence of a
phase transition between nuclear matter and quark
matter. Instead, we shalL assume the existence
of a phase transition, and show that using a rea-
sonable choice of the strength of the quark-quark
force, the calculated energy per baryon of quark
matter may be matched on to the g/Ot of nuclear
matter at hadronic-matter densities.

More refined calculations than those presented
in this paper may, of course, lead to different
estimates of the strength of the quark-quark force.
%'e do not expect, homever, that more refined
calculations will significantly alter the equation
of state calculated for quark matter. The equation
of state is almost entirely determined by specific-
ation of its asymptotic form at high densities,
where interactions are unimportant, and by the
constraint that the energy per baryon of quark
matter match on to that of nuclear matter at ha-
dronic-matter densities. At very high densities,
the dynamics of quark matter are those of an
ideal, relativistic gas, and P- 35. At hadronic-
matter densities, the equation of state must be
softened so as to connect with nuclear matter. %e
find that at all densities of interest, the quark-
matter equation of state is well approximated by
I 3 6 go ~ This phenom enologic al fo rm for the
equation of state is the simplest functional form
that extrapolates between hadronic-matter densi-
ties and very high densities.

This simple form for the equation of state, given
by the MIT bag model when quark interactions are
ignored, has been used by Brecher and Caporaso

to determine the upper mass Limit of a quark
star. " The constant 80 is given in the bag model
as ~4 B, where B is the bag constant.

Our calculations include interactions and pro-
duce equations of state similar in form to that
used by Brecher and Caporaso over a variety of
values for the bag constant and for the strength of
the quark-quark force. In particular, we present
two models, one with 8= 56 MeV/fm' and the
other with B=O, which produce almost identical
equations of state. These two models differ in the
assumed strength of quark-quark force; the model
using 8= 56 MeV/fm' is assumed to have weaker
quark interactions than that using B=0.

%'e have calculated the thermodynamic proper-
ties of quark matter by using quantum chromo-
dynamics. This theory provides a description of
different flavored and colored quarks interacting
by the exchange of massless vector gluons. In
the following analysis, we shall assume three
flavors and three colors of quarks. The quark
flavors necessary for the description of quark
matter in pulsars are up, down, and strange.

Heavy quarks of exotic flavors, such as the
charmed quark, may be ignored for dynamical
reasons. Heavy quark masses are mH» 2 GeV.
At the densities of interest for quark stars, %~
S 1-2 baryons/fm'. The quark Fermi momenta
are k&& m &'~ -500 MeV. More energy would
be needed for the production of heavy quarks.
Moreover, interactions with vacuum pairs of
heavy quarks are important only for & '/4~„2
a 1, a condition involving higher Fermi rno-
menta than would be found in quark stars.

The parameters which specify quantum chromo-
dynamics are quark masses and the quark-gluon
coupling constant. In this paper, me shall take
the up- and down-quark masses as zero and take
the strange-quark mass as m, = 280 MeV. These
values are given by the MIT bag modeL fit to the
spectroscopy of the light hadrons, "

The remaining parameter —the quark-gtuon
coupling coastant, g —is not known precisely. For
the MIT bag remodel, the chromodynamic structure
constant, n, =-g'/16v, is found to be n, ——,'. How-
ever, in the bag model fit to the light-hadron
spectrum, radiative corrections to lowest-order
quark interactions were not determined. In order
to calculate these corrections, the quark-gluon
vertex must be specified at an off-mass-shell
Euclidean subtraction point, p, The corrections
can be smaLL only if the subtraction point, p.o, is
chosen to be of the order of a typical bag energy
scale. If the natural scale, B' ', is chosen,
then p.,- B' '-150 MeV. If the average kinetic
energy of quarks inside the bag is used,
p, p E 400 MeV. These different choices of
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the subtraction point imply very different values
of the strength of the quark-quark interaction.

Given these uncertainties, we have considered
various value s of the strength of the quark- quark
force in our analysis. If the strength chosen were
too large, a phase transition would be found at
densities far above that of hadronic matter. If the
strength chosen were too small, the phase transi-
tion would be found below nuclear-matter density.
These relationships follow from the repulsive
character of quark interactions at high densities.
Increasing the hypothetical strength of the quark-
quark force increases the energy per baryon, and
yields a higher phase-transition density.

We shall present in this paper two models giving
a phase transition between quark matter and nu-
clear matter at hadronic densities. We will argue
that the values for the strength of the quark-quark
force used in these models are not inconsistent
with the values found in high-energy particle
phenomenology. "" '

The organ, ization of this paper will be as follows:
(1) In the first section, the result of a fourth-

order (g') evaluation of the quark thermodynamic
potential appropriate for massless quarks is ex-
tended to include the effects of finite strange-
quark mass. These effects are included only to
second order in g. Contributions of higher order
in g are unimportant at higher densities, where
interactions are weak. At lower densities, we

argue that the contribution of strange quarks to
the thermodynamic potential is kinematically
suppressed.

The renormalization group is used to express
the thermodynamic potential in terms of an aver-
age screened charge." ' This charge ex-
plicitly depends on the quark chemical potentials,
and approaches zero at high densities. The effects
of finite strange-quark mass are also included in
the screened charge. "'

(2) In the second section, the equations for the
quark number densities, energy density, and pres-
sure are discussed. The constraints of beta-

decay equilibrium are implemented, allowing for
the production of an equilibrium distribution of
electrons and strange quarks.

