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Equations of motion, variational principles, and WKB approximations in quantum mechanics
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We describe, within the framework of the Heisenberg form of quantum mechanics, a general method for

obtaining a quantization condition for bound states at the %KB level of accuracy. The method, applicable to

both quantum mechanics and quantum field theory, proceeds as follows: (i) Relevant matrix elements of the

equations of motions are studied in the large-quantum-number limit including first quantum corrections. (ii)

These equations then are derived from several variational principles which generalize the classical versions of

Hamilton's principle or the principle of least action, respectively. (iii) The quantization condition emerges in

diA'erential form from consideration of the change in either of the stationary functionals upon unit change of

the quantum number of the bound state. (iv) The quantum condition in integral form thus involves an

integration constant describing quantum fluctuations which is determined for every example considered by a

suitable "connection formula". (v) The energy is computed in several ways, but most powerfully by

employing the consequences of the quantization condition in the calculation of the expectation value of the

Hamiltonian. The program outlined above is illustrated by application to one-dimensional quantum

mechanics, to the nonlinear Schrodinger equation, and to the sine-Gordon model (in one space and one time

dimension).

I. INTRODUCTION

Now that the initial flood of papers on quantiza-
tion of solitons has passed, it is appropriate to
consider what has been accomplished from a pure-
ly technical point of view'. In effect, a diversity
of methods has been developed to carry out the
equivalent of %KB approximations in field theory.
'To the first work involving semiclassical approxi-
mation within the path-integral formulation' have

been added the methods of collective coordinates
within the path-integral formulation, ' ' eol.lective
coordinates and canonical quantization, "and con-
ventional canonical quantization using Heisenberg' s
form of quantum mechanics. " These methods
were initially applied to the quantization of topo-
logical solitons (kinks or particles) and nontop-
ological solitons (bound states) including the first
quantum correction. " The actual evaluation of a
second quantum correction has been carried
through in one instance. " Only within the method
of collective coordinates in the path-integral for-
mulation has the problem of scattering of solitons
been carried to the first quantum correction. ""

In the course of attempting to understand how the
quantum corrections to scattering could be done
within the Heisenberg picture, we were led to re-
view and rethink the bound-state applications, ' '
resulting in the present report, which includes
our previous considerations but also extends
them. In particular, in the previous work, we
emphasized calculation of the energy (one way or
another). Though such calculation is still the final
goal in the present work, the most important new

contribution of this paper is the development of
a systematic method (in fact two such methods)
for derivation of a phase-integral quantization
condition. The basis for this advance was the re-
cognition of semiclassical variational principles
which represent an extension into the quantum do-
main of two variational principles of classical
mechanics. 'The first of these is Hamilton's prin-
ciple:

5 dt[pq H(p, q)j =—0,

where the path is varied so as to keep the time of
transit constant. The second is the principle of
least action:

where the path is varied so as to keep the energy
constant.

The elements of our derivation can be stated
quite generally. %e consider a system with a se-
quence of bound states labeled by an integer n.
As the examples make clear, this system may be
a particle system with one or many degrees of
freedom, or a field theory. Let q be a fundamen-
tal operator of the system, such as a field opera-
tor or position operator: (i) We study matrix ele-
ments (n ~q ~n') of the Heisenberg equation of mo-
tion for q. %e show that for large n these can be
interpreted as the Fourier components of a clas-
sical quantity q(t) satisfying the classical equa-
tions of motion. A systematic expansion in orders
of n ' allows the first quantum correction to be
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I„=T„(C„E„),- (1 2)

where T„ is the classical period associated with

the state n [see Eq. (1.5) below]. The alternate
var iational principle

4(E„+E„T„)= 0 (1.3}

replaces the fixed end-point variation associated
with (1.1) by a variation of the final time, i.e. ,

of T„, with fixed energy E„—precisely the varia-
tion associated with the principle of least action.
(iii) A variational principle is utilized to derive
a phase-integral quantization condition. Both (1.1)
and (1.3}can be utilized. For introductory pur-
poses, it is simpler to illustrate the use of (1.3).
In consequences of the variational property, i.e.,
the equations of motion, we have

(f„+E„T„)= "— +
8I„dE„ (1.4)

where the partial derivative means keep q and

T„ fixed, and it is verified that the derivative with
respect to n belongs to the class of variations al-
lowed by (1.3). In all the examples studied (Sf„/
Sn}= 0, though not always obviously so. Further-
more, the correspondence principle assures us
that

dE„ 2w

d 5 T
(1.5)

included with relative ease. In principle still
higher-order terms could be reached. (ii) It is not

difficult to formulate a variational principle from

which the equations of motion are the appropriate
Kuler-Lagrange equations. At the classical level,
it is equivalent to Hamilton's principle. It always

has the form

6 (C„E„)-= 0,

where E„ is the energy of the state n and C„may
be viewed as a constraint on the variation of the

energy. The variation is with respect to the ma-
trix elements of q and the constraint expresses
the fact that not all. of these matrix elements are
independent, but rather, the commutation rela. -
tions limit the number of independent ones.
Another variational formulation, equivalent to the

principle of least action, is obtained by defining
the 'action" I„by the equation

For a nonrelativistic many-body model, we lean on

the observation that the left-hand side of (1.6) is
proportional to the number of particles, n in this
case. Thus constant = 0. For the sine-Gordon and

other relativistic field-theoretical models, the

concepts of renormalization theory play an essen-
tial role in the consideration. Customarily C„
is defined so that constant = 0. (v) For the field
theories (1.6) determines u&„so that another in-
tegration is required. Alternatively we can cal-
culate E„directly and find that this calculation
is simpl. ified by utilization of the phase-integral
condition.

In the sections which follow, this procedure is
applied in whole or in part four separate times:
in Sec. II to one-dimensional quantum mechanics,
in Sec. III to the nonlinear Schrodinger equation
as an example of a nonrelativistic field theory,
in Sec. IV to the sine-Gordon model in the ex-
treme weak-coupling limit which entails only the
lowest Fourier components of the classical solu-
tion, and in Sec. V to the same model using the
complete classical solution. Many of the actual
details of the calculations are relegated to Appen-
dixes A-D, associated in order with Secs. II-V.

It is almost apparent, and even true, that the
methods of this paper can be extended to contin-
uum states. For instance, once a variational
principle is at hand, the variation of the station-
ary functional with respect to a suitable param-
eter such as a relative velocity yields an essential
scattering relation. These developments will be
presented in a subsequent work.

II. ONE-DIMENSIONAL QUANTUM MECHANICS

In this section we preface the applications to
field theory by a description of how our methods
work in quantum mechanics. "

We study the motion of a particle in one dimen-
sion described by the Hamiltonian and commuta-
tion relation (0=m = 1}

(2.1)

(2.2)

It is convenient to eliminate the operator p from
the problem by utilizing the equation

(2.3)
Thus (1.4) can be integrated and yields

I„+E„T„=T„C„=2&n+ constant. (I 6)
Thus the equation of motion and commutation rela-
tion can be taken in the form

(iv) Determination of the constant of integration is
a problem special to each model. Thus in our
consideration of one-dimensional quantum mech-
anics, we give a new derivation of the connection
formula with the famous outcome, constant = &.

