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We rewrite XP' theory as a dual string expansion by performing a combined topological strong-coupling

expansion on an x +, P + lattice. The resulting expansion is the standard dual loop expansion plus the point-

energy-momentum density graphs of Green. The expansion goes through only for the "wrong" sign of X, i.e.,
when the theory is asymptotically free and infrared unstable. The coupling strength X is fixed by an

eigenvalue condition, and the rest tension of the string, To, replaces it as a free parameter. The continuum

limit only exists for the critical dimension D = 26. We suggest that this approach might be a suitable

starting point for spectrum calculations in quantum chromodynamics.

I. INTRODUCTION

In a recent letter, "hereafter referred to as (I),
we reported a precise connection between field
theory and dual resonance models based on a com-
bined strong-coupling and topological expansion.
Here we give a more complete account of these
results, including detailed derivations omitted
from the letter version.

The history of attempts to identify dual reso-
nance models (DRM} as an approximation to field.
theory is nearly as long as that of dual models.
Nielsen and Olesen and, independently, Sakita and
Virasoro' suggested in 1970 that DRM were ap-
proximations to very large planar Feynman dia-
grams ("fishnet" diagrams). The motivation for
this idea was that in a strong-coupling theory dia-
grams with many vertices should dominate. What
was lacking at that time was (1) a justification for
the planar approximation and (2) a systematic
method of calculating higher-order corrections to
the leading fishnet diagram. The calculation done
by these authors assumed that propagators could
be well approximated by Qaussian functions in
momentum space, and it was not clear how this
approximation could be systematically carried
out.

In the meantime much progress was made in
understanding the basic dynamics underlying the
DRM. ' The spectrum of the DRM was shown to be
that of a relativistic string, ' and the dual reso-
nance amplitudes were shown to be consequences
of the ansatz that the probability amplitude for a
string to break in two was proportional to the
overlap of wave functionals of the three strings
involved in the process. ' The crucial ingredient
to the solution of these problems was the discov-
ery' that string dynamics simplifies dramatically
when referred to an infinite-momentum frame
(light- cone quantization).

In 1974 't Hooft' utilized this discovery to make the

fishnet-diagram idea more precise. He observed
that when the Feynman propagators are written in a
mixed x ', P ', x, representation' [V ' = (I /v 2 )( V '
s V'}], large planar Feynman diagrams resemble
very closely the string functional integrals intro-
duced by Mandelstam. ' The connection was not
exact, however, and 't Hooft suggested that the
string calculations might be approximations to
the sum over all planar diagrams. In the same
paper 't Hooft also lent some insight into the nature
of the planar approximation by observing that plan-
ar diagrams become more important as S, the
size of the symmetry multiplets of a field theory,
gets larger. Indeed, in the limit S-~ with g'S
fixed, only planar diagrams survive. Subsequent
developments along these lines centered around
this latter observation. In particular, Veneziano'
and others have developed qualitative dynamical
schemes based on 1/S-type expansions. Central
to these schemes is the assumption that the lead-
ing order in 1/S is qualitatively identical to the
DRM.

In I we clarified the sense in which the DRM is
an approximation to the sum over planar graphs.
We showed that by making x' and P discrete, i.e. ,
putting these variables on a two-dimensional lat-
tice, one could define a topological strong-coup-
ling expansion of A. Q' theory in which the leading
order approached precisely the DRM in the con-
tinuum limit. Further, a large subset of nonlead-
ing diagrams could be mapped one to one onto the
lattice string diagrams of Qiles and Thorn. ' The
remaining nonleading diagrams could be identified
in the continuum limit as the point energy-momen-
tum insertions which Qreen' has suggested must
be added to the standard dual loop expansion if
pointlike behavior at short distances is to be ach-
ieved. The present article is devoted to a detailed
exposition of the work reported in I.

Before proceeding to this task, we should per-
haps explain some of the motivations for this pro-
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gram of investigation. The DRM is the only ex-
ample of an extended model of hadrons, which is
Consistent with Lortenz invariance, quantum me-
chanics, crossing symmetry, pegge behavior,
and unitarity. Other types of extended models,
such as the MIT bag model, may be more flex-
ible phenomenologically, but they have not yet
been consistently quantized. Thus the DRM re-
mains an important theoretical testing ground
for, the viability of such models.