The inclusion of a bag constant, 8, in the
thermodynamic potential is discussed. We show
that 8 appears only as a positive constant added
to the thermodynamic potential and does not
enter into the renormalization-group equations.

Finally, we discuss the equations for the quark
number densities, energy density, and pressure
in the limits of large and small baryon number
density. We conclude that a phase transition takes
place between quark matter and nuclear matter.
At densities greater than the phase-transition den-
sity, a consistent evaluation of all order-z, '
effects demonstrates that Q. & ~.

(3) In the final section, we present two models
of quark matter, both of which undergo phase
transitions to nuclear matter at hadronic-matter
densities. The first model takes the bag constant
as B=56 lV[eV//fm', and assumes n, = 1 at a sub-
traction point of pQ:100 MeV. In this model, the
phase transition occurs at%=0.34 baryons/fm'.
The second model assumes 8 = 0 and ~, = 1 at
gQ =275 MeV. The phase transition then occurs
at st =0.28 baryons/fm'. We show that these two
different models give almost identical equations
of state and energy-density-density relations.

The nuclear-matter model used for a compari-
son with quark matter is the BJVH model" This
model is based on fits of potential theory to nu-
cleon-nucleon scattering, and allows for the pro-
duction of an equilibrium distribution of hyperons.
The BJVH model is representative of a large
class of potential theory models.

An interest:ing prediction of both our models is
that quark matter is strange, At densities found
within quark stars, the strangeness would be of
the order of the baryon number. At the phase
transition from nuclear matter to quark matter,
there might be a large discontinuity in strange-
ness associated with a large transmutation of
down quarks into strange quarks.

I. THE THERMODYNAMIC POTENTIAL

In Ref. 21, the thermodynamic potential of a massless quark gas of N, colors and N~ flavors mas eval-
uated to fourth order in the quark-gluon coupling, g. The result of this evaluation was

~.(i.) ~.(i.) )'

+ '
N~ [-2.250N, + 0 409N~ —3.6.97 —(4.24 + 0.12)/N, ]

o.(PO)
'

( 2)2 c O'Q
N 2 l g I Q~ 0 476 g ) Q ~ ~( )N~F p,
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where
N

2 2

E()1)=-2g (1'(1,'In ', +Q —', ()1, —)1)'In

2

+,—p, )1,(. )1, +(1, ) ln ——, ()1, —)1,. )ln2 2 2 (9(+PS.) Z 4 4 P( (1 2)

In Eqs. (1.1) and (1.2), the number of gluons is
N, =N,' —1, the chromodynamic structure con-
stant is defined as a, —= g'/16w, )1'=—Q, ,)1,', and
the quark flavor chemical potentials are p. &.

The parameter (1Q which appears in Eq. (1.1)
is the Euclidean subtraction point at which the
charge is defined. Later, we shall make a judi-
cious choice of vatue for this parameter, a value
which minimizes radiative corrections appearing
in the perturbative evaluation of the thermo-
dynamic potential. This choice requires that P, o

be a function of the quark flavor chemical poten-
tialss The explicit dependence of +, on p, , may be
obtained by solving the Gell-Mann-Low equa-

1On 25 2i7

It should be noted that the coefficient of terms
proportional to a,'P, p, ,

4 varies with the subtrac-
tion procedure used to define a renormalized
charge. In Ref. (21), a conventional prescription
was used which is analogous to the prescription
of @ED. However, other prescriptions could be
used with different results. " However, to all
orders in perturbation theory, these different
prescriptions would lead to identical results, and
differ only in the definition of the coupling g. To
finite order in perturbation theory, the results
can be different.

The virtue of our renormalization procedure,
and of the renormalization-group analysis which
follows, is that at all densities of interest the
interactions are sufficiently weak so that per-
turbation theory may be valid. The difference be-
tween our results and increasingly accurate
evaluations resides in contributions of order z,.'
and higher, and in our analysis e, is small. %e
therefore believe our analysis to be self-consis-
tent.

At the densities of interest for quark-rnatter
calculations, a zero-strange-quark-mass approxi-
mation is not appropriate, and Eq. (1.1) must be
modified to include the effects of finite strange-
quark mass. In lowest order in perturbation

theory, strange quarks give an ideal gas contribu-
tion to the thermodynamic potential. This con-
tribution is shown in Fig. 1 and may be evaluated
with the result

II(Q) 2 3 4 I (SP4 '4 ) ( ) 4 2 S )r

( 2 2)1/2-

ms

In this equation, the strange-quark mass is m, .
In second order in perturbation theory, the

strange-quark contribution to the thermodynamic
potential is given by the exchange energy, shown
in Fig. 2. The strange-quark exchange energy
1s28,29

I)s c ( 0 N 1 (
2 2)1/2o. ( ) 1(s

(2) 2 g & Vs Ps —ms

4 ( 2 m 2)1/2 2
s s s

s ms

—2 (P.S
—2))S )

2 2 2 (1.4)

As p, ,—m, —that is, near the threshold for pro-
duction of straggle quarks —the ideal gas contri-
bution becomes

(1.5)

and the exchange energy becomes

S 1 (2c(uQ) 1 2 2 2f)(2) =—, N 2 ()1,S—m, ) . - (1.6)

Thus, near threshold, both the strange-quark con-
tributions to the thermodynamic potential vanish.
On the other hand, up- and down-quark contribu-
tions are nonvanishing, and therefore dominate
over the strange-quark contributions.