(2.4)

(2.5)

and the energy can be calculated as the expecta-
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tion value of

H = ~[x,H][H, x] + V(x) (2.6)

equation of motion (2.12). The correct expression
L(n) can be written as

in the bound eigenstate in),

&nlH In') =H(n)5„„.. (2 'I)

L(n) = C(n) —E(n),

where

(2.15)

dV
[n (nn n) -n(n)]'(n [n [inn ) = n + n) .

dx
(2.8)

'The first step in the method is to study the ma-
trix elements of the equation of motion for large
n. From (2.4) we consider

Z(n) =&niH in&

= g [v(()(n)]'x „(n)x„(n)+ V(x(t, n)) 0, (2.16)
V&0

C (n) = (n
i

x'
i

n&

Here large n means that in any product evaluated

by completeness,

= 2 P [v(d(n)]'x „(n)x„(n}.
V&0

(2.1'I )

(n
i
AB

i
n'& =g ((n i& i

n+ v&(n+ v
i
B in' &

V&0

+(niA in —v)(n —viB in' &),

(2.9)

and introducing the definition (n =n+ 2)

x„(n) =x „(n)=-(n --,'vixen+-, 'v&,

there results a single average equation

V(d S XVS
dV(x)

V

(2.11}

(2.12)

upward and downward going transitions, as in-
dicated, enter symmetrically in the sum. It is then
observed that if both of Eqs. (2.8) are expanded

by referring all matrix elements to a common
reference matrix element, according to the for-
mula

&nixon+ v& =&n --,'vixen+-, 'v&

+2»„(n ——,'vox in+-,'v)+ ~ ~ ~, (2.10)

In the present cas'e and in many other cases, L(n)
has direct significance as the expectation value
of the Lagrangian in the state in&, accurate to the
first quantum correction, the same accuracy as
claimed for (2.12). In (2.15}L(n} has been written
as a sum of two parts because of convenience for
application. This separation also alludes to the
quantum origin of the variational principle for the
energy subject to the constraint [x, ]))] =i."

The equation of motion (2.12) follows from the
condition

6, (-„,L(n)=0. (2.18)

Note that (d(n) is held fixed in this variation. This
can be understood as an expression of the Rayleigh-
Ritz principle, since (()(n) is defined in (2.13) as
an energy difference.

The third step in the derivation of %KB is to
vary L(n) with respect to n. The dependence on
n is both implicit (via x) and explicit (via (()). Be-
cause of (2.18), I.(n) is stationary under varia-
tions in x. Hence

where

dH(n}
(() n (2.13)

dL(n) SL(n)
dn en

l.e.,

(2.19a)

To understand the meaning of the right-hand side
of (2.12}, we associate x„(n) with the Fourier com-
ponents of a classical dynamical quantity x(t, n),

dC(n) SC(n) SH(n)
dn sn sn (2.19b)

If (d(n) 4 0, an elementary calculation now yields

x(t, n) = Q x„(n) exp[tv(d(n}t] . (2.14) d
1 = 2 ~ v'(d(n)x „(n)x„(n),

V&0

(2.20)

The quantity (dV/dx)„ is then the vth Fourier com-
ponent of [dV(x(t, n))/dx], and the equation itself
is then simply Newton's law in Fourier component
form.

The derivation of (2.12} is given in Appendix A.
The special significance of the symmetrical choice
(2.11}is that only for this choice are the correc-
tions to (2.12) of relative order n '.

The second step in the derivation of %KB is the
construction of a variational pr-inciple for the

or

S(n}—= 2s P v'(d(n)x. „(n)x„(n)
V gwine

= 2s(n+ c}, (2.21)

(o(n}T(n) = 2s, (2.22)

where c is a constant.
It is trivial to recognize S(n) as the usual phase

integral, utilizing the definition of the period,
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for then

S(n) = T(n) Q [v(o(n)]'x „(n)x„(n) (2.23)

T{n)
I(n) = dtfx (t) -H(x(t), x(t))]

0

(2.2 I)
T{n)

dt's t, n))'
0

(2.24)

pxdt = p dx. (2.25)

The fourth and last step in deriving the WKB
approximation requires evaluation of the constant

c, the famous one-half. The detailed argument
for this case differs markedly from those approp-
riate to the field-theoretical models. Here we
start by comparing the WKB case with the Bohr-
Sommerfeld quantization. The latter is defined
so that S(n), the phase integral in (2.23), has pre-
cisely the value 2mn with no additive constant.
This implies, as we verify below, a different as-
sociation of matrix elements with the Fourier
components of a classical dynamical variable from
that taken in (2.11}. In the Bohr-Sommerfeld ap-
proximation the correct association is defined by
the identification

6x(0) = 0,

6x(T(n)) = -x(T(n))5T.
(2.28)

Standard textbook manipulations for this variation,
which we term &, yield what is in effect the prin-
ciple of least action: The statement

&[I (n) + E(n)T(n)] = 0 (2.29)

implies and is implied by the classical equations
of motion. If we identify x(t) with x(t, n) of (2.11)
a.nd (2.14), we are however, doing quantum theory
to the first two orders in n.

In consequence of (2.29), however, we have

where x(t) is, ultimately, to be identified with

(2.14). We consider a variation of 1(n) which is that

appropriate to the principle of least action for a
conservative system, "i.e. , fixed energy but vary-
ing final time:

x, (n) = x,(~~(n)) = (n —1
I
x ln& (2.26) [i(n)+E(n)T(n)] = T(n)

[It is implicit in the construction of the physical
Hilbert space that the matrix element occurring in
(2.26) vanishes for n=0. ] Assuming that the ab-
solute minimum of the potential. energy is at the
origin of coordinates, the vanishing of the fun-
damental amplitude (2.26) for n = 0 implies through
the equation of motion that x(t) = 0. This is be-
cause the equations of motion (2.12) are homo-
geneous in the Fourier components x„(n) so that it
is correct to think of the "harmonics" as driven
by the fundamental. The particle is thus at rest
at the origin, so that Ss,„,(0) =En,~(0) = 0 as re-
quired.

To complete this part of the derivation we need
only note that the WEB identification (2.11}follows
from the Bohr identification (2.26) by the replace-
ment n -n+ &. 'Thus we have reached the known
result.

We remark that in order to complete the deriva-
tion we have had to make a statement concerning
the theory for n= 0, where the approximation itself
is not valid. This is our version of the connection
formul, as. Some analogous consideration will be
reqiured in all other exa.mples to be treated.

We round out the considerations of this section
by showing how the WKB quantization can be ob-
tained from a time-dependent variational prin-
ciple. In this form, the considerations are more
closely akin to those of the path-integral method.
We define the action i(n),

= (o(n)T(n. ) = 2s, (2.30)

because the significance of the symbol & is that in

carrying out the derivative, we may keep both
x(t, n) and T(n) fixed. Integrating (2.30), we have

S(n) =I(n}+E(n)T(n) = 2&(n+ —,') . (2.31)

III, THE NONLINEAR SCHRODINGER EQUATION

As a second application of the general approach
of this work, we choose the simplest of many—
body problems in the guise of the nonlinear Schro-
dinger equation (NLSE). In this problem, the
"connection formula" aspects are the simplest
encountered because of the existence of a conser-
vation law. On the other hand, the stationary func-
tional no longer has exactly the structure of a
classical Lagrangian when first quantum correla-

The argument given previously leading to the known

constant of integration has of course been pre-
supposed in writing (2.31).

It can and should be checked that the derivative
with respect to n is an allowed variation in the
sense of (2.28). Since in this standard example
(2.31) directly yields E(n), it is not necessary
to discuss a separate calculation for this quantity,
as is either necessary or convenient in all the re-
maining examples of this paper. Nevertheless, it
is possible to build the entire discussion about the
energy, as shown in Ref. 16.
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tions are included. Though it would take us too

far afield to present a detailed analysis of this

circumstance, it can be traced to the fact that we

have a complex field which is purely a lowering

operator in the particle number.
Since the techniques of calculation have been

illustrated in I and IE, many of the details have

been relegated to Appendixes.