The dual model has serious shortcomings, how-

ever, and the identification we have achieved tells
us what aspects of field theory are left out of the
dual approximation. At the same time it instructs
us precisely how they are to be incorporated if
we wish to have a better approximation. Such im-
provements may well have to be made nonpertur-
batively, e.g., to finite order in the dual expansion
there are negligible high-momentum components in

the hadronic wave functions.
Another virtue of our derivation of dual models

from field theory is that it teaches us how to in-
corporate internal symmetry in dual models. pre-
viously this could only be done in an ad hoc man-
ner. Now one can calculate the dual model assoc-
iated with a field theory with arbitrary internal-
symmetry structure. In particular one may at-
tempt the dual approximation to quantum chromo-
dynamics (QCD), the current favorite theory of

strong interactions. Of course, this approxima-
tion neglects such things as high-momentum const-
ituents, but it may give a tolerable approximation
to the level structure of the theory. It may also
give us insight into the spontaneous symmetry
breaking of chirality.

Finally, the DRM is a model whose consistency
depends on severe restrictions on degrees of free-
dom. For example, the generalized peneziano
model works only if there are 26 —D additive con-
served quantum numbers, where D is the dimen-
sion of space-time. It may be that the number of
hadronic flavors is constrained by self-consis-
tency. Our work with field theory reveals the na-
ture of these restrictions; the expansion can be
carried out only if the system is critical and this
demands that the system have a definite number of
degrees of freedom. A true unification of weak,
electromagnetic, and strong interactions may re-
quire that these constraints be taken into account.

II. THE DUAL STRING EXPANSION OF X(ti FIELD
THEORY

The starting point of our dual string expansion
is the Feynman graph expansion for Green's func-
tions written in an x', P' representation. Thus we

write [x' = (1/&2)(x + x + ) P' = (1/&2)(P + P +') ]

i„... exp[i(-x, p, -xP'-x'P )]
(2») ' p +m —2P'P —ie

1 dP'
(2 v)"' 2 I

P'
I

dp, e(»P )exp[i[», T, -x P -x [(p,'+m')/2P ]]. (2.1)

In the null-plane description, " it is useful to
distinguish Feynman diagrams which have different
x' ordering, even though they have identical topology.
This distinction is possible because of the 8( ' x)P
in (2.1). The region x, P'&0 is disjoint from the
one x', P'&0. We may therefore adopt the conven-
tion that every line propagates forward in x'. With
this convention the propagator associated with any
line is (after a ~ick rotation x'= ir, ~&0, -D=d
+2)

(2.3)

where it is understood that the range of 7 integra-
tion is restricted by the requirement that every
line propagate forward in 7. Note that A. &0 cor-
responds to a negative potential energy, X&0 to
a positive potential energy.

A. The v, P+ Lattice

In I we proposed that Feynman diagrams be an-
alyzed on a &, P+ lattice obtained by replacing all
integrals over 7 and P by sums:

x exp[-(P'/2v)x, 2 rm'/2P'].

Each vertex will have the factors
(2.2)

t=ka,

P'= laTO,

d7' - a Z, (k = 1,2, . ~ );

dP' -aT Q, (l = 1, 2, . . . ) .
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The parameter T, has dimensions of force and will

be identified as the rest tension of the string.
Here it is the ratio of the minimal unit of P' (an
infra. red cutoff) to the minimal unit of & (an ultra-
violet cutoff). The propagator and vertex become

tl /2

„(.,)=Z, ',
le

xexp[ (T-g/2k)x, ' —km' j2IT, ],

~ —. . .rr,.„-.—.,
i=1

where 5». is a Kronecker 5 function, and we
lg, ll

have redistributed some factors among propaga-
tor and vertex. Notice that the dependence on the
lattice spacing, a, disappears. Conventional per-
turbation theory is regained by ordering the graphs
contributing to a particular Green's function start-
ing with those with the smallest number of vertices.
Our lattice regulates all divergences. If D ~ 4,
the continuum limit will exist order by order in
perturbation theory as one can absorb all diver-
gences into redefinitions of the coupling constant
as in conventional renormalization theory.