This is a fortunate circumstance, as many high-

+ IO)

FIG. 1. The ideal gas contribution to the thermody-
namic potential.

p/

FIG. 2. The exchange energy.

p I
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change energy at high densities is

o.(u)
(2) 2 4 Pg (1.7)

and its sign is the opposite of that of the exchange
energy near threshold [Eq. (1.6)].

The exchange ene rgy passe s through ze ro at
FEG. 3. Diagrams which yield threshold enhancements

of the exchange energy. p, ,-—2.72pg, = 760 MeV, (1.8)

order processes modify the strange-quark con-
tributions near threshold. Processes such as
those shown in Fig. 3 give logarithmic threshold
enhancements. However, these enhanced dia-
grams vanish at finite order in perturbation
theory as

( p, ,' —m, ')'(o, /m)" ln"
S

where n &en &0.
In all orders of perturbation theory, on the

other hand, these enhanced diagrams might sum
up to powers, or inverse powers, of (p'-m, ').
On physical grounds, nevertheless, we believe
that the sum of all diagrams will not yield a
singular contribution to the thermodynamic po-
tential near the strange-quark threshold. Any
singular behavior near threshold would have to
arise from the long-distance singular behavior
of the quark-quark force. The plasmon effect,
however, appears in higher orders of perturba-
tion theory and cuts off the electrostatic contri-
bution to the quark-quark force at distances
greater than the inverse plasma frequency. ' Since
the strange quarks are nonrelativistic at threshold,
the magnetic contributions to the quark-quark
force may be ignored, and, therefore, the quark-
quark force is shielded at long distances.

Besides the plasmon effect, there are additional
significant charge screening contributions as-
sociated with multiparticle scattering processes.
These processes are important'for the cancella-
tion of infrared divergences in the perturbative
evaluation of the thermodynamic potential. The
long-distance singular behavior of the quark-
quark force should a)so be cut off by these pro-
cesses.

In addition to the threshold suppression of
strange quarks mentioned earlier, another effect
suppresses the strange-quark exchange energy
at intermediate densities. At low densities, the
exchange energy is generated by chromoelectric
forces and decreases the energy per strange quark.
At higher densities, chromomagnetic forces and
retardation effects become important, and in-
crease the energy per strange quark. The ex-

if m, =280 MeV. In most regions of interest
p, ~ 500 MeV, the strange-quark exchange en-
ergy thus is small, and of opposite sign to the
up- and down-quark contributions.

Since contributions of strange quarks are dy-
namically suppressed in order &„ we may hope
that contributions of order m,

' may also be sup-
pressed. At low densities, threshold effects
strongly suppress strange-quark contributions.
At intermediate densities, order-~, ' contribu-
tions may be kinematically suppressed since these
contributions involve iterations and radiative
corrections of the kinematically suppressed ex-
change energy. At higher densities, where
strange-quark interactions are not kinematically
suppressed, the screened charge, o, (p,o), is
small. Ignoring the contributions arising from
strange-quark interactions in order ~,' and
higher may be justified.

Strange quarks do, however, make a signifi-
cant contribution in some fourth-order processes.
These processes comprise strange-quark vacuum
polarization corrections to the up- and down-quark
exchange energy. Such vacuum polarization cor-
rections need only be calculated approximately
since they are relatively minor fourth-order pro-
cesses. Insertions of massless quark and gluon
loops for example give larger contributions, since
there are more ways of inserting these loops into
the exchange energy. Moreover, the vacuum polar-
ization correction from strange quarks is kine-
matically suppressed if g'/4m, ' ~ 1. At the high-
est densities of interest, g'/4m, '-1.

An approximation for strange-quark vacuum
polarization may be taken into account by in-
cluding the effects of strange-quark mass in the
lowest-order contribution to the Gell-Mann-Low
equation for the screened charge. In the higher-
order contributions to the Gell-Mann-Low equa-
tion, strange quarks may be ignored. These high-
er-order contributions are important only at low
densities where the coupling is large, and vacuum
pairs of massive strange quarks are unimportant.

The Gell-Mann-Low equation 'for the screened
charge, to order +,', including the strange quarks
in order cy

' is "'"~"'
C 7
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cp — m p.
— --& &c

(f(w(:(9 ) '
8 d ws((i) 2( )

.I .2.3 4
I.O

+ c)o.,'(I), ) . (1.9)

In this equation, the parameters cp and c, are
constants which are, for three colors and two
flavors of massless quarks,

a.o-

c, = -58/3w,

c, = -460/3w'.

(1.10)
I I I I I I I )

0 .2 .4 .6 .8 I

)

2.5

The vacuum polarization tensor for strange
quarks, w,(I)}, is given by

FIG. 4. The screened charge, n, (p/po) for n, (1)=1
at ~=0.1, 0.2, 0.3, and 0.4 GeV.

w,(i)) =, —, —
3 m,-'/g' ——', (1 —2m, 'jp')(1+4m, '/p, ')' 'arctanh(1+4m /p, '} ' ' (1.12)

Ignoring effects of strange-quark mass of order (w,
' in Eq. (1.9), we find that o(, (I(,) is given as the solu-

tion of the equation

-co ln + 8w[w'( g) —w'( I).,)] = — + ~in1 1 c 1+c, c c(i, 1)
IJo & (I/)P ) 0& (1) co 1+c /c0%i(P/I) )0 (1.13)

In this equation, (w, (1) is the value of (w, at the
subtraction point I(., A plot of (w,(I(/I).,) is shown
in Fig. 4 for (w,(1) =1 at the subtraction points po
=0.1, 0.2, 0.3, and 0.4 GeV. The value of m, used
in this analysis is m, =280 MeV.