A. %KB quantization from time-independent variational principle

From the Hamiltonian (f = 0)

From (3.3) we then deduce an equation for the
matrix element

(3 4)

where

(3.5}

Utilizing translational and Galilean invariance,
the latter in the form

52
2m

dx —$ x —gx

-~K (fx»') (x)g (x)g(x)g(x),

and the commutation relation

R(x), 0'(y)]=6(x-s),

(3.1)

(3.2)

(3.4) can be written

@„,(x)=e'"-'y„(x), r =(p/n) (3 7)

we obtain the field equation (5=m = 1 henceforth)

is,g(x}= [g(x},ff]
(3 6)

1
= —

2 d , g(x) —ff(r)'(x)g(x)$(x) . (3.3)
In Appendix B, we indicate that up to the one-

loop approximation (f„(x) satis. fies the equation

(Z„-Z„,)y„(x)+— „,y„(x)+Z y„, x y„(x)

dk dt+2ff
2 ~)i,(x)~ y„(x)+Z —q„(x)&4(x)y„*(x)=0. (3 9)

Here X~(x) and q„(x) are the amplitudes which des-
cribe small quantum fluctuations about the clas-
sical soliton solution (see I and Appendix B). They
satisfy the equations

for which the quantum solution is

1 Z'~'~
2 coshg' (3.14)

-K[2
~
y„(x) ~'q,*(x)+ [y„*(x}]')(„(x)},

(3.11)

which were derived from (3.3) in I. Here again

co„= "-=E„-EdE„
n

(3.12)

For large n, (3.9) reduces in leading order to
the nonlinear Schrodinger equation in the form

&o„"'(I)&„"'(x)+
2 d, p„"'(x)+If~(()&„"'(x)~'p."'(x)= o1 d

(3.13}

—2&'Xa(x) = —
2 d„2 Xa(x}

-IC[2
~
y„(x) ~'q, (x)+ y„'(x)q+(x)], (3.10)

(2(o„-—,'0'))ig(x) = —
2 „,qf (x)
1 d2

&(o) i~ 2&2
8 (3.15)

The quantization "rule" which leads to (3.15) will
be reviewed below.

We show next that (3.9) may, to the required
approximation, be derived from a simple vari-
ational principle. This is achieved with greatest
convenience if we write

n —1 a
2

x -=y„(x)- —, y„(x)

8
+

s &f&„(x) (x/n)

1—= y„(x) ——
4 „(x) . (3.16)

The approximation (3.16) is valid to leading order
for the correction ternz since it utilizes an identity
satisfied by the function (3.14). With the vari-
ational goal in mind, we rewrite (3.9) as
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(E„E-„,)y„(x)+ „,y„(x}= —,y„(x) -ff 1- — Iy„(x) I'y„(x}+2K —
I q„(x) I'y„(x)

d' 1 d' 1 dk

,„X.(x)~»(x)e:( )
dk (3.17)

Equation (3.17}can be then derived from a variational principle using the functional

L [&t&„, &t&„*]=C„—E„,
where E„is the energy

E„=( (0) Ia In(0})

(3.18)

dx — „y„(x) ——,'K 1-- [Ig„(x}I'I' + — — dx
d q„(x)

dx q x 2
(II) x 2 —g —dx X~ x g~ x Q+ x +X~+ x g~4 x (t)„x, 3.19

1 ' d—
2( 1)

dx —y„(x) (3.20}

(Its physical meaning is that it is the tree ap-
proximation to the matrix element Q(0) I&c&t(0)[&c(0),

Hj In(0)).) In requiring

which can be derived by the methods of Appendix
B and the approximation (3.16), and C„ is the
"constraint"

c &I E ,&„f=a*
„I &„

I 12

E& &= dx ——q& & —,'1~(Iq& &I) . (3.25)
I

%'e thus have

dC"'
n ~(o)

dn dn

"' d. le."'(.) I'd

5g*L„=5 L„=O, (3.21)
but

we keep n (and therefore E„, etc.) as well as the
smaQ vibration amplitudes X, and q, fixed. As
shown in Appendix 8, an extended variational
principle, from which Eqs. (3.10}and (3.11) can
also be derived, can be constructed, but it will
not be needed for our purposes.

Equation (3.21) is then utilized to derive a WKB
quantization rule by means of the condition

a „L- 5„LyS( ) x6L„Sy*(x)-
d sn 6y(x) 8» 6y*(x) e»

~1 (o) d(0)
n n

Bn dn
dx

I &t&„"'(x)I' (3.27)

dx
I
y„"&(x)I'=1, (3.28)

or with a definite assumption (to be discussed)
about the constant of integration, we have the
Bohr-Somme rfeld condition

(3.29)

From (3.22), (3.26), and (3.27) we thus conclude

(3.22)

which follows from (3.21). Let us apply this first
in lowest order:

It is not surprising that this quantization con-
dition, which was used to obtain (3.15), coincides
in lowest order with the number quantization con-
dition

I (0) (0) dx ~(0) x 2 E(0) (3.23)
n= (n(0) IP'(0)g(0) In(0)}. (3.30)

where

1 d(d„(o) dEn
En En-x=n 2 d

+''' = +n (3.24}

We return to this point after extending the present
considerations to the next order. "

To obtain an improved quantization condition,
we utilize the full functional L, Eqs. (3.18), (3.19)
and (3.20). From (3.22), we find immediately
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Cn ecn 8E„
(0 +

dn ~n y+ g en

From (3.20), we find

dx f„x

1 d dy„(x)
2n dn dx

(3.31)
In our previous work, we avoided the calculation

of p„(x) to first order by utilizing the consequences
of (3.36) to simplify the direct computation of the
energy. We next give a brief review of this pro-
cedure.

B. WKB quantization from energy self-consistency

The method consists of solving the equation of
motion (3.9) for p„(x,E„„,) where E„„,=E„E„—,
If we substitute into (3.19) and evaluate the inte-
gral over x, we obtain a difference equation

E =F (E -E )—= E (dE /dn) (3.39)
=(dn 4n & (3.32)

(3.33)

Thus in place of (3.29), we obtain upon integration

dx (It), x '=n+c. (3.34)

We can, of course, obtain the value of c by re-
course to the particle number conservation equa-
tion (3.30). It is instructive for future purposes
to present this argument in a disguised form.
Thus the integral in (3.34) is recognized as con-
taining the classical approximation to the expecta-
tion value

„I=&t((n)0l Pt(6)g(0-) ln(0)) = n+ b, (3.35}

i.e., the large-n approximation to N„must go like
n. In the role of a connection formula, we invoke
the condition N, =O to discard the constant b. This
is a much simpler consideration than in the pre-
ceding section where obtaining the zero-point value
of the phase integral required a stratagem with a
more subtle origin.

Equation (3.35) now yields the condition

since the last two terms cancel when evaluated
with the help of (3.14). The last term of Eq. (3.31)
is evaluated in Appendix B 2 and equals

In lowest approximation this has been shown by
example in I an 0 to be equivalent to Bohr-Som-
merfeld quantization in the form

dE dE
(dE/dn) o&(E)

(3.40)

Consistent treatment of the difference equation
in the large-n approximation will then yield a con-
sistent set of higher-order corrections.

To understand why, to first-order terms, we need
only p„"' and y„q», let us write (3.19) as

E(o&[~ ]+E(&& (3.41}

where E„"' is the functional of (3.25) and E„"' is
explicitly a first-order correction containing only
p„"',X»q~. We now write

(x) y(o&+ y(& & (3.42}

+ ~(o& dx(~(o&g~(1&+ ~(1&g~(o&)

(3:43)
However, from the difference between (3.36) and
(3.29), we learn that

dx(y(o&gy(&&+ y(&&gp(o& ) d lq ( ) lo

With the help of (3.13), the lowest-order equation,
we find to first order

E(o&[y ] E(o&[p(o&]

dx[l q„(x) I
+ —, Iq, (x) I']=.,

or using the value given in (3.33), we find

(3.36)

(3.37)

(3.44)

and therefore P„"', which was needed in the pre-
ceding subsection, can be eliminated from the
present calculation, as was shown in I. The re-
mainder of the calculation is as given in I.

&o(n}= &@ "&(n)[1+O(n ')]. (3.38)

The utilization of (3.3V) as a quantization con-
dition requires that we solve Eq. (3.9) to first
order. This has not been done previously. It
is carried out in Appendix B3 where we then ob-
tain from (3.3V) the known result

C. WKB quantization from time4ependent variational principle

As was the case for one-dimensional quantum
mechanics, the final method is closest in spirit
to the path-integral approach. In Eq. (3.9} or in
the more convenient approximate version (3.1V},
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the choice of time t= 0 was made. Instead we con-
sider an arbitrary time and define

g„(x, t) =— dp'e '~'*&n —1(p ) I 4(0~ t) In(0))

dp'e '&"exp[-iE„„~t+ip "t/2(n —1)]

(3.37) again. We have [cf. (3.48)]

d g—„+E„T„)=— (I„+E„T„)
B

B BE„= —I —2r = —T " —2r = —27t',
tt

(3.52)

~ &n —«p')
I &(0, o}In(0}&.

