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The equations of motion, based on the retarded Lienard-%'iechert potentials, for two charged particles of like

sign in classical electrodynamics are considered. The two charged particles areassumed to be movingalong thex
axis. No forces are considered except those produced by the two particles themselves. The "radiation reaction"
is not considered. Because of the finite speed of propagation of electromagnetic effects, the equations of
motion form a system of delay-difkrential equations. In general, for such a system one needs to specify the
past trajectories of the two charged particles over a period of time to determine a unique solution in the
future. But one generally expects that instantaneous values of position and velocity should suAice to determine
a unique solution in a physical problem. A simple example shows that this should not be expected in the case
of delay-diA'erential equations. Consider the equation x' = —x(t —m/2) and x(0) = 0. Then x = asint is a
solution for any a. Uniqueness fails to be true even for such a simple equation. However, for the one-

dimensional two-body problem of classical electrodynamics, Driver and Zhdanov have proved under certain
restrictions on the given instantaneous positions and velocities of the particles that a unique solution is

determined. In this paper, we shall give an existence and uniqueness theorem which extends some of
Zhdanov s results. If two particles are separated far enough and are moving toward each other but not too
fast at t = 0, then we shall show that their trajectories are uniquely determined both in the past and the
fUture by their positions and velocities at t = 0. The contraction mapping scheme is used in the proof.

I. INTRODUCTION

X =CV)

(3a)

(3b)

v' b [1+V(f —r)]
(1-v')"' r'[1- V(f- r)] '

V b[1 v(t ~}]
(1 —v')'" V'[1+v(t —&)]

'

(la)

where

(2a)

(2b)

U'sing the retarded Lienard-Wiechert potentials,
the equations of motion for the two-body problem
of classical electrodynamics, in the one-dimen-
sional case, can be written as a system of delay-
differential equations where the time delays de-
pend upon the unknown trajectories. The delays
arise because of the finite speed of propagation of
the electromagnetic effects.

%'e shall consider two particles of like sign mov-
ing along the x axis. No forces are considered
except those produced by the two particles them-
selves.

Let x(f) and x(t) be the positions of the two par
ticles on the x axis at observer time t, relative
to some inertial reference frame, with

x(t}(x(f}.
Then the equations of motion of the two-body
problem are

b, b, and c (the speed of light) are positive con-
stants, and x, x, x', x', v, zi, v', 8 ', 7', 7 denote x (t),
x (t), x'(t), x'(f), v(f), v (f), v'(t), v'(f), ~(t), 7 (t). A
prime denotes d/dt.

Some authors include the Dirac "radiation-reac-
tion" terms in the equations of motion. However,
it has been proved that these terms lead to some
paradoxical results. " So in the present paper
these terms are excluded.

For a delay-differential equation, the usual for-
mulation of the problem is as follows: Qne speci-
fies a rather arbitrary "initial function" on an
"initial interval" and seeks an extension into the
future so that the delay-differential equation is
satisfied there. For Eris. (la)-(3b), Driver
proved that rather arbitrary continuously differ-
entiable "initial trajectories" of the particles will
uniquely determine the trajectories of the particles
in the future. '4

Another approach to the equations of motion of
this electrodynamic problem can also be taken.
Qne might specify the positions and velocities of
the two particles at f =0 and demand Egs. (la}-
(3b) to be satisfied for all time (both in the past
and the future). This has been conjectured to be
a well-posed problem. "

However, consider for example the following
scalar linear equation with a single delay:

x' = —x (t —K/2)
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and x(0}=0. Then x= a sin t will be a solution for
any constant g. Thus uniqueness fails in such a
simple case. Indeed even if all the values of the
derivatives of x are given at t =0, the equation
still has infinitely many solutions. '

Therefore, for the much more complicated de-
lay-differential equations of the two-body problem,
we must be careful not to jump to conclusions
about the existence and uniqueness of the trajec-
tories when only instantaneous values of the posi-
tions and velocities are given. This then motivates
the "backwards problem" for Eqs. (Ia)-(2b),
which ean be stated as follows:

Pxoblem P. Let x„,x„,v„80 be given numbers
satisfying x,«x„ I v, I «1, I v, I «1. We seek functions,
x and x, on (-~, 0] with continuous first deriva-
tives such that x(0) =x„x(0)=x„x'(0)= cv„x'(0)=-. x«on(-" o] lx'l« lx'I«on(-" o1*
and (Ia)-(Sb) are satisfied on (- ~, 0].