Several features of Fig. 4 are noteworthy. The
screened charge decreases very rapidly from n,
-1. All the values of p.p considered are consistent
with a value of n, —

~ at a subtraction point p,: 0.1
& p& 0.4. These values of p. are consistent with
the MIT bag model fit to the spectroscopy of the
light hadrons. " At p, =3 GeV, the screened charge
is 0.04& a, ~0.06. This range of values for n„
while slightly lower than the values of 0.05 & a,
&0.10 found by Poggio, Quinn, and Weinberg in
their fit to e e annihilation data, is not inconsis-
tent with these values. " If we had included
charmed quarks in our analysis, we would have
found slightly higher values of n, . Our values are
also close to the value found by Appelquist and
Politzer for charmonium, a, =0.65 at p. =3 GeV. '

Q=Q„+Q, +Q, +Q, ,

where

(1.15)

The parameter Pp which appears as the argument
of the screened charge in Eqs. (1.1) and (1.4) has
not yet been specified. We shall choose a value
for Pp which makes higher-order radiative correc-
tions small. These radiative corrections appear
as powers of ln (I). /I1, '}. Thus, if we choose
Pp p p

these corrections w il 1 be smal 1. At low
densities, where strange quarks are unimportant,
a good choice is

(1.14)

since p.„'-p,,'. This choice is also good for densi-
ties at which strange quarks are important, since
g,' - u, ' - (((,'. (A small change in the choice of
]L(,p', moreover, yields only a very small change in
the thermodynamic potential, & Q cf: & p. '~'. )

Using Eq. (1.14) in Eqs. (1.1), (1.3), and (1.4)
for the thermodynamic potential, we find

0„=-(1/w'}~ p„'[1 —8n, /w —16(o,/w)' ln(c(, /w) —31.1((w,/w) ],
D~ = -(1/w ')-,' I)~ [1 —8(w, /w —16(a,/w)' ln(a, /w) —31.1(n,/w)'],

(1.16)

1 1 +i 2 m»ii2
(+ 2 m 2)1/2(+ 2 &m2)+ &m41n s (I 8 s)

7T' m

8~ ) u(v* — ')'~* — *& ' ' ' '' —)(v*—~*)'I)
C

~

$ $ ~ S
~ ~

S
~ ii~ ii

~

~

~ ~~
~ m ~ jms (1.18)
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2 2 2

2 2
—4(v.* v*)(~.*ln . " . ~ v. '1 .' . )&~ +W~ pg +pg

+ —,(q„-q,) in " + —, ~.I,(1. +V )in --, (I „—q, ) in4 l~.'- u&'I ~~ 2 (I S+ 4d) 4 4 4 +u

Aging

(1.19)

In these equations, 0„, Q„and 0, represent the
contributions of up, down, and strange quarks to
the thermodynamic potential. The contribution
associated with the interference between up and
down quarks is 0. , The chromodynamic structure
constant, a, = a,(PO/p, ), is given by the solution
of Eq. (1.13).

II. THERMODYNAMIC PARAMETERS

6~~@+8 + V (2.1)

and

In this section, we shall derive formulas approp-
riate for the description of quar'k matter in a
quark star. We shall also discuss the inclusion of
a bag constant, B, in the calculation of the thermo-
dynamic potential. Finally, we shall discuss a
constraint which limits the magnitude of the aver-
age screened charge.

In our analysis, we allow for the production of
an equilibrium distribution of strange quarks and
electrons by beta decays,

Q=e(~3 ——,'~ —~, -&,) =0. (2.7)

Since the chemical potentials are related to the
number densities by

aX. =- 08 IL(,]
(2.8)

Eqs. (2.5)-(2.8) allow for elimination of all chemi-
cal potentials in favor of the baryon number den-
sity.

The baryon number density is related to the
quark number densities as

At high densities, p., —p.„-p,„and electrons
give a very small contribution to the thermodynamic
potential. Our numerical analysis showed that
electrons may be ignored at all densities. How-
ever, for completeness, we shall demonstrate
how to include their effect in quark-matter calcu-
lations.

In addition to the constraint of beta-decay equili-
brium, the quark and electron number densities
must satisfy the constraint of electrical neutrality,

s-u+e +v. (2.2) sts = 3(01g+&g+stg) . (2.9)

1, 4e= 2 ~&e ~

3 Tf
(2.3)

The implication of beta-decay equilibrium is that
the energy density,

S=Q+ p (2.4)

is at a minimum with respect to the density of
strange quarks and electrons. Minimizing 8 with
respect to ~, and K, gives the equations of chem-
ical equilibrium

Pg = Pg- Pg (2.5)

Since the electrons produced by the beta decays
are relativistic, and since the electromagnetic in-
teractions of the electrons are small, the electron
contribution to the thermodynamic potential may
be approximated by that of an ideal, relativistic
electron gas,

Using the constraint of electric neutrality, Eq.
(2.7), we see that

Xg =X„-~. (2.10)

Since at all densities ~31,/31„~ «1, we see that the
baryon number density is approximately equal to
the up-quark number density.

All thermodynamic quantities may be written in
terms of the baryon number density. In particular,
the energy, pressure, and up, down, strange,
and electron number densities are functions only
of R~. The constraint of beta-decay equilibrium,
unfortunately, complicates the expression of these
quantities in terms of K~. We have been able to
determine thermodynamic quantities as a function
of baryon number only by performing a computer
analysis.