One sees thus that

(3.45} since we have previously calculated (aE„/en) and

shown it to vanish. Incorporating the established
value of the integration constant, we have

E„—E„,+2 1
s„' p„(x, t)=is,g„(x, t) (3..46)

1

We can therefore write in place of {3.17)

is, y„(x, t}= ,'s„'y—„(x,t)

Z1 — f„x,t 'f„x, t)

+2

(3.47)

where yn(x, t), qn(x, t), which are also modified in

an obvious way, have the phases necessary to
maintain time translation invariance.

Equation (3.4'7) can be derived from the stationary
property of the action

I„= dt dx{( n(x, t)i s y„(x, t)
p

I„+E„T„=—2v(n ——), (3.53)

lV. SINE-GORDON MODEL: W'EAK-COUPLING LIMIT

which is easily unraveled to (3.37).
Before going on, it would be well to summarize

the results of this section. We have found that a
WKB quantization condition could be derived from
either a time-independent or a time-dependent
variational principle.

The achievement of a satisfactory WKB condition
requires the association of a variationally deter-
mined relation with the expectation value of a sim-
ple operator in a semiclassical state. This con-
dition was then used to obtain the bound-state spec-
trum. Independently the same spectrum can be
obtained (but was not) with the same input from the
energy self-consistency condition. By combining
the WKB condition with energy self-consistency,
the simplest possible derivation results.

t

"dtE„[y„(x,t), X,(x, t), . . . ].
J p

(3.48)

A. WKB quantization from time-independent variational principle

We next study the Hamiltonian

Here E„ is the functional given in Eq. {3.19) and

T„-to be determined —is defined by the periodicity
condition

H(t) = d —.
'

B,y{x,t})'+-,' B„y x, t )'

1
+ —,m, 'y' —,', xy'] (4.1)

(u„T„= —2v ((o„&0). (3.49) and commutation relations

54„(x,O)=0,

5@„{x,T„)= —s,P(x, t) I, , t T„

y(x, T„)t T„.

(3.50)

Standard textbook manipulations for this varia-
tion yield

We consider the variation utilized in the principle
of least action for a conservative system, i.e. ,
fixed energy but varying final time:

5g„(s~, t) = 0,

[@(x,t},s,p( y, t)]= i 5(x -y).
If In(p)) is the bound state ("breather") with mo-
mentum P, we utilize the amplitude

(4.2)

(4.3}

ln Appendix C1, it is shown that for In-n'I «n
or n', the amplitude (4.3) satisfies in the tree ap-
proximation, except for corrections of relative or-
der n ', the equation

e {I„+E„T„)= 0, (3.51)

in consequence of (3.47), and conversely the re-
quirement (3.51) implies (3.47}.

Utilizing (3.51}, it is straightforward to derive
4'n n ~ { }{t'n "n~»(X) tpn». n(X), (4.4)
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where E„ is the energy of the state ln(0)). In II,
we have, furthermore, shown that in the weak-
coup1ing limit, it suffices for a calculation which
contains the first quantum corrections to consider
only the amplitudes ft) „„„andthe "small vibra-
tion" amplitudes (see II and Appendix C 2)

X,(x), g,(x) quite analogous to those considered for
the NLSE.

A further simplification compared to the con-

4n +1/2 ~ )) 1/2( ) 4)) 1/2y)) +1/2( ) 4))( (4.5)

which is an analytic continuation in n. Up to the
one-loop approximation, it ~s "shown" in Appendix
C 1 that (f)„(x) is given as the solution of the equa-
tion

siderations of II occurs if we notice that the theory
takes its most convenient form in terms of the am-
plitude

[(d„'+ 8,' m, '+ ghee„'(x)]p„(x) = —,'x —[2ly (x) I'+ 2lr/, (x) I'+x (x) 7I, (x)+x)*(x)&)(x}]())n(x) (4.6)

where once again

dE„
tl

(4.7)

and omitted terms a.re at least of order n ' compared to the one-loop terms. To leading order y, (x) and

r/, (x) satisfy the equations

Eg'X, = (- s„'+m') X, —a&p „'(2X,+ r/,'),
(-E~'+ 2(o„')q~ = (- S„'+m')q~ ——,'X(f)„'()(„+2@~),

(4.8)

(4.9)

where E '= k'+m2.
The next step is to display a variational principle from which (4.6), (4.8), and (4.9) may be deduced.

the present instance, the stationary functional is the obvious choice, namely the expectation value of the
Lagrangian L, computed to the one-loop approximation. We have"

5L„=5(C„—E„)= 0,

where (L is size of system, not to be confused with the Lagrangian)

(4.10)

C„= n0 ' dx &tax, 0 n0 L —&p

and

'd(e„'(x))+g d ln, (x)I' +g d E.'[l~,(x)I'-I~.(x)l']-"
k k

(4.11)

E„=(n(0) (H~n(0)))/L

2

dx (~.* *)(.*tv) ~ —(.(*)

2 d+g d -'E~'Ix. l'+-'m'll/. I'+2 ~x, +(».'-E.'}-'I~.l'+ lm'I~. l'+2' ~ n,
k

(4.12)

&p is a vacuum subtraction constant and we have
explicitly indicated the mass renormalization.

Understanding and correct utilization of the vari-
ational principle (4.10) must be preceded by some
comments on the finiteness of the various ingred-
ients. The fii.st observation is that the expression
for L(fr mowhich any vacuum subtraction con-
stants are totally absent) is perfectly finite: First

of all, (f)„(x), Eq. (4.24) below is finite and inte-
grable. Second, derivation of the explicit one-loop
corrections depending on Xk and qk* shows that we
should evaluate the x integral first, followed by the
summation over k (for finite L and finite cutoff).
In Appendix C 4, we show that from (4.8) and (4.9),
when sufficient care is exercised, we can derive
the identity
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o=g
'

d E,'(Ix, l'- lq. l'}+2~.'I&.l'

d 2

-m'(Ix, l'+ lq, l') — —„x, — ~n„

+ '~e.'(x)(2
I ~,I"2

I ~, l'+ x,~, + ~,'~,*}

+ oui' ' dx@„'(x). (4.13)

Since this expression contains all the possibly di-
vergent pieces of L„, we thus are assured that L„
ls flnlte.

The derivation of (4.13) given in Appendix C4
starts from a convergent double integral and

"spreads out" the terms into divergent pieces.
When we decompose I „ into the difference shown
in (4.10)-(4.12), which is a convenience for the
purpose at ha, nd, we lose control of this spreading
out; it is by no means obvious a Pnori that the
use of a single subtraction constant &, is sufficient
to render E„and C„ finite, nor is it obvious from
a superficial examination of these expressions. An
inability to show that they are finite would, how-
ever, lead to a collapse of the entire approach.

The proof that E„as defined in (4.12) is finite fol-
lows from an energy self-consistency requirement
studied in Appendix C 4. There we describe the
derivation of the relation (for which it suffices to
ignore the motion of the heavy particle)

'" "'&"iI","'&-( 1&iI &=~, = f x&x Xx,*&lx &*-
I &I & ~xX .*I I*x&*(iIx, il* lx I &. —x, ~

—-'~e.'(x}(2Ix. l'+ 2
I q, I'+ ~, q. +1.*q*,) (4.14)

Equation (4.14) may be viewed as providing the
correct normalization of the scattering solution
for finite L. If indeed (4.14) is substituted into
{4.12) the latter becomes

E„= E„" [&y„] Q+,'E, —e, —5n' —dxy„'(x)
k

Q &E, —5m' i dx4„'(x}
k

=g i dx[E~'(IX I'- I~.l')+2~.'lq. l'], (4.1~)

which converts C„ into the finite expression
CC pp

C„=2'„' dx @„x)+
k

It is also useful to notice that the combination of
(4.15) and (4.17}gives a useful expression for L„,
namely

(4.17)

CC

-=E."'[~.] (4.15)

where E'„"[p„]consists of the finite terms depen-
dent only on the classical amplitude ft)„—the "clas-
sical" energy of the field P„. Furthermore, the
renormalized zero-point sum, first evaluated by
Oashen, Hasslacher, and Neveu (DHN), has been
shown to be finite.