B. The strong-coupling expansion

Our strong-coupling expansi:on is set up in the
following way. Focus on a Green's function which
spans (N+ 1) a units of & and carries MaT, units
of P'. Then because of the lattice, there are a
maximal number of interactions which can occur,
roughly M(N+1). There are, of course, many
graphs with this maximal number of vertices. The
strong-coupling expansion is obtained by calculat-
ing the maximal graphs first and ordering the re-
maining graphs in a power series in I/X. This
straight strong-coupling expansion is formidable
because the number of graphs of leading order
proliferates. One way to organize all these graphs
in the continuum limit is the dual string expansion
to which we now turn.

The organizing principle of the dual string ex-
pansion is to calculate "planar" graphs first, and
then to arrange the rest of the graphs according
to their topology, replacing all planar subgraphs
by the results of the "planar*' calculation. W0 de-
fine a planar graph as one which can be drawn on
a cylinder with no handles and which has no crossed
lines. Note that the 7' ordering of vertices may
force a graph to have crossed lines and hence be
nonplanar for our null-plane description, even
though other v- orderings would be planar. Such
exceptions only apply when some of the crossed lines
are external. We include a cylindrical topology as
planar. We have dubbed our expansion the dual
string expansion to distinguish i.t from the stand-

(N+I) a

OO OOO
0 (N+l) a

Fgo. 1. Two ways of drawing the bare closed-string
propagator carrying only two units of P' . Each line
carries P' =aT&. The vertices oh the dashed lines
labeled A are identified.

ard dual loop expansion as the latter is included
in but does not exhaust the former.

(N+I) 0

FIG. 2. Typical bare closed-string yropagator
carrying 18=6 units of P . The dashed lines A are iden-
tified.

C. The dual loop expansion (DLE)

We first identify all the graphs which exhaust
the standard dual loop expansion. These are char-
acterized by the requirement that every line car-
ries the minima) amount, aTO, of P'. In the fol-
lowing, the total P' entering any graph is MaT, .

1. The bare closed-string ProPagator, M even.
See Figs. 1-3. First define the M =2 propagator
as in Fig. 1. Then define the general M-even
case as that unique planar graph spanning a fixed
& interval with a maximal number of vertices, and
not containing subgraphs like Fig. 1. A typical
case M =6 is shown in Fig. 2 where the dashed
lines are identified. Note that for fixed M and
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FIG. 3. The cantinuum limit of the closed-string
propagator: M, N-~ with (N+1)/M —TTO/P fixed.
The lines are identified.

propagation time (N+ 1)a these graphs contribute
to leading order in the strong-coupling expan-
sion of planar graphs If we. regard M=2 closed-
string subgraphs as limiting cases of handles, the
closed-string propagator is the X-~ limit of the
sum of all planar graphs. The continuum-limit
string graph is shown in Fig. 3.

2. The oPen-string ProPagator. This is most
easily defined by considering a sequence of miss-
ing vertices in the closed-string propagator (see
Figs. 4 and 5). Between times 0 and na an open
string propagates so we identify (Fig. 6) as the
open-string, even-M, propagator. This graph is
O((l/)&)'"'&z 2) compared to the closed-string
propagator with the same M. We thus see that
--,' ink is a contribution to the energy of the open
string. Clearly, we must have A. &0 for real en-

FIG. 5. The continuum limit of Fig. 4:
with (N+1)/M= TTO/P' and n/(N+1) =t/T fixed. The
lines A are identified.

ergies. We shall discuss this 'point a little later.
Note in Fig. 8(a), the M=2 open string. Open

strings with odd M are obtained by considering a
sequence of missing vertices in the even-M open-
string propagator (see Fig. 7). Note that a single
line is the shortest open string [Fig. 8(b)], and

the continuum limit is shown in Fig. 9. From Fig.
4 we also identify the following:

3. The-closed-string-open-string v ertex. See
Fig. 10 and similarly note the following:

4. The three-open-string vertex. See. Fig. 11.
To complete the list of ingredients for the dual

loop expansion, we note also the definition of the

following:
5. The three-closed-string vertex. See Fig. 12.
6. The four string vertex-. See Fig. 13.
7. The closed string en&is-sion vertex from an

open string. See Fig. 14.
The dual loop expansion for a specific scattering

process may be written in terms of the light-cone
interacting string graphs of Mandelstam. ' Each
such graph is an integral over the ~ and 0. coordin-
ates of the various vertices included in the graph.
For all v and 0 coordinates away from the end

points, the integrand may be arbitrarily well ap-
proximated by the corresponding fishnet graph
constructed from the above seven ingredients.