For performing a numerical analysis, it is use-
ful to introduce the spherical variables

and

(2.6)

4 =(P„+Pg ) (2.11)
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tang= p„/I(~ . (2.12) & = m, /p, cosg, (2.13)

Usinp Eqs. (2.5) and (2.6) to impose beta-decay
equilibrium, and defining

Eqs. (1.16)-(1.19) for the thermodynamic potential
become

(2.14)(1/w') —,
' p' sin~8[1 —8n, /w —16(o(,/w)' In(a, /w) —31.1(o(,/w)']

(1/w') —,
' p4 cos48[1 —6o.,/w —16(c(,/w) In(n, /w) —31.1(n, /w)'] (2.16)

(1/w ')(a, /w)2 sin'8 cos28 (6 In(c(, /w) —1.9 —36.6[ tan28 ln(sing) + cot'8 ln(cos8)]

—6[sec'8 ln(sing)+ csc'8 ln(cosg)] + -,'(tan'~'8 —cot'~'8)' ln
~

tang —cotg
~

+ '-, secg cscg ln(tan' '8+ cot' 28) —-', (tan28 —cot28) ln(tan8)} (2.16)

((, = ——,—,'p' o '8 (1 —1,')'~'(1 ——,'X') ~ —,'h'( )
1+(1—X' '~'' 3 (1 X')'~' X'I ' 2(1 X')'n (2.17)

In these equations, the average screened charge
depends only on p, as

~.= ~,(I '/2I .'). (2.18)

The electron contribution to the thermodynamic
potential is

&, = —» -; p'(cosg —sing)'.
1

(2.19)

The number densities may be obtained from Eqs.
(1.16)-(1.19) and Eq. (2.3), by differentiating with
respect to the chemical potentials and then im-

posing the constraints of beta-decay equilibrium. In
the differentiation, the average screened charge inust
be differentiated so as to produce terms of order
a,' and a,'. Since in evaluating the thermodynamic
potential we have ignored terms of order n, ', and
those terms of order n, ' involving the strange-
quarks mass, it is not consistent to maintain these
terms here. We believe that the thermodynamic
potential, energy density, and number densities
must all be evaluated consistently in a pertur-
bative expansion in the average screened charge.
Performing the evaluation of the number densities,
we find

2„=(1/w') p' sin'8(1 —8o(,/w —16((w,/w)' In(o(, /w)cs c'8

+ (c(,/w)'(31. 6+ 11.8 cot'8 ——', csc'-'8(sing+ cosg) '[(sing —cosg)'+ 4 cosg]

+ (170.4+ 16 csc'8) ln(sing)+ 16 cot'8 ln(cosg) —'; (1 —cotg)' ln
~

tan8 —cotg
~

——", cot8(3+ cot8') In(tan'~'8+ cot' '8)++61n(tang)}), (2.20)

1 6n 1 1X = Iu'cos'8 (1 —I(. )' ' — ' 1 —X —3A.'(I —X')' 'lnr2 r (2.21)

and

X, = (1/3w') (L('(cos8 —sin8)'. (2.22)

The down-quark number density is given by Eq.
(2.20) with cosg-sing.

Ignoring terms of order o(,' (and terms of order
(w,

' involving the strange-quark mass) in the deriv-
ation of Eq. (2.20) and (2.21) for the quark number
densities introduces a difficulty in the calculation
of the pressure
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P =-dVh jdV=-Q. (2.23)

Here, V is the volume and 8 is the energy density.
If these terms were included in the evaluation of
the number densities, it would be simple to verify
that

(2.24)

where h is given by Eq. (2.4) and 0 by Eqs.
(2.14)-(2.17). If, however, these terms are not

included then this equation will be invalidated by
terms of the same order as those which were ig-
nored.

This difficulty can be avoided either by including

these terms in the number densities, or by mod-
ifying Eqs. (2.14)-(2.17) for 0 by including a cor-
rection, 6P, which is of order n, ' (a.nd order
n, ' for those terms involving the strange-quark
mass). We have chosen the latter course to mod-
ify Eqs. (2.14)-(2.17).

In either case, the magnitude of the modifications
must be small at all densities where the pertur-
bative evaluation is valid, since the modifications
are of the same order as terms which have not
been calculated for Q. In the next section, we
shall see that

~

5P/8
~

«1 at all densities greater

P = -Ao+ 6P, (2.25)

where 0, is given by Eqs. (2.14)-(2.17), we may
use Eqns. (2.23), (2.24), and (2.4) to obtain

than the phase- transition density. Nevertheless,
6P is numerically significant at densities near
the phase-transition density. At these densities,
the pressure becomes small, and high-order terms
in the perturbative evaluation become important.
By including 5P, we have kept only those higher-
order terms in the evaluation of the pressure
which maintain the validity of Eq. (2.23), when the

energy density is evaluated to order n, ' in a chem-
ical-potential-dependent charge.

In Ref. 23, an evaluation of the energy density
of a relativistic quark gas was performed to order
a, in a density-dependent screened charge. Terms
of order n, ' were retained when the energy was
differentiated with respect to the density to obtain
the pressure. Terms of order n, 'Lne„and terms
of order n, ' which were not generated by differen-
tiation, were ignored. Since the conclusions of
Ref. 23 depended on the terms of order a,' which
was generated by differentiation, we believe that
the analysis of Ref. 23 was inconclusive.