By averaging (4.13) and the sum over k of (4.14)
we derive

We are finally prepared to apply the variational
principle in the form of the condition

dL„ &L„
n ~n e.x, ,. . . (4.19)

The left-hand side is evaluated with the help of
(4.17),

dL„dc„d= —(4.17) —(o .
dn dn " dn

(4.20)

The right-hand side is evaluated from (4.18) as

~La d~n" = 2(u„d " dx p„'(x).
en " dn

(4.21)

Combining (4.20) and (4.21), we find upon rear-
rangement the condition

d" cc pp

1=—2(u dx P '(x) +— zEg (4.22)
dn n

which integrates to [cf. (4.17)]

C„=re~. (4.23)

2m sinn 1 m 1 sinn
{gi}l/2 cos~ {gi)1/2 n cosh g

+ (4.24)

where we have set

Here the constant of integration has properly been
set equal to zero because C„has been dined to
vanish for n=0.

To utilize (4.11) or (4.17), we need the solution
for P„(x) derived in Appendix C 3, namely

L„=2(o„dx P„{x)—&„ (4.18) u„=m cosn, z = (m sino)x, (4.25)
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)(' = )((1 —)(/8)rrn') '. (4.26)

16m'
&+ 3=0, (4.27)

With the help of (4.24}, C„ is evaluated in the weak-
coupling limit, n «1, in Appendix C 5. We obtain
the condition

in agreement with previous results. -'-'

We shall be content here with this single deriva-
tion of the spectrum. We shall not go into the
time-dependent variational principle either, but
shall give the corresponding derivation in the next
section.

or

a=,(n ——,) = o(0+ (n, /n),16m2
— — o

(»0 = ()('n/16m'), a, = —',u0.
(4.28)

V. SINE-GORDON MODEL: COMPLETE CALCULATION

We turn then to the Hamiltonian

0(0= J dx(l(8, ((Ã, 0)' ~ l(B (:(. 0) ]'-
With the aid of {4.28} we shall rewrite {4.24} as

2m sino, 'p 1 (y)((„( )= (~,)„, ', h +((.'( )

I"
+ rr)0 — 1 —cos

7' j '

with the associated field equation

(5 1)

~ (0&() ) y ir)( (4.29)

where

C„=2M 66K Q ~ 8}= s(d„

then

(4.31}

where P„"' contains both the contribution from ~,
and the second term of (4.24). The significance of
this decomposition is that if we write

(4.30}

m, -7n
(x, f) —

~~ sin (( (

(5.2}

4m, tan(r cos B1' ' x, 0), B) = ~ tan ' (5.3)

where

The properties of the bound states under study
are completely determined up to the one-loop level
by two functions. The first is the "breather, "

(4.32)
«) =m cosa, e =(nr sinu)x, (5 4)

the analog of (3.44), is the condition which de-
tenmnes 0,

B. WKB quantization from energy self-consistency

(4.33)

(y«» 4,
(» + 4,

(» ~(0) ) d» (4 34)

Following the lesson learned from the NLSE, we
now go to the energy self-consistency condition in
order to benefit from the information (4.31) and
(4.32). Writing Eq. (4.15) in the form

E E(0)[y ]+E(r)

the vacuum sum E„' may actually be written as

which is a solution of (5.2) considered as a class-
ical equation, with 6= ~t. As explained in II and
implied repeatedly by the prvious sections of this
paper, P ' is a generating function, through its
Fourier series in 8, of the matrix elements of the
field operator P(x) among the bound states In), in
a limit in which all recoil is ignored. The same
arguments as were applicable in the preceding
section show that ignoring recoil cannot introduce
an error greater than O(n '). We have

Q |i
dBe *"'Y"(x,0)(n), B)

27T ~o

The first term of (4.33) is treated with the help
of the decomposition (4.29) and the lowest-order
equation of motion for Q„". We th'us find in analogy
with a similar calculation in the last section, "

where the notation implies that the relation

(0= (d(rr) (5.6)

435

16m 3 A.'n

16m (4.36)

Adding (4.34) and (4.35) and recal»ng (4.32) yields

@(0)[4
(0) ()(I s )]

has been obtained from a suitable quantization con-
dition, as developed, for example, in this section.

We are, in fact, interested in a function
1'(x, (0, B) which corrects Y ' up to the one-loop
approximation. The procedure for deriving an
equation for this function is the same as that used
at the beginning of the preceding section. The
function Y still has the significance (5.5) but now
obeys the equation
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m. 'm'ss'F —s, 'Y J~ srs S')
m

and the state }n,k')) is the scattering state of a
meson incident on the bound state in). As shown
in II, g~~ satisfies the equation

Here g~t(x, n, 8}, the second of the functions re-
quired in this section, is defined in analogy with
(5.5),

Ea 4&+2'eeEiaela ~ ae la+ as 4a

vY
m0 COS Y j~- P, 5.g

1 dee-'"' ~ g, n g =—n —v g n,

(5.8)

which was, of course, derived from (5.2) by the
arguments given in II. In Appendix D 1 we describe
the derivation of g~t(x, n, 8) from a suitable multi-
soliton classical solution. We find"

1 cosh« sinhz(e" e —I)», (1+e"e)
(2E„L)' ' exp(-ik«) i)Ji(«, n, 8) =-,'(1+e"e)+- —

& tan2n cos20

1 tan'n cos6)e',.8 1
pe + (5.10)

where

D = cosh'z + tan'n cos'8,
E -m cosa
E+m cosa

(5.11)

(5.12)

tan6= 2, v= k/m sinn .2v
v' —1 '

It is important to note two properties of the function g~t(x, n, 8):

lim g~t(«, n, 8)(2E„L)' ' exp(-ikx) =1,

(5.13)

(5.14)

JI«l g, (x, n, 8) ['=(2E,) '. (5.15)

The equations of motion (5.7) and (5.9) can be derived from a variationai principle of the "time-indepen-
dent" variety, "

5„(C„-E„)= 5,,(C„-E„)=0,
where

27r mm2
d8 « '~'( ya)e'+-.'(B„F}'- ' cos F-1

0

(5.16)

(s' 27k

+~ J 2v «'I2 ~ }&~} +&'~EaHae&a"4a —kiaefi, )

~ i *
I i I* !sissrS, I* lm..' (sss , r) I y. i*}- s. ,

0 27f

C„= ' dg
D

(5.17)

(5.18)
"dB

Iri' i s s [(s i, )r'r, —assi]' Is,is,[*}—, s, .
0

Again we must establish the finiteness of I.„, E„, and C„. These results are proved by considering the
generalizations of Egs. (4.13)-(4.17), which can be derived by the arguments of Appendixes C and D, but
will be stated here without further ado. From (5.9}, we derive the generalization of (4.13), namely
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o=g ' 'dxI»* Id, I* x»I(scd')o, -o's, o I
k 0

~ * Idol*,—Im*
I o, I'--', Is, (, I* —-'.m*(cos )'-() I o, I*

~
m'—(O *) f fdx cos Y —()

This is easily seen to guarantee the finiteness of I.„=C„-E„.
The generalization of (4.14) is

'" d6
2F

d+ Ek g& + juEk Begk gk $&8e

(5.19)

~ *(loco. I* ~ I *Id. ll* ~ II s, I()* ~Il.*(cos )'-() Io. ll* (5.20)

which, once again, provides the correct normalization of (|), for finite normalization volume I, From.

(5.20), we deduce the energy in the form

E(0)[F]+E(1) (5.21)

d(„') = dx —,
' '(ss)')' ~ —'(s, Y)' — cos )' —()

0
(5.22)

m '" d6E(') = —' E —e +(5m')
n 2 k 0 2r dx cos Y —1

m0

Using the results

l '" d8 8
dx cos Y —1 = — sine,

2n' m m

dkOm'=

(5.23)

(5.24)

one verifies that the last term of (5.23) has the same value as its weak-coupling limit, thus guaranteeing
the finiteness of E„' and consequently of E„.