I

0
I

na
(N+I) a

FIG. 4. A series of missing vertices in the closed-
string propagator. Between times 0 and na an open-
string propagates. The dashed lines A are identified.

FIG. 6. The bare open-string propagator carrying
M = 8 units of P . Each line carries P =a To.
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0 ~20 ~ (N+l) o

FIG. 7. The bare open-string propagator carrying
M= 7 units of P

For ~ and o coordinates near the end points of
integration the continuum limit is singular, and

this is reflected in divergences of the ~ and o in-
tegrals.

The sum of all planar, minimal-P', Feynman
graphs defined with our 7, P lattice may be re-
garded as a lattice approximation to the sum of
all planar interacting string graphs as in Giles
and Thorn. ' The fishnet graphs regulate the di-
vergences at ~, o end points, and away from the
end points approach the correct expressions in the
continuum limit. The end points are very sensi-
tive to the detailed microscopic structure of the
fishnet sum and depend explicitly on the lattice
spacing. An important consistency requirement on
the dual loop expansion is that all this detailed
lattice dependence can be lumped into a renorrnal-
ization of Tp as a —0."

Nonplanar, minimal-P', Feynman graphs may
similarly be regarded as a lattice version of cor-
responding nonplanar dual graphs, and again all
the detailed microscopic structure must be shown
to only renormalize To as a-0. If the final result
of a calculation is expressed in terms of the re-
normalized T, the continuum limit will be finite
and independent of microscopic details. This re-
normalizability has apparently been shown for the
ultraviolet (r 0) diver—gences. " The divergences,
as some P'-0, are associated with tachyon and

FIG. 9. The continuum limit of the open-string
propagator.

zero-mass intermediate states and cannot be
handled in models where the tachyon is present.
There seems to be at least one dual model with no

tachyon, although there are still massless part-
icles "

We shall compute a few simple processes in the
DLE in Sec. III. In the remainder of this section
we discuss the remaining field theory graphs not
included in the conventional dual loop expansion.

D. Finite-momentum constituents in the dual string expansion

All the graphs not included in the DLE are char-
acterj. zed by at least one line carrying more than
the minimal amount of P . For example, Fig. 15
has a line carrying three units of P'. Qf course,
if such lines carry only a few units of P' they will
only have microscopic effects, and in the contin-
uum limit will only renormalize T,. The effect
will be macroscopic if a line carries a finite frac
tion of the total P' entering the graph.

We continue to follow our topological strong-cou-
pling expansion; that is, we first consider the con-

(b)

~ 2a~ (N+ I)a

(b)
0 (N+ ))a

FIG. 8. (a) The bare open-string propagator carrying
only 2 units of P' . (b) The bare open-strong propagator
carrying only one unit of P' .

FIG. 10. (a) The vertex for the transition closed
string- open string and (b) its continuum limit. Note
that lines labeled by the same letter are identified.
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(a) a i B (b)

Pt+/To

P /To

P& /T

FIG. 11. (a) The vertex for the transition one open
string 2 open strings and (b) its continuum limit.
Note that lines labeled by the same letter are identified.
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tribution of these graphs to the sum of planar
graphs, and within these we order the graphs ac-
cording to a strong-coupling expansion. Our mo-
tivation is that this organizing principle maintains
at each order in the expansion Lorentz invariance,
crossing symmetry, good high-energy behavior,
and perturbative unitarity with respect to a bare
particle spectrum given by the excited states of
open and closed strings.