Such a pair of functions, x and x, will be called
a solution of problem P. The solution is said to be
unique if any two solutions associated with the
same "point data" (x„x„v„and Pi,) agree with
each other.

We shall give an existence and uniqueness
theorem for problem P. The question of a unique
solution existing also in the future then becomes
an "initial-function" problem which has been
treated. "

Howevex, before presenting the rather compli-
cated proof, we consider a very simple artific1al
example which will illustrate the basic idea. Con-
sider this scalax linear delay-differential equa-
tion

x'=a(t)x(t-1) for t «0

(E)

x(0) = x„where x, e 8 .
lf a(t) is continuous and

J
0

la(q} ldq=r«1,

then a unique bounded solution exists on (-~, 0].
This was proved by Doss and Nasr' as follows.

First define a complete metric space

A ={f:f c C(- ~, 0] and f is bounded)

with the metric

d(f, g)=sup If(s)-g(s)l «rf, g &&.

x(0) =x, .
A unique solution, x, exists to this ordinary dif-
ferential equation. Let

T(f)=x for f eA .

Then one finds

l&(f(t))l= ix(t)l-sup li(s)l for t 0.
S «0

So T(f) c A. Moreover, for any f„f, e&

&(T(f,), ~(f,)) «r&(f„f,) .
By the contraction mapping theox'em, the existence
of a unique bounded solution to (E) then follows.

Let us consider bvo special eases to illustrate
the above result. '

1. Let a(t}=2te" ' in (E). Then applying the
above, one can see that a unique bounded solution
exists on (-~, 0]. However, in this case one
easily sees that there is also an unbounded solu-
tion, x(t) = x,e' .

2. Let

in (E). Again, the above result guarantees the
existence and uniqueness of a bounded solution
on (-~,0]. Moreover, this time there can be
no unbounded solutions since a(t) = 0 for t« —1.
Thus (E) has a unique solution on (- ~, 0].

Returning now to the electrodynamics equations,
Driver proved that problem P has a unique solu-
tion when v, «v, and (v, —v, )(x, —x,) is large
enough. ' Travis extended the existence assertion
to the case whex'e p0 ~ A)0. However Travisd1d
not p1ove uniqueness.

Recently Zhdanov, considering the special ease
of symmetric motion of two identical charged par-
ticles (i.e. , the case when x= —x), proved
that a unique solution exists when v, '+ h/x, is suf-
ficiently small. "'" Considering the symmetric
motion, we can see that the results of Driver and
Zhdanov overlap, but neither one of them contains
the other.

It is the purpose of this paper to obtain an exis-
tence and uniqueness theorem for problem P, in
the unsymmetric ease with v0 ~ 0 ~ v0. The contrac-
tion mapping scheme is used in the proof.

%e next define a mapping T of A into A. For
f cA, let us consider the ordinary differential

equation

x'=a(t)f(t —1) for t «0

The following results about solutions of (2a,) and
(2b) were proved by Driver. '

L e~m&. Let x and x be two continuously dif-
ferentiable functions w1th x &x and gag ~~ x' ~~ 0
0 «x' «Mc on (- &, 0] for some M c (0, 1). Then
unique solutions of (2a), (2b) exist on (- ~, 0] if and
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only if r(0)=r„r(0)=r, satisfy (2a), (21), re-
spectlvelp» Rt ~= 0» Rnd

v —v(t —r)
l —v(t —r) '

—8+ v(t —r)
I+ v(t —r)

for t ~ O. Moreover, t —T Rnd t —7 are strictly in-
creasing and

X~X %~X
c c(l-u) '

%~X ~ X X
— w 7'w

c e(l —u)

for t~0.
Now the main results —the existence and uni-

queness theorem for problem P.
TA80FePl. There exists R nuInber Q& 0 Such that

problem P has R unique solution whenever

max(b, b)e
«+0»

XQ XQ

VQ v, ' max(b, b)e
(I 4v R)1/2 0 (I 4 2)1/2

P~oof. Suppose that x„x„v„and v, are given
nuDlbers satlsfpmg g & "UQ «~ 0 «~vQ& p» xQ& xQ» Rnd