Finally, by combining (5.19) and (5.20), we have

m2
2E„+ 5m2

27r

d8 dx cos Y- 1

= Q f f dx(d I(' I' ~ (x»I('ssV' )O O(s ('I ~ x'Is ( I'I, (o.so)
0 7T

and this guarantees that C„has the form
2' d8

C dg (a)'(8 F)'+E '
71 2g0

6 f!

and is finite.
The proof that

C„=nu„

(5.26)

(5.27)

goes through precisely as in the preceding section for the time-independent variational principle.
We also give the time-dependent version of our proof. This time-dependent version involves the action

which can be written as

I„=T„(C„-E„),
where T„ is the period: (d„T„=2m. By a change of variable, 8=(dp, we have

(5.28)
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n
1 2d) ds ', (8,F)' —-', (8, F)' m, ' cos F —))

0

~ P "d8 f8 I-', Isd I,

' ~„d((st)),F—,ds(8) , d')d, 'I' ,—', Is(8 I',—,'m'{cos (8»)

We then derive the equations of motion from the
principle of least action

6(f„+E„T„)=0, (5.30)

(5.31)5y(x, n, Z'„) = —()r 1'(x, n, T„)cT„,
5q (x, n, T„)=-8 (I)„(x,n, T„)zT„.

The quantization condition follows from the equa-
tion

(5.32)

where the variations vanish at spatial infinity, and

at t=0, but

lows us to carry through the remainder of the ar-
gument very much in parallel with the discussion
which follows (4.28). Thus we find again that

n = n, + (n, /n), (5.39)

where n, and a, are both of order unity and only

n, differs from the weak-coupling value.
We must finally compute the energy utilizing the

results of the quantization procedure. Substituting
the solution of Appendix D2 in Eqs. (5.21)-(5.23),
we have

d
(f„+E„T„)= (f„+E„T„)

8

=("n&n=2~ ~ (5.33)

E(0)[1F(o) y())] E(0)[1F(0)]

"de
+ 2(c' ck(sp'")(8, Y'")

0

where the partial derivative is to be computed at
fixed y', (}), g, and T„(This e.ntails Sg„=0.} The
quantization condition becomes

iaaf + ~
f1
~

ff
= T„c„=2&n (5.34}

provided that u)e have been careful to define C„
so that C, =O and C„ finite for any n.

Let us apply (5.34) in the form
2%

de d~ ~„' a Y ' +a~'&. 5.35
lT p

In lowest order, we have

16m' . 2msine — sine

+ fm+mO(n'). (5.40)

On the other hand, as already calculated in Ap-
pendix C5,

E&') = mO(n') . (5.41)

Since the sum of the O(n') terms in (5.40) and
(5.41) precisely defines the f(n) in (5.38) and writ-
ing n in the form (5.39) one sees that the sum of
(5.40) and (5.41) becomes

] 2g

de dx&a' 8~Y '=nor.
2m

(5.38}
16m' . &'n

Fsdf)~jslnj627 (5.42)

This yields the well-known condition

16m'
— ~=n. (5.37)

&6m n+-', +f(n}=n, (5.38)

where f(n) is O(n') for small n and is discussed
in Appendix DS. The structure of this result al-

To carry the calculation to the one-loop level, we
require the solution of (5.7). This is obtained in
Appendix D2 and its structure discussed there.
In particular, it is seen that the renormalization
X -X', which played as essential role in the pre-
ceeding section is associated only with the first
Fourier coefficient of the full solution.

We next apply (5.35). Comparison with (4.27)
assures us that the result must be of the form

as previously derived.
We have thus shown by application to a variety

of exampl. es the availability, at least up to the one-
loop level. , of a consistent WKB quantization
scheme within the framework of conventional can-
onical quantization in the Heisenberg picture.

We see no difficulty of principle in extending
these calcuLations to higher order. We shall also
show in subsequent work how similar techniques
can be applied to scattering problems.
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APPENDIX A

We show that if A(x} is any polynomial in x, then

(nl A(x)l n+v) +(nl A(x)l n —v) = 2(A(x)}„[1+O(n ')],
where A(x), is the vth Fourier component of A(x), defined as follows: First let A(x) be x"", o an in-
teger. Then

(x "}„= Q (n ——,'vJ xl n+-,'v, &(n ——,'(v, —v, )l xl +-,'(v, —v, ))
vlv2 va

x (n ——,'(v, —v, )l xl n+ —,'(v, —v, ) ) ~ ~ ~ (n ——,'(v —v )l nl n+-,'(v —v ))

Vl~ ' V a
XV XV V XV V

' XVl 2 1 3 2 a (A2)

The polynomial (A(x)), is the sum of terms of form (A2).
Proof. Let A (x) = xB(x). Then

(nlAln+v)+(nl Aln-v) =g (nlxln- v, )(n —v IBln+v)+P&nl xl n+v, ) &n+vjlBln —v) .

Next we expand

&nlxl n+ v, & =x, +-,'vs„x„, & n+ v, lBI na v& =&nl Bl n+ (v+v, )) v vS„B„„ (A4)

After substituting (A4) into (A3} the first point to notice is that the sum of terms which are linear in 8„
and therefore nominally O(n ') cancels. All arguments, of course, presuppose that a sum over any index
v; converges within a range of values l v; l «n.

We thus find, using x, =x, ,Vl V I

(nlAln+v)+(nlAln —v) =P x„[(nlBl n+v+v, )+(nlBl n —(v+v, ))]
Vl

= g x, x „[(nlCl n+v+ v, +v, ) +(nlCln —(v+v, +v, )) ].
V lV2

Here we have written B =xC and noticed that in the sumover v, each term presents the same problem as
the original one analyzed from (A3) forward. We have only to continue the argument until C has been
fully analyzed to reach the conclusion (Al).

APPENDIX 8: NONLINEAR SCHRODINGER EQUATION

L Equation of motion to one loop

We derive Eq. (3.9). Consider

J dp /2

&n-1(p')l[g(x, o),B]ln(0)&= 2
E„-E„,—

2 1} e ' '*(n-1(p')lg(0)ln(p))

d
(En E y)+

2( 1) dp p (x)

The second term of (81) combines with the usual "kinetic energy" to yield the reduced mass factor n/
(n —1) apparent in (3.9). Next consider the interaction term in the tree approximation,

(81)

K
2 2 2

e " n-1 p') If (0)ln-2 p") n-2 p")l Q 0) ln-1 p"' n-1 p"')I f 0)In(0))

(82)
This is easily evaluated using Galilean invariance in the form (3.6) and the inverse of (3.8) to yield the
third term of (3.9).

To obtain the one-loop contribution we shall consider a typical contribution in some detail. In this typ-
ical contribution as well as in the remaining ones we encounter the amplitudes
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ll„,(*&= ' '
( -2& -kif', 0 ~ — ly(o&I (oj)dp';~, ', (n —2} p'

e "'((n-2)(-k+p'), klan(0)l (0)),
2m

(H4)

In (83), the second writing neglects terms of relative order n '. We then consider a contribution to the

interaction
II

ff J( —-- — — e-"'* n-1(P')) }('(0)l( n—3) -k+P",k+
2g 2p 2g 2m n-2 ~ n+2

II

x n-2 -k+p
2

'~+ -2 ~«0} n-1 p"') n-1(p"'}l«0) «) . B5

If we utilize Galilean invariance in a typical form

n —3 y+p", 0+ — g 0 n —1 P"

" n-3 -. n-3 P""3 ~'~'
2 ~ 1

~
2 leon 10

and keep everywhere only the leading terms in n —1, we recognize that we may apply the faltung theorem
for Fourier transforms and obtain for (B5)

(H5) = ff
~
ri„,(x)

~

'y„(x) . (H8)

This is one of three terms contributing to the one-loop approximation. The others are obtained similarly.
Equations (3.10) and (3.11) satisfied in leading order by these amplitudes have been obtained in 1 as Eq.
(4.12) and the solutions given in Eq. (4.18).

We remark that in carrying through the above considerations, it was not necessary to use time t = 0. A

common arbitrary "spectator" time could have been utilized in all derivations.