If we let

5P=vH„— ——,'p, ' ' cos'8 3 (I -X')'~' —X'In -2(1 —X')'1 do, 1, , 8a, , ( ', ,g, , 1+(1—x')'~'
dX„n 2

a, sin'8cos'8 32+(tan'8+cot'8) 78.2+32ln —' ~+20„,r

I dp ( I6, ~ ' . , dv, 115 n,+X — — p,
' —' (cos'8+sin'8) v'p, ' +d'2„} v' v — d p, 6

(2.26)

We did not evaluate analytically the derivative of
&, and p, with respect to the up-quark number
density, but have instead evaluated it numerically.

Up to this point, we have not discussed the in-
clusion of a bag constant in the description of the
dynamics of quark matter. In the MIT bag model,
a positive constant, B, is added to the quark-
gluon Hamiltonian. The quark-gluon fields are
required to be enclosed within a finite volume,
and to satisfy boundary conditions at the surface
of the volume. The field equations, together with
the boundary conditions, determine the shape of
the volume.

For a thermodynamic system, boundary con-
ditions are unimportant. Different choices of
boundary conditions give differences in the ther-

This modification can in no way change the dis-
tribution of quark number densities, since number
densities are given by derivatives of A. The pres-
sure and energy density, however, are modified as

8-8+B,
P P-B.

(2.28)

(2.29)

For a thermodynamic system, the bag constant
has a simple interpretation as the thermodynamic
potential of the vacuum. When the thermodynamic

modynamic potential which vanish as V ' ' for
large V. The thermodynamic potential becomes
modified by the bag dynamics only in that

(2.27)
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0"'(P, p) =Q(P, i») — lim A(f}, p, }.
g» o g~O

(2.30}

In this subtraction procedure, the value of the
thermodynamic potential of the vacuum is implic-
itly set equal to zero. In a unified theory of par-
ticle dynamics, this requirement has no physical
implications, since only energy and pressure dif-
ferences would be measured experimentally. How-
ever, we wish to compare our calculations of the
energy and pressure of quark-matter to nuclear-
matter calculations, calculations which are based
on potential theory models of nuclear interactions,
and not derived from underlying quark dynamics.
In such a comparison, the thermodynamic potential
of the vacuum, B, may be regarded as a phenom-
enological parameter.

Since the bag constant is a parameter indepen-
dent of density, it does not enter into the renor-
malization-group equations. Nevertheless, the
bag constant, like the chromodynamic structure
constant, is a phenomenological parameter deter-
mined from a comparison of theoretical calcula-
tions and experimental data. Increasingly accu-
rate calculations in the bag model may lead to
different values for the bag constant and the chro-
modynamic strructure constant. When effects of
order n, are calculated, the MIT bag model fit
to the spectroscopy of the light hadrons gives
B = 56 MeV/fm' and»». , = 0.55.

In our analysis, calculations are carried out
to order e,' in the screened charge. We should
not expect that the same parameters which give
the best fit to light-hadron spectroscopy in order
n, will be those which give the best fit in order
a,'. In fact, our calculations show that, for a
thermodynamic system, baglike effects appear
in order n, '. The appearance of these effects
suggests that higher-order calculations in the
bag model itself might decrease the values found
for B and n, .

In the next section, two models are presented.
One uses B =56 MeV/fm' and n, =1 at p,, =100
MeV; the other uses B =0 and n, =1 at p,, =275
MeV. 'The equations of state, and energy den-
sities as a function of density, produced by these
two models are for all practical purposes iden-
tical. In addition to the calculations presented in
the next section, we have considered still other
models, using various values for B and p, In
these calculations, we found that the equation of
state and energy density were in sensitive to vari-

potential is calculated from a relativistic field
theory, the divergent zero-point energy of the
vacuum must be subtracted from the unrenormal-
ized thermodynamic potential to define a renormal-
ized thermodynamic potential, "

and

X«X (2.32)

The equations for the pressure, energy density,
and number densities at high densities are

p=g8,
8=—'77' 'X' '

4 g

(2.33)

(2.34)

(2.35)

At low densities, on the other hand, a fair ap-
proximation is found by ignoring strange quarks
and taking p, „-p, d. In such an approximation, Eqs.
(2.14}-(2.22) become

&» = (I/»»') i»»'(I —2.55»»., —3.24n, ' Inn,

—5.74m, '), (2.36)

h= «P }»,»X, +0.204o.,2+ p, »«,
S

and the pressure is given by

(2.37}

P =Ol'„' (8/5I„) .
8

(2.38)

A constraint on the screened charge follows
from E»I. (2.36). In order to maintain positivity
in the relationship between the quark number den-
sities and chemical potentials, the screened
charge must satisfy the condition

2.55m, + 3.24m, inn, + 5.74m, & 1 . (2.39)

This condition is satisfied only if at &0.32. At a,
=0.32, the quark number densities vanish. The
screened charge approaches this upper bound at a
finite value of p, „corresponding to the solution of

ation in B and p,„so long as B and p,, were con-
strained to give a phase transition between nuclear
matter and quark matter at hadronic-matter den-
sities.