VQ v,' max(b, b)c
(I-4v'}'"'(I-4v'}'" x -x

u' u' 4max(b, b)e
(I —u')'" (4 —u')'/' x, —x,

4v, ' 4 max(b, b)c u'

From the facts that vQ ~0 and, the function,

y/(I —y)'/', is increasing we get

—2 8 «~ VQ «~ 0 .
Slmllarl'JJ %'e find that

0 u

Con&truetxon of a complete rnetrje space. The set,

2be'(t, —t,)
j(f~f):f~f — (- ~ 0j, -u- f - 0, 0-f - u, 0-«f(t, )-f(tp) «

Q QI

—2be t —t-', - f(t, ) —f(t,) «0 for any t„t, c (-~, 0j with t, &t,
I

18 R compIete Inetric spRce 'with metrxc

d t(f, f) (g g)j = sup
~ f(&)-S (&)

~

+ sup ~ f(e) g(s)~-
for (f, f), (g, g) cA. . This can be proved by showing that A is a nonempty closed subset of C(- ~, 0jx C(- ~, Oj. In
other words, let (f„,f„)be any sec(uence in A which converges to (f, f) in the metric d. By the definition of
the metric d, we know (f„,f„)converges uniformly to (f,f). It is then a straightforward calculation to
show that (f, f) cA also. Note that (0, 0) cA., thus A is nonempty.

2. Proof that (v, o) cA for any eotution of probtem P.
Let x, x be a solution of problem P corresponding to x„x„v„V,given in the theorem. Let v=x /c and

v = x'/c.
From (la), (lb) we find that v is increasing and v is decreasing. So

First, we are going to show' that

e have either
-u/2 «v «0 for t «0

v(t~) = —u/2 for some t~ «0.
In the fir st cRse w'e Rre done. In the second case, %'e find that

v -u/2 for t-t,
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v & —u/2 for t & t, .
Integrating (la), we get

v —u '& b 1+v (q —r(q)}
(1—v')"' (4 —u')"', r'(rt) 1 —v(q r(g)}

From the lemma, we find

v —v(t- r)7'=, , for t (0.
1 —vent- rj

Therefore, from the facts that r &0, v ) 0 for t & 0 and v « —u/2 for t & t„we have

v —v(t - r) - 8
1 v(t r} 2[1—v(t r)]

So

2r' 1 )0 for t (t, .
u 1 —v(t- r)

So

v —u '1 2b I+ v(q —r(q)}
(1 —v2)1/2 (4 —u2)1/2 r2(r/}

—u 4b u 4 max(b, b)c —u

(4 —u) ' ur(t) (4 —u) ' u(x —x) (1 —u)

Hence, we have proved that

—u & v&0 for t(0.
Similar proofs can be used to show that

0& v&u.
From the lemma we know that

X» X X» X(r(
c c —cu

Since

0

[v(r/) —v(r/)] dr/,c c t

and together with (la), it is clear that

2bc'(t, —t, )
(I )( )'0 0

«r t„t, c (- ~, 0] with t, & t, . Similar proofs can
be used for v. Thus we have shown that

(x'/c, x'/c) cA .

v' b 1+f(t —r)
(1 —v')"' ~r 1. —f(t —r) ' (5a)

3. Definition of a mapping T from A to A. For
any (f, f) cA, we consider the system of ordi-
nary differential equations

v —v+f —f(t —r)
1 f(t —r)-

v —v f+f(t —T)-
1+f(t —7)

(6a)

(6b)

where 7p rp are the unique solutions of the follow-

ing two equations respectively:

This is a system of ordinary differential equations
with data given at t =0 and a Lipschitz continuous
right-hand side. So there is a unique solution
v, v, r, r to this system. And we define an opera-
tor T on A by

T(f, f) = (v, v) .