2. An elf;tended variational principle

Here we show that the variational principle (3.21}can be modified so as to provide a stationary property
with respect to variations of y», X»*, g», q,* as well as with respect to variations of Q and Q*. Toward this
end, we first rewrite E„with the help of special examples of the completeness relation, also utilized in I,

J „In (*&
I

' = J,",
I
x (*&

I

* - &(» ~ —„ I

('™N(»
I

*

r —t}„(x} = lt~(x) —lim 5(x -y)

2 d
/n} (t&('& (x

h

With the help of (B2), Eq. (3.19) can be rewritten
2

Ch y„h) —~ 1-— Ch

(88)

dP '

' d d dQ 2 3
+ —,

'
— dx t},(x} + —lt, (x) ——,

' dx k'+ — dx —(t&('& (x)
dh ' dh ' 2' 2n dx

(h)' Xh)2~4 h ' Zoo)

y~'~h) ' y„h) '--,'Z dx[(P„(x)'}t,*(x)r},*(x)+c.c.] . (89)
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To have a variational principle for the new amplitudes, the constraint C„must be augmented to a new quan-

tity D„,

D„=(E.—&. , ) Jdx~k. (*)~~* —
2t z) f d

~ 0 (x)

+(u„dx R~ x '+ dx ——= ~k' X~ & — 4 &)
'

~ (810)

With the aid of (3.9), (3.10), and (3.11), we find

(811)6,+(D„E„)= 6„,(D„E„)= 6„~(D„E„-)=0.

The extended variational principle is particularly convenient for the evaluation of (8E/Sn)Io ~* required
in (3.31). If we calculate this derivative from (89) we must differentiate explicitly Q„'0' (but not Q„), n,
X„and t),. The terms not involving X, and q, (and their conjugates) turn out to cancel to the order re-
quired:

BE =0. (812)

The terms involving y~, q~ are readily evaluated using the equations of motion for these quantities, or what

is equivalent, (811). We thus find

gE d=(o„— dx —Iq, (x) I'+ —,
' k' — dx[IX,(x) I' Iri, (x) I']

n

d
= co — dx" dn I~,(x)I , (813)

since the norm

dx[
I x~(x) I' - 117m(x) I'] = I (814)

is independent of n. A direct evaluation yields

—, 2I~,(x)I =

=2 )t,(x) q, (x),
dk (819)

and therefore

gp X 3 (815)
z =(2I~.„I)'"x

With the substitutions

e(x) = "' p(x)

(820)

(821)

(816)

which simplifies the considerations of Sec. III.

3. Solution to the equation of motion

p(x) = p"'(x)+[p"'(x)~/n],

P~o'(z) = v 2/cosh z,
we find that p"'(z) satisfies the equation

(822)

(823)

u)„,= (E„—E„,)(n —I)/n (817)

We shall solve Eq. (3.17) to first order. If we

define

d2
P( 1) n(1) 6 (1) 4

+ p + I3d~ cosh'z cosh' cosh'z '

(824)
and has the solution

and choose p„(x) to be real, the equation to be
solved can be written to sufficient accuracy as

(1)P"'()=
2 „,„... (M5}

1 d'
&u.«P„(x)+—,P„(x)+ KP„'(x)

= (2K/n)[P„"'(x)]'

dk-K —[2 Ig, (x) I' ~x,(x)q, (x)]y &"(x) . (816)

To evaluate the inhomogeneous term, we have

or

4„(z)= (2 I &o„, I
/scp~'(cosh z) '

+ ( I ~„,I/2zn')'I'(cosh z)-'.
Inserting (825) into the quantization condition

dxIy„(x)I =n

(826)

(827)
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evaluating the elementary integrals, and expanding
to first order, we find

APPENDIX C: WEAKXOUPI. ING VERSION

OF SINE~RDON EQUATION

l. Accuracy of the tree approximation

—(2 ((u„, i)'=n -1, (B28) From the equation of motion

-[[y,ff], rf] —6,'y+m'y ~ay'=0, (Cl)

which yields (3.39}when we expand (B17). uti1izing the definition (4.3), we obtain the equation

{fE„-E~,(p}]'+s„' —m'] p„„.(x)

Since

P 1
n' 2n'm

(c3)

(c4)

2. Absorption amplitudes

The loop contributions are expressed in terms
of the quantities

(x) = (n
~
y(x) ~n, k), —

g„,(x)=(n~y(x) ~s 2, k&,

which as shown in II, satisfy the equations

v =-8 4 2
cosh2z " cosh z

(G5)

(c6)

-2 —v') g+=-8 ' 4 2
cosh'z " cosh'x ""'

(C8}

where

we may to first-order terms replace E„,(j) by
E„,. The proof that we may, to the same order
of accuracy, replace the right-hand side of (C2}
by the right-hand side of (4.4) also involves little
more than the recognition of (C4), after suitable
introduction everywhere of the inverse of (4.3).
Arguments of this type are given in the Appendixes
of II.

To reach Eq. (4.6), our real starting point, we
must (i) consider only the equations for Q„,~, and
expand these about P„defined in (4.5). By con-
sidering the average of the two equations for n'
=n+1, we learn that the "tree" contribution in
(4.6} is accurate to O(n '). The remaining O(n"'}
terms are obtained from the one-loop contribu-
tions, which were calculated in II.

(2E, L)'~'}I„=, . v' —1+2ivtanh zv' —1 - 2iv

1
cosh2z

e'IVY 1
v' —1 —2s v cosh'z

(C10)

The normalization reads

I.tm dx[~X„(x) ( (&„(x)( ]=(2E,)- .
L

(C12)

3 1 1 2 1 e+-, —tan'n + ——— tano. (1 —tan'o. }
2 cosh'z ~ 2

(C13)

Keeping only the leading terms in the weak-cou-
pling limit in which we set tanm ~n -= sinn, we
have

3 Solution to the equation of motion

We present here the solution of Eq. (4.6}. If
m' is the renorma, lized mass, m'=mo'+6m',
the right-hand side of this equation is & X/8, where
8 is the integral

dk
2„(21X.I'+ 2 I n. I'+X. n~+X ~ n4)+ 5m'

1 1 2'——tan'a — 1 ——tarncosh2z 7l'

1 a
+ ——— tan'n

2 r

v= (k jm sinn), z = m(sino. )x.
Equations (CV} and (C8) are the dimensionless
form of (3.10) and (3.11}and have as solutions

1 s1n Q sing 3 sic@
m cosh z cosh z 4 cosh z (C14}

The first term of (C14) may be incorporated into
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the zero-order equation if one makes the coupling-
constant replacement

i) 1 1
2 cosh»z (C20)

x- x' = x[I —(x/8vm')]-' .
The substitution

(C15) The total result is then given in Eq. (4.24).

P(z), z =m(sino. )x,W2m sina
xs i/»

allows (4.6) to be written in the dimensionless
version

(
p-1+P2 P= ——

dz' 4m'sine cosh'z

(C16)

4 Canceling divergences

We describe the derivation of Eqs. (4.13) and
(4.14). Equation (4.13) is derived from (4.8) and
and (4.9). Because X» is not square integrable,
we modify the usual procedure which would be to
multiply (4.8) by X», (4.9) by n», integrate and
add. Instead we multiply (4.8) by the complex con-
juga. te of

3x P
16rrPsiIM. cosh'z t'»=X» —e' (2E» I) '" (C 21)

p p (o) + p (I) p(o)
n ' coshz (C18)

leads to the equation

(
d~ 6 ( 4 3

p
(1)

dz' cosh'z cosh'z cosh'z

4 P 3 P
n cosh'z n cosh'z

(C17)
where the lowest-order quantization condition
(4.21) has been utilized. The expansion

but otherwise proceed as usual. %ith this change,
all integrals are absolutely convergent and we
can interchange orders of integration if we choose.
Elimination of Q by means of (C21) accounts for
the last term of (4.13).

The derivation of Eq. (4.14) is somewhat length-
ier. It consists of a careful evaluation of the dif-
ference of expectation values which defines E„
with the consequent recognition that most)contri-
butions cancel in the difference. To illustrate the
argument consider the difference-in the "fixed
source" limit—

which is solved by

(C19) (n, ki ~I[/( )x]'In, k ~&&nip'(x)ln&.