Before proceeding with a detailed analysis of
specific quark-matter models, we shall first
attempt to offer some insight into the structure
of the relations between pressure, energy density,
and density. We begin by observing that at very
high densities, the screened charge, n„ is suf-
ficiently small so that interactions may be ignored.
In addition, at very high densities the quark Fermi
energies are much greater than the strange-quark
mass, and a good approximation is permitted by
taking the strange-quark mass to zero. In this
approximation, the up, down, and strange quarks
appear symmetrically in the thermodynamic po-
tential with

(2.31)
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(2.40)

If fop is taken as the subtraction point at which

n, =l, then p, ~ pp
Before zero density is reached, however, a

phase transition between quark matter and nu-
clear matter will occur. 'The occurrence of this
phase transition is implied in Eti. (2.37) for the
energy density. As the number density approaches
zero, the quark energy density approaches a finite
limit,

$(0) =0.204m, 'g p, '&0 . (2.41)

Since 8 /X - X' ' at high densities and 8 -8(0)/5f
at low densities, the energy per quark must have
a minimum at some critical density. At this den-
sity, the pressure would vanish and the quark
matter becomes unstable.

A phase transition between nuclear matter and
quark matter would occur at a density higher than
that at which the pressure vanishes. When the
quark energy density and pressure become small,
quark matter becomes unstable, forming droplets
of hadronic matter. The occurrence of a mini-
mum for the energy per quark as a function of
density signals a phase transition.

The use of Eels. (2.36) and (2.37) is, of course,
not valid for densities below or near the critical
density at which the pressure vanishes. Near the
critical density, the perturbative evaluation of the
pressure breaks down. As the pressure approaches
zero, cancellations occur between all the terms
which result from this evaluation.

We can conclude, however, that the equation of
state for quark matter is softer than that of an
ideal relativistic gas at all densities for which
the perturbative evaluation of the pressure is
valid. At the phase-transition density, moreover,
the value of the screened charge need not be
large. The numerical analysis, which we shall
present in the next section, provides hope that
perturbation theory may be valid above and near
the phase-transition density. At all densities
greater than the phase-transition density, we find
the screened charge is small n, ~ 4.

terest, so that effects of interactions are likewise
small.

The second model, model II, uses B =0 and a
screened charge parametrized so that n, = 1 at
pp 2 75 MeV . Calcul ations using this model
demonstrate that there is little difference between
the descriptions of quark matter provided by quan-
tum chromodynamics (CgD) with Be0 and by QCD
with B =0. In fact, we have considered various
models with 0 &B & 56 MeV/fm' and 100 MeV & p,
&275 MeV. When the parameters were chosen
so that a phase transition between quark matter
and nuclear matter occurred at hadronic-matter
densities, the differences in the energy density,
pressure, and density relations of those models
were small.

We have included the effects of an equilibrium
distribution of electrons, as discussed in Sec. II.
At all densities greater than hadronic-matter den-
sities, electrons give only negligible contamina-
tion of quark matter. We shall thus ignore elec-
trons in the results we present.

The density dependence of the screened charge
is shown in Fig. 5. The screened charge ap-
proaches n, -0.32-0.34 at small densities, and
approaches zero at very high densities in both
models I and H. At hadronic-matter densities (5fs- —,

' baryons/fm'), the screened charge is a, -0.24
for model II and o.,-0.1 for model I. At the highest
densities found within pulsars, Xs-1-2 baryons/
fm', the screened charge is a, -0.1 in both models.

The density dependence of the energy per baryon
is shown in Fig. 6. The quark-matter curves have
been smoothly matched to the BJVH nuclear-mat-
ter model at hadronic-matter densities. The
phase-transition density is Xs =0.34 baryons/fm'
for model I, and X~ =0.28 baryons/fm' for model
II.

In this smooth matching, the phase transition is

0.4—

0.3

III. QUARK-MATTER MODELS
C—0.2

In this section, we shall present the results of
our numerical analysis of two quark-matter mod-
els. Model I is a bag model, B =56 MeV/fm', with
a screened charge parametrized so that n, =1 at
p.p =100 MeV. One virtue of this model is that
quark confinement is incorporated in the quark
dynamics through the presence of B. In addition,
the screened charge is small at all densities of in-

0.(

I I I I I I I I I I I I I

0 I.O

nB (fm )

I I I I I I I

2.0

FIG. 5. The density dependence of the screened
charge for models I and II.
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FIG. 6. The energy per baryon as a function of den-
sity.
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assumed to be of second order and both 6/X and
the first derivative of 8/X are required to be con-
tinuous at the phase-transition density. The pos-
sibility of a first-order phase transition was con-
sidered in models not presented here. We found
little qualitative difference between the equations
of state resulting from assuming either a first-
order or a second-order phase transition.

The density dependence of 8/X is remarkably
similar in both models. In the density region 0.25
baryons/fm'&Xs &2 baryons/fm', the energy is
well approximated by

(3.1)

This functional form is consistent with the ideal
relativistic gas behavior at high densities, 8-3V ',
and with an increase in the energy per baryon at
lower densities.

The equation of state is shown in Fig. V. The
equation of state in both models is well approxi-
mated by

3 (3 2)

where 8 is given by Eq. (3.1). This form is com-
pletely determined by Eq. (3.1) for the energy den-
sity. The pressure approaches that of an ideal
relativistic gas, P = —,8, at high densities. At lower
densities, the equation of state is "softer" than
P = 3g, since it must match to a "soft" nuclear-
matter equation of state.

As was discussed in Sec. II, a small correction
term, ~P, must be added to the thermodynamic
potential to define properly the pressure. This
correction term in the screened charge is of
higher order than the order in which b and X,.
have been calculated. The ratio ~5P/8

~

must be
small in order that the perturbative evaluations of
P, 5, and X,. may be consistent. This ratio is
shown in Fig. 8. This correction term is not
plotted for model I, as I 5P/g ~&0.005 at all den-
sities X~&0.34. For model II, this ratio is less
than 0.1 at densities X~ &0.28.