So let us consider the planar graphs which have
a maximum number of vertices given the constraint
that one 1.ine carry K&M units of P'. To maximize
the number of vertices in the graph as a whole,
most of the time every line must carry minimal P'.
To achieve this the line carrying K units of P' must
quickly degrade its momentum as shown in Fig.
16. The number of time steps this P' degradation
takes is roughly (lnK)/ln3. In the continuum limit
with M/N, K/M fixed, this time goes to zero like
(lnK)/K. We should then draw the continuum graph

A i C
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I

I

I

I

D I D

E I E
I
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I

I

I
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A C

FIG. 13. (a) The vertex for the transition two open
strings-two open strings and (b) its continuum limit.
Note that lines labeled by the same letter are identified.

FIG. 12. (a) The vertex for the transition one closed
string —2 closed strings and (b) its continuum limit.
Note that lines labeled by the same letter are identified.

FIG. 14. (a) The vertex for the transition one open
string —one closed and one open string and (b) its con-
tinuum limit. Note that lines labeled by the same letter
are identified.
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P/T,

FIG. 15. A graph for the closed-string propagator
with a single line carrying three units of P

as in Fig. 17. That is, we draw the point-energy-
density graphs of Green. " The line carrying E un-
its of P' in the lattice graph goes in the continuum
limit to a line segment on the light-cone string
graph at fixed & and of length KaT, equal to the to-
tal (macroscopic) amount of P'. As this is a single
line in the Feynman graph, the string coordinate
x(o, &) will be constant along this segment, i.e. ,
Bx/sa =0 on this segment. Of course, the vertical
and horizontal position of this line segment must
be summed over.

If we follow our topological strong-coupling ex-
pansion, we should organize these nonminimal P'
diagrams in the following way. First, calculate

H-p0&

~((+z ~) a

FIG. 16. A typical graph with a line carrying K= 9
units of P . Note that the lifetime of a nonminimal P'
line is roughly an%/1n3)a.

FIG. 17. The continuum limit of Fig. 16: M, N, &
~ with (V+1)/ &=TT p/P E/M= Q /P' fixed.

the effect of a single pointlike insertion on a planar
graph. Then calculate any finite number of point-
like insertions separated by macroscopic dis-
tances, and integrate over their positions and
sizes on the light-cone string diagram. The sin-
gularities associated with the collision of pointlike
insertions among themselves or with holes is in
principle regulated by the lattice cutoff. To show
that this procedure does not introduce dependence
of macroscopic effects on the microscopic fish-
net structure, which is required to maintain Lor-
entz invariance, one must prove that as far as
macroscopic phenomena are concerned, all lattice
dependence is lumped into a renormalization of the
rest tension T,. If this can be shown, the dual
string expansion, which is the conventional DLE,
augmented by pointlike energy-momentum inser-
tions, would yield a complete continuum theory that
maintains order by order in the expansion all of
the requirements of relativistic quantum theory.

Just as in the conventional field theory renormal-
ization program, the expansion defined above can-
not possibly be valid for all kinematic regions.
This is because the effective expansion parameter
changes via the renormalization group as one con-
siders different mass scales. Specifically, our
theory is Z~ = A.f' with X & 0, i.e. , an asymptotic ally
free, infrared-unstable field theory. In such a the-
ory, high- momentum processes corr espond to X,««1 and strong coupling is appropriate, if at all,
to the domain of low momenta (long distances).
Our strong-coupling expansion is consistent with
this association (q' small X large; q' large —X

small) in that the internal lines of our minimal P'
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p+ ~ KQTo/$ p ~ KOToy~ V(x)

(a)

- KaT

~ p' =—KaT~

p+=aT

= KaT

p+= aT

+= KaT,

(c)
FIG. 18. Some four-point vertices with nonminimal

P . The dashed lines carry the minimal p =a 7'0.
FIG. 19. The nearest-neighbor effective potential

when missing vertices get positive weight.

fishnet diagram all carry infinitesimal momenta.
However, the pointlike insertions involve lines
carrying large momentum and the renormalization
group tells us that effective vertices in which all
legs carry high momentum are small. Thus, the
vertex in Fig. 18(a) which carries high momentum
in all legs should be suppressed by renormalization
effects compared to 18(b) and 18(c). Thus it is
possible that certain qualitative features gained
using strong-coupling intuition, specifically the
fact that a high-momentum constituent decays in-
stantaneously into low-momentum constituents,
will be drastically altered in the complete theory:
Asymptotic freedom should slow this disinteg-
ration.