We have (using discrete momenta as well)

(C22)

&n, )if[4 &x)l'In, )t&=—f&n, &I4(x)ln, »I'+ 2 f&n, ul +&x) fn ~ ~'&I'+f&n I Iy&x)ln&f'

+f(n, & fp(x) fn, &, »I'+corresponding terms in which n changes by 2

-=I&nil (x) ln&l'+Q f&n f@(x) fn, &'&I '

+2I&n I p(x) fn, »I '+terms in which n changes by 2,

keeping disconnected pieces as the major contri-
bution. The first two terms cancel upon subtrac-
tion in (C22). Thus altogether

(C22) =2I& n f P fn, » I +2/&n I 4 I n —2, » I
'

=2fx»l'+2fq I'. (C24)

This argument accounts specifically for the term
of (4.14) proportional to m'. Corresponding argu-
ments yield the remaining terms.

curacy

2(u„dx P„(x)= (o„—, +-16@1 '2

(C25)

2fps . 2m~~ r
p Ey = — slIlQ — COS& ——~ + fgr 2

The remaining term in C„ is the zero-point sum,
which as been evaluated by DHN and in II,

5. The quantization condition
2m sin cL= —sin A+

2 w 6 (C26)

We evaluate C„, given by Eq. (4.17). First of
all, using Eq. (4.24), we find to the required ac-

The value given by DHN and adopted in II does not
contain the last term (+m) because in previous
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calculations c„ the vacuum subtraction, has been
augmented by that amount. The arguments used in

Sec. IV to obtain the energy show that this change
has no effect on the final result. Here we see that
the zero-point sum does not contribute in the weak-
coupling limit.

APPENDIX D: SINE-GORDON EQUATION

1. Absorption amplitudes

7/v+ 2 gv —z
V3= . y V4=

'g + Z V 'g —EV

The constants y, are related to the periods by

e~~ = e» =e,
e73 —e Y4

(D7}

(De)

(»)
We will now calculate the function $„(x,u, 8),

whose Fourier componenet are the matrix ele-
ments for absorption of one meson of momentum
k by a bound state ~n) according to (5.8). Because
this function satisfies the linearized sine-Gordon
equation (5.9) it may be obtained from linearizing
a particular four-soliton solution consisting of one
doublet with period (2E/m)(1 +E'))~' and momentum
4 which is used as a probe. This calculation is
fully explained in Appendix C of DHN but will be
repeated here in order to correct a misprint in the
so lution.

The unlinearized solution to the sine-Gordon eq-
uation is

(Dl)

The functions B„are given by

(k, —k, )' —(P; —)8, )''"'""=
(k.'k, '}' u-,

'
~,

')' (Dlo}

+2 cot'ee" e"&"2'"3 .

To evaluate F and G to fir'st order in g requires
keeping only terms linear in e"3 or e"4. Ke may
then set q = 0 in u3 and v4. Consequently x, = x4 in
this limit. Evaluating the B,, with g=0 gives

F +5F =1+cos2n e"~'"2

2e"
+2pe e & 3+ e 2

p

G+DG = e"'+e"2+2e"3

where
44e 4

»(*, ~)= -. E», ....Z., *,),p. =(o, z) i=i

(D2)

Substituting for the x; gives

F =2e'cosh'

$F'=2qtanne'e'~ pe ' + e'~'" ~'e

p (D12)
4(.o)

G(*, t)= E» Z»;;»;»; Z q, *,)p; =(0, 1)

(D3)

The summations here are over all combinations of
p, , =0, 1, p2 =0, 1, g3 =0, 1, p4 =0, 1 subject to the
constraint that their sum be even (e) or odd (o).
Space and time enter through

G =2 tangle'cosG,

5G = 2q(1+ e2 Ee2»)e'&~»

where I9 =mt cosa, z =mx sine, p and 5 are given
by (5.12) and (5.13). These results are in agree-
ment with Appendix C of DHN except for a few fac-
tors of 2 and a crucial minus sign in 5F.

The linearized form of (Dl} is then

x, =u,.x+P, t +y, ,

where

k; = (1. —v '} ')'

P, =v, (1 —v') '~'

and the velocities are defined by

(D4)

(D5)

(D6)

,( i )
4m F5G —G5F

F2 +G2

The first correction is thus the solution

(Eg F5G —GAF
F2 +G2

The properly normalized solution is

(D13)

(D14}

(2EE L)' 'p), (x, n, 8)e ' '= — coshE(e '+e" e')
I

which may be rewritten as (5.10).

-~ean'n cosee'~ pe ' +—e'~
p

(D15)
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2 &act solution to the one-loop equation

We now proceed to solve (5.7), the sine-Gordon equation with one-loop corrections. The equation may be

written

(&, -8, )y= ' sin y —2m& ~ ~g~~'sin —Y
v' A. Pl fPl

(D16}

with mp' replaced by m' in the last term. The first step is to calculate the source term. The square of

(5.10) is

2 tan'o. cos-'8 2cosh, c sinhz tan2n cos'8
B

4+cos5}cos5-- D2
8 sin5 tan8 (D17}

A =-'(}o+1/p),

& =l(p —1/p)

(D16)

(tl '-8'}}'' =m'cos Y '
)

}'"
Pl l

(-2/m) g'+a——,me'X

All dependence on k is contained inA, 8, and 5.
Can ying out the momentum integration gives

dk
~,

dk -(2/w)g'+s
2w 4mE D

, (2/~) g'+bg'
D2

& sin —Y
m

(D24~

where

g=tann cos8,

D =cosh'z+g' .

(2/v)g'+f}g'
D2 (D19)

(D20)

If one notes that

cos '
SPY D D

(p) 1 2gsin Y ' = —— 4g cosh',
)n D D2

(D25}

Thus all time dependence occurs through g. The
constants a and b are explicitly

then it is not surprising that Y" should be ex-
pressible as a linear combination of D ' and D '
with time-dependent coefficients. Indeed, the ex-
act solution is

1 1 Q sin(x
a =- tan'e—

2 w cos Q

1 1 n 1
5 =- (1 —tan'o)+r 2 w siQQ cos Q

(D21)
(,}( )

(1/4m)(v X /m)gco she
D

+— —, ' . (D26)
(va /4m)[(2/w)g3+f} ]coshz

dk'
PPl mp

8w „Z' (D22)

The next step is to set Y = Y ' + Y~" where

The logarithmically divergent part of (D19) pre
cisely renormalizes the bare massin(D16) togive

Such a simple solution to (D24) is possible only
because of the special form of the source term.
In particular, the relation

+5 =2/wssn'e

between the constants a and 6 is essential.

—tan(p) 4 Pg
g g

KA. coshz (D22} 3 Quantization condition

is the solution to (D16) in the absence of the source
(but with the renormalized mass). The equation
for Y~" is then

In order to examine the sum of Y ' and Y "it is
helpful to expand both in a power series in g. We
find
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Y +Y = -g4m A, +
coshz cosh'z

1 3 A B
5 + + ~ ~ ~

cosh5z cosh'z

where

A.=1-
16mm'

SX (2k +1}'x
A3=1 —

16 2, . . . , A2„, , =1
16mm2

— —b
16m~

6z (k+1)(2k+1)X
16m~ ' ''' '"" 16m'

(D27)

(D28)

occurs only for the first Fourier coefficient:

1 1
(x')'"

With the aid of (D27) and (D28) we are finally in
a position to compute the "classical" term of the
quantization condition (5.35) to the one- loop level.
We have

27I de—(&el')'
2Tr

16m'
n+2cotn d- —(se& ' )(&e& ' )

d 8 (p) (y)

p 277

(D30)
For the integral, we obtain by an expansion in tann

J dz —a Y ~B Y ' =-tarn ——tanu
d8 . 0 ) 1 1
2w

B„„= [1+O(sin'n)].(k+1)(2k+1)
2)i

(D2S)

Note that the renormalization X- X' (of the energy)

Note that the expansion of Y ' alone corresponds to
A, =1, B, =0. Because b = (2 sinn) ' in (D21), it
follows that

and thus

+5 tan'a + ~ ~ ~
1

16m2
(D30}=—,n +=', +& n'+O(n'). (D31)

This is to be compared with Eq. (C25}, from which
it differs first in the term 5n
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