The fact that this correction is less than 10%
suggests that a perturbative evaluation of P, 8,
and X,. may be valid. However, such a small un-
certainty in 8 introduces a large uncertainty in the
calculation of the density for a phase transition be-
tween quark matter and nuclear matter. Since we
assume that a phase transition exists, we have
matched quark matter to nuclear matter by ad-
justing the parameters of our various quark-mat-
ter models. The uncertainty in our evaluation of
these models leads to a corresponding uncertainty
in the parameters which give a phase transition at
hadronic- matter densities. This uncertainty is
largest in the model with B =0, and we estimate
that the 10/o uncertainty in 8 would give an un-

N
E

& IO
QI

Q

.08—

(u -05

Q
co 04

IO
I I I I I I.'ll I I I I &il!I I I l I ! Il, l

IOO IOOO

E ( MeVX fm')

FIG. 7. The equation of state. The equation of state
of an ideal relativistic gas, P=3 e, is denoted by the
dashed line.
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FIG. 8. The ra'io of IBP/el in model 1L
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TABLE II. The pressure, energy density, and number

density relations for model II.

n& (fm ) 5/n& (MeV) P (MeV/fm ) n, /n~

I I I

0
I I I I I I I I I I I I I I I I

I.O 2.0
n (frn )

FIG. 9. The ratio of strangeness to baryon number as
a function of density.

TABLE I. The pressure, energy density, and number
density relations for model I.

n~ (fm-3) Sin& (MeV) P (MeV/fm )

0.100
0.150
0.200
0.250
0.300
0.347
0.402
0.494
0.597
0.713
0.796
0.888
0.985
1.20
1.38
1.57
1.79
2.02
2.27
2.53
2.72
3.02

952
956
961
966
972
978
988

1010
1037
1070
1093
1117
1142
1194
1234
1276
1318
1362
1405
1449
1479
1523

0.7
1.8
3.7
6.8

11.4
20.0
35.5
63.7
98.1

139
171
207
246
338
420
514
620
740
876

1028
1138
1320

0.59
0.63
0.69
0.73
0.76
0.78
0.80
0.81
0.84
0.86
0.87
0.88
0.89
0.90
0.91
0.91
0.92

certainty in p,, of order 10/p.
The ratio of strangeness to baryon number,

X,/Xs, is shown in Fig. 9. For the quark phases
of both models, the strangeness approximates the
baryon number. At high densities, where quark
matter is flavor symmetric, the strangeness ap-
proaches the baryon number.

Below the phase-transition density, the strange-
ness is very small. The production of a large num-
ber of strange quarks in the phase transition to
quark matter may be attributed to two dynamical
effects, the most important of which is the Fermi
exclusion principle. At high densities, the Fermi
energy of up and down quarks becomes greater
than the strange-quark mass, rn, -280 MeV. The
up and down quarks can lower their Fermi ener-
gies by transforming themselves into strange

0.100
0.150
0.200
0.250
0.312
0.347
0.383
0.495
0.615
0.701
0.793
0.890
1.05
1.16
1.40
1.60
1.82
1.98
2.23
2.49
2.78
2.98

952
956
961
966
972
979
987

1018
1055
1081
1109
1137
1180
1209
1268
1313
1358
1388
1434
1480
1526
1557

0.7
1.8
3.7
6.8

15.4
25.8
37.0
73.8

116
149
185
225
290
341
454
554
665
749
884

1046
1206
1329

1.12
1.10
1.08
1.05
1.03
1.02
1.01
1.00
1.00
1.00
0.99
0.99
0.99
0.98
0.98
0.98
0.98
0.98

IV. CQNCLUSIQNS

We have seen that viable models of quark mat-
ter can be constructed from fundamental theories
of quark dynamics. At the present level of ac-

quarks. A somewhat less important effect is the
attractive interaction of strange quarks at low den-
sities. As was discussed in Sec. I, the exchange
energy is attractive at low densities and becomes
repulsive at high densities. The interactions of
strange quarks lower the energy, whereas the
interactions of up and down quarks raise the en-
ergy.

This second effect is most important when inter-
actions are strong. The quark-quark force is
larger for model II than for model I. The larger
strange-quark content of model II is, therefore,
not surprising.

The amount of strangeness predicted by quark-
matter models is sensitive to changes in the pa-
rameters of different models. The strangeness is
sensitive not enly to the interaction strength, but
also to the magnitude of the strange-quark mass.
An increase in the strange-quark mass leads to a
decrease in strangeness, since with increased
strange-quark mass the number of up and down
quarks with sufficient energy to decay into strange
quarks is decreased. The energy density rela-
tions of models I and II are summarized in Tables
I and II.
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curacy of perturbative calculations, and given the
uncertainties in the experimental knowledge of the
parameters of these theories, a prediction of the
precise density of a phase transition between quark
matter and nuclear matter cannot be made. Mea-
surements of the charge radius of the proton, how-
ever, indicate that the proton is an extended object
of radius 1 fm. If the extended structure of the
proton arises from quarks, then we expect a phase
transition from nuclear matter to quark matter at
the density of matter inside of a proton.

Using a density of this order as the phase-tran-
sition density, we have seen that different quark-
matter models give remarkably similar energy
density, pressure, and density relations. This
similarity is not unexpected, since asymptotic
freedom and the value of phase-transition density
strongly constrain the high- and low-density limits
of the quark-matter models ~ The extrapolation of

the energy density and pressure as functions of
density between these limits is insensitive to the
changes in parameters which characterize dif-
ferent models.
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