First we shall prove that T(f, f) cA. We begin
by showing that r&0 and t&0 for t &0. From(6a),
we find

r' = v —v+ f —f(t —r)(1 —r'),

for t «0, where f,f denote f(t), f(t). And for t= 0

v(0) = vo, v(0) = vo, r(0) = r„ r(0) = ro,

v' —b 1-f(t —r)
(1 —v')"' T' 1+f(t —y) ' (5b)

where r' stands for r'(t). Integrating both sides,
we get
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0 (-0 -T(0)

q(0) —q f=[q(q) —ij(q)]dq+ f(q)dq f(q)dq'
t dt t T

V Yf —V 'g d'g — 'g gg

+ g A7f.
w'T(0 )

Using the value of &(0), we fInd

f(»dI1= ' "' —]I [v(n)-v(»]do. (»)
t T c

Note that the right-hand side is positive and the
left-hand side ls an lncreaslng function of T and

equals zero at v=O. So

7'&0 for t ~0

is uniquely determined, and

x() xo
( [ ( ) ( )]dq

C

Vg -Vff dg . 93,
1 —R C gt

Similarly from (6b) and the value of I {0), we find

( 0
&+ f(»dII = ' ' — [v(» —v(»]dI1 ~

t~f C 3t

N~, from the definition of the set A, ere find
that for every (f, f) EA, f is an increasing func
tion and f is a decreasing function. Then the proof
that T(f, f) belongs to A is quite similar to the
proof that (x'/c, x'/c) belongs to A for any solution
x, x of problem P.

T(A) is thus a subset of A. Furthermore, T(A),
18 closed. To 811ow 't11at, T(A) Is closedq OIle coll-
siders an arbitrary sequence T(f„,f„) in T(A) which
converges to (g, g) e A and shows that (g, g)
= T(f,j) e T(A), where f„,f„converge to f,f, re-
spe ctlvely.

%e have px'oved that for any solution x„x of
problem I associated %'1th the x0~ xQy v0y vQ glveQ

in the theorem, (x'/c, x'/c) belongs to A. It is
theh clear that (x'/c, x'/c) is a fixed point of T
and therefore belongs to T(A). On the other
hand, for any fixed point (f, f) of T on T(A)
let x' = cf, x' = cf with x(0) =x„x(0)= x,. Using the
lemma, it is then easy to show that x, x is a solu-
tion. of problem I)' associated vrith x„x0,v0, vQ.

Therefore, we can say that finding a solution to
problem I}' is equivalent to finding a fixed point of
T in T(A).

4. Solace eSI'SfPlQIe8 to 58 RS8d iPl PJ'OV&lg El1Qt T
is a contrgeIiog yyggppjng. The estimates inthis sec-
tion are obtained following the method used by
Zhdanov. "

For any solution v, v, r, T of systeIII (5a)-(7), let

0

x=x, — cv(»dI[

[v(» —v(»] dI1
C gt

[q(q) —q(q) ]
dqI

.
t

x = xQ — cv 'g +g ~

We shall consider the restriction of T on T(A).
For any two (f„f,) and {f„f,) belonging«T(A),

jet v, v, 7', T and v, v, 7', T be the corx'espondlng
unique solution of the system of (5a)-('I). Thenwe
have

T(f„f,) =(v„v,),
T(f„f,) =(v„v,).

From (Ba), we find

0 0 t
[" (~) v.«)]«— [v.(»-—v.(»]« f.(q)«+ -f.(~)d~

t

So

t%ff 40 t&rf&0 tlaQ

~ p I"«)-"«)I+ sup
I .«)- .«)I (-t)+~ suplf. «)-f.«)I ~

t&rf+0 tIgq(810 rf+0

3lxnllarly %'e can px'ove

{loa}
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I«2 I "&»-"«&I+ ~RI~&n&-R(~)I (-0+f.~RI/(v)-f (n)II.
4&g&0 g (elf)(Rf&0

Second, from (Sa) and (5b) we find

r
gb u

, v'(n) (l-u')"'

"0 bdq
'2 f'(n) (l-u')"' '

(lia)

Third, also from (5a) and (Qa) we have

v' b be'(1- u)'
(l —. v')" ' ~v (x —«)2

Similarly, from (5b) and (Qb), we have

v' —bc'(l -u)'
(l —vR)2/' (x-x)'

Let %=min(b, b)c(l-u)2(l-uR)'/R. We find

6f 1 j.
dt {l-v')'" (l -v')'" (»- »)(l -u')'"

I

v' ek 8' ck
2)2/2»»)2(l 2)1/2 (l vR)2/2 (»»)2{i 2)1/2

(l- v')"' (l —vR)'/2 (x-x){l-u'}"' (l- v,')"' {l—v, ')'" (», -»,)(1-uR}'" '

(l - v')" '[l + (l -v')" '] (i - vR)'/2[i + (l-
l —(l —v, ')'/'

(l v 2}1/2

vR)1/2] (»»)(l uR)1/2

i - (l - v.R)1/2, b ZR

(l v 2)l/R (»» )(l u2)1/2 (l 2)1/2

E2
(l —u')"' (x- »)(l —u'}'" '

S~ce e~o and 5~0,
v -»v+v'-E'-b!(»-x)o0.