It is amusing to consider the reason we were
forced into the asymptotically free situation X& 0.
This is the sign for which successive terms in
perturbation theory of X/4 do not oscillate. We had
to have this situation because the fishnet graphs
are reinterpreted as interacting string graphs
which are in turn functional integrals over e "8&r&~e

& 0. If the corresponding graphs alternated in sign,
this would correspond to complex contributions to

String'
Another version of this observation is to think in

terms of the missing links in the work of Giles and
Thorn, the absence of a link getting a weight 1 and
the presence of a link getting a weight Kexp[- T,
&&(ax)']. The sum of these two possibilities is

1+K exp[- —,
' To(&x)2] —= exp[- V,~~(4x)]

or

V„,(x) = —ln[1+Kexp( —,
' T~')].

K& 0 reflects nonoscillation, while K& 0 reflects
oscillations. Clearly the former represents an at-
tractive potential (Fig. 19), whereas the latter re-
presents a repulsive potential (Fig. 20). Our string
can be thought of as many constituents interacting
via a potential V,«. Clearly the system should not

bind for K&0, whereas there is a chance for bind-
ing if K&0.

The absence of sign oscillations is also respon-
sible for asymptotic freedom. For if there are no
oscillations, the lowest-order correction to a ver-
tex is positive and hence has momentum depen-
dence

Xln — q «A.A
q2 1

le renormalizes A. and the effective coupling be-
haves as

A.„1—X„ln

and diminishes in strength as q'- ~.
In a realistic asymptotically free theory with pos-

itive energy density, like non-Abelian gauge the-
ories, the situation is not so simple. For there
are some attractive couplings and some repulsive
couplings. We know the theory is asymptotically
free at large q'. We also know from work on per-
turbation theory at large orders'4 that the sum of
all (planar and nonplanar) graphs at large order do
not oscillate. Thus the situation looks hopeful for

V(x)

0

FIG. 20. The nearest-neighbor effective potential
when a missing vertex gets negative weight.
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a string or at least an extended object reinterpre-
tation of @CD. We might remark that the planar
diagrams we have been considering, while simple
to calculate, may be only suggestive of a quali-
tative tendency for the constituents to bind into an
extended object. If nonplanar diagrams are impor-
tant this extended object may have width and per-
haps resemble more nearly a bag for low-lying
states.

III ~ SOME SIMPLE GRAPHS IN THE DUAL LOOP
EXPANSION

and each vertex a factor

A.

de .
0

(3.2)

exp[- jj(x —y)'] (3.1')

and

It is convenient to scale x- (2jj/To)2 2X and as-
sociate the factor [(T,/2jj)' ']' in (3.1) with vertex
factors to get

In this section we describe in some detail the
calculation of the bare string propagators and a
simple transition amplitude. These calculations
parallel the lattice string calculations of Giles and
Thorn' so we concentrate attention onthe differen-
ces. In the following we specialize to massless

theory.

A. The closed-string propagator (Fig. 2)

dx (3.2')

(u/2) -&

(3 3)

The combination (j(./16jj )(To/2jj)j~ ~ j ' is dimen-
sionless and we shall name it Ao:

Each line of the graph contributes a factor

exp[--,' T,(x —y)'] (3.1)

The vertices on the lines j' =0 and j = (f(j+ I)a
are "half" vertices, and if we associate Ao' ' with
each, closure will be simply integration over x
with unit weight We t.herefore have

+ eio~d w~ (&/2) ( N+X) dxj j exp —jj ~ (x)j+2 —x)~ ) +
kf ff &2f S

(X( 2 '+2 Xf/ P + x2
~+&,f+&

—xif j

(3.4)

f0 $,N 1 are held fixed.
Just as in Giles and Thorn9 it is best to transform to normal-mode coordinates (K= —,

' M which we take
odd for simplicity):

(E-X) /2 2" - . 2wx,~= q ~+ Z — q' icos (i ——,')+q' j sin (i ——,')o'K K K (3.6)

This decomposition does not completely diagonalize the action and a further rotation of the odd modes is
necessary:

(3.6)

after which we obtain

N

sr" =1 1"1"' "' J 11 drj„, ssp — 2 T (rj„,—rjr j'+2 p 2 os (rj'r„—rr'rj' ~ ( -s)), f I C2dj f f=0

+2 I 1 —cos [2 ... rj, ~ (c-sj] I,K (3 "I)

which we recognize as a path history sum for a collection of harmonic oscillators of various masses and
spring constants. We quote the final result:
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Q cloud g(& /2)( N+1) TT 4 sin e~ —,'(N+ —}(ddl 2+ g ( (+s'
K N+1 n=1 K

(K-l) /2

(1 AN+1) }( ) d

1 1
x II exp -2wsin ((1 y'+(7 (')cothz (N+ ) — q q„. hl, (N 1)

haft, C,S

(3.8)

where A, = cosh '[1/cos(mv/K) ].

B. The closed-string partition function

We obtain the partition function for the closed string by identifying q, and q& in (3.8) and integrating. The

result is
K-l

N+1 nl1r
gclomd (M N+ 1} kidd/2i ( N+1} L d exp — d Kln2+ g ln 1+sin

N+1 K

(K-l) /2
1II (1 eH E+ljk~}M

rft= l
e/2

+(~/2)( N+l) I u

Q, N ~m N+1
( 1}(}G Mm(N+ (}

)exp — d +

x II I1 —exp[ (2m -/Mv)(N+1)]J ~ . (3.9)

In this formula

(-1)"
(2n + 1)'

portional to M are unobservable because they
cancel out of all measurable energy differences.
They can therefore be dropped and we are left
with

from which we obtain

M —M" =4mT m (3.10)

and also

,)~ d MG ~ n'd

ma 2a ~ 6Ma (3.11)

As discussed by Giles and Thorn' the terms pro-

is Catalan's constant and Lo =j dqo is the volume
of q, space. Because x, =vKqo by (3.5), Lo
=(-,'M)'~' Lwhere L is the volume of x, space. By
using the Jacobi imaginary transformation" one
can easily verify that the coefficient of L is sym-
metric under the interchange (M —N+1}(duality).

From (3.9) one can deduce the P levels of the
closed string. The excitations are

277Tod
C (3.12)

the familiar tachyon.

C. The open-string partition function

This quantity is Fig. 6 with the initial and final
coordinates identified and integrated over. The
simplest way to calculate it is to recognize that
with the interchange of the roles of M and N+1,
it is identical to the closed-string propagator
evaluated between particular initial and final
states. " We only need identify the appropriate
states. A little thought shows that the states are
those with zero momentum density, i.e., q,. and

q& integrated independently with constant weight.
However, the factors A, ,' ' are omitted from the
initial and final vertices.

So we first integrate (3.8) over q„, and q d and
multiplying by A. o

" gives
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«-7) /a 1
2 once (N+ 1 M ) 1 -ss/2){ ( d{l2)( d+s1) L d

sin(m){/K )

N+1 t-M «-7) /a
x enI— 2

i
2

d —ln2 + V' ln 1+sin
M

(1 e-2{N+1)Res)-d

1 ~/ Gd ){d(N+ 1)
{N+1)M

M m 6M

x II jl —exp [-4(N+1)m /M]j '.
1'= 7

(3.13)

Recalling that L, =L(M/2)'~' we have [interchanging M —(N+1)],

Gd
exp (N + 1)M-z""( s, en+1) L' (s) (s), )

x II {1—exp[ 4Mm)r/-(N+1)]} '

n'dM

6(N+1)

M d ~2 - 6d, , 10 ){d(N+ 1)=L exp (N+1)-M ———,
' in){ + —,

' lnN+1 w

x II{1 e~[-(N+1)m v/M ]]-',
)vt= 7

(3.14)

where the last equality follows after a Jacobi im-
aginary transformation.

Thus the open-string excitation spectrum is

(p- ~ )open 0

or

M 02 Mmg 2PT0m (3.15)

M gd, 1 A PdT0

(3.16)

Since only energy differences are significant we
compa, re with P~' ~:
JS-oPen P- closed 1

0 0 (1 1
)

1
n2/

(3.17)

We see from (3.17), that the open string will have
a finite (and covariant) Is compared to the closed
string only if

If A, & A,
~ ' the open string has an infinitely low-

er P than the closed string in the continuum limit,
so the lowest state would be noncovariant. If A.

the open string will gain an infinite
P compared to the closed string. Thus although
the expression (3.17) is not covariant, this fact
will not be important.

However, it is only for g=g"'"-' that the
full dual loop expansion involving both open and
closed strings exists. If we accept this eigen-
value condition on X, the DLE is characterized by
only one free parameter, T„which replaces the
only free parameter A. in the original p' field
theory. This is similar to dimensional transmuta-
tion. The number of free parameters in the string
expansion of fieM theory is identical to the num-
ber of free parameters in the weak-coupling ex-
pansion of field theory, though the free param-
eters play different roles in the two expansions.

D. The closed-string-open-string vertex:
The critical dimension

ol

Pg /Q gCQtlCstl

a/2-7
A, =32m y CBtlCR1

TO

(3.16)

(3.19)

We shall not go through this calculation, and we
refer the reader to Appendix B of Giles and
Thorn. ' The Giles-Thorn calculation was for a
rectangular grid rather than our diamond array.
The vertex for ground states was found to behave
like
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(K')'
V cio~a~p n N~~ (3.20)

and it was shown that only for d =24 did diagrams
containing these vertices have a finite continuum
limit. It is clear from the Giles-Thorn calculation
that the power of M in (3.20) depends only on the
low-lying spectrum and the long-wavelength struc-
ture of the string wave functions. As the diamond
array has an identical long-wavelength structure,
the same power will come out of the fishnet cal-
culation. The coefficient of 1/M' ~" will be dif-
ferent, butnonetheless finite and calculable It
is the size of this coefficient which controls the
size of higher-order corrections in the dual loop
expansion. It is evident that the fishnet dual loop
expansion requires the same critical dimension
as the lattice string DLE.

IV. CONCLUDING REiVIARKS

Let us take stock of what we have achieved in
this work. Utilizing a novel lattice we have re-
written the entire Feynman graph series for A. (Ij)'

field theory as a dual string expansion, which is
a combined topological and strong-coupling ex-
pansion. This expansion has features in common
with both 1/N expansions and straight strong-
coupling expansions. It has the virtue that each
order can be calculated and the continuum limit
can be explicitly taken to each order in the expan-
sion.

To finite order in the expansion, and for critical
values of couplings and dimensions, this expansion
is explicitly (1) Lorentz covariant, (2) crossing
symmetric, (3) power behaved at large energies,
and (4) perturbatively unitary with respect to a
bare particle spectrum given by the excited states
of open and closed relativistic strings. The sub-
set of graphs which give the dual loop expansion
satisfy Regge behavior. That is, the expansion
obeys order by order the same requirements put
on standard field-theoretic perturbation theory.
We regard these properties as highly nontrivial.

This reinterpretation of the Feynman series re-
quires the "wrong" sign of the coupling ~. The
reason is that successive terms in the series
cannot oscillate in sign, and in a theory as simple
as fII)' theory this can only be arranged with a neg-
ative potential term V(P). This nonoscillation is
also reponsible for the asymptotic freedom of
wrong-sign P' theory. Since the theory is asymp-
totically free, one can, in principle, check
whether the string interpretatio~ is the same theo-
ry by seeing if high-momentum, short-distance,
phenomena are controlled by weak-coupling per-
turbation theory. The string reinterpretation
should only alter long-distance (low-momentum)
phenomena.

QCD, a, much more complicated theory, has
similar features to wrong-sign P theory, namely,
asymptotic freedom, and nonoscillation of large
orders in perturbation theory. (This latter fea-
ture is known only for the sum of all large-order
graphs including nonplanar ones). Further, QCD
has a positive energy density, unlike wrong-sign
p4 theory. We tentatively associate the dual
tachyon with the negative energy density of wrong-
sign Q' theory and hope that QCD will not have
this problem. We remarked that the string re-
interpretation of QCD will not be as simple and
straightforward as in wrong-sign p' since there
are both attractive and repulsive couplings. The
hope is that the attractive couplings win at large
distances and bind many gluons into an extended
object, but that the repulsive couplings help the
expansion avoid the tachyon problem.
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