Thex'efox'e

v- v «-[E'-0/(«-x)]'/R.

Rv= [E'-0/(«- «)]"'.

k(»' »')
2[&'-b/(»-»}]'"{x-x)' '

2k''
(E' uf'}'

2k dq
(&'- 2}')'c

integrating by the method of partial fractions, we obtain

2k dg f Q 1/2 p g /2~

(ER ~12 =
@2 (»&)-«&)) E'- -(»-») E'

+0 +0 X~ X

, b ~(».-x,)'"(Z+[Z'-b/(«, «,)]'/']
(»-»)"'p+ fz'- n/(» «)]'/'~
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So

x x cE cE'(x x) ' x —x ' E cE' (x, —»'o)(x —x)/(xo —@ x, x,

1 k ln2 1
cE cE' x, —x, 2e(x, —x,)

™'
[Note: M = O(u ') as u -0, so uM is bounded as u -0.]

5. Proof that T is a contraction mappiugon T(A). From (5a), we find

v, v, &
' b[1+ f,(rl —v, (9))] b [1+f,(q —r, (q))]

(1—v, ')'" (1—v.')'" ) ri'(n)[1-f 80 —&i(&))] '2'(n}[1—j'2(& —"(&})1

Using the triangle inequality and the inequality

d 1+y 2 for iyi-u&1,
dy 1 —y (1 —u)~

ere find

2blvi- v2i-
J (1 „)2 2(„[if(n r(n)-)-f.(n-r (n))i+

i f (n r(n))--f (n-r, (g))i]

b(1+u} 1 1
1-u r '(q)r (q} r (q)r '(q)

Now, using the fact that (f„f,) c T(A), we get

. '2bd[(fi f,), (f, f,)] d„

2b
I

( 2bc2
1 —u J, l (1 —u)'r, '(q)[ x, —x, —cfo(f, -f,)]'

+, .(„),(„)+,(„),.(„) i .(~ -"(~)l,l
& ~

From (10a), we find

'2bd[(fi fi} (f2 f.)] d„(1—u)'r, '(0)

2b 0 2bc 1 1 1 1 [
(1—u)' , (1—u)' r, '(q) [xo —xo —cf'(f, —j,)]' r, '(q)r, (q} ~,(R}r,'(0)]

x sup
i
v, (s) —v,(s)i + sup

i
v, (s) —v, (s)i (- q)

~ tl& g4Q qCg4Q

+df(f f ) (f2 f2)]min(ri(~) r2(0)}]"'i.

Then, from (11a), we get

„(( 2d[(f, f,), (f„f, ] ' 3Q 2cub

g(1 —u')" ' (1—u')" '(x, —x,)(1—u}'

2b ( ([ 2bc 1 1 1 1
'(1 u)' „I, I, ](1 u)', ,(0) [», x, cj'o(f, f,)] r, '(q) r, '(q)

- gc —gc
x sup iv, (s) —v, (s)i+ sup iv, (s) —v, (s)

i
max

( ) ( ), ( ) („)q+gKQ

Now, applying (12), we get
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2Q 2eb
lv -"I-(, „)2(1 „2)«2 3+(1 „)~(„„-)d[(~ ~i»(~ ~.)]

0
G(g)cM' sup (v,{s)—v,(s))+ sup )v,(s)-v, (s)) dq,

tj& S&0 t)aggago

2bc' 1 b

(1-u)' v, (q) [x,-x, -cjo(f, —j,. )]' r, '(q) r,'(q)

Similarly, we find

2 0+, G(q)cM sup iv, (s) —v,(s)i+ sup iv, (s)-v, (s)i dg,(1-u '
tj4 S40 tl&S&0

So

2be' 1 b b b

(1-s)' 7,(q) [x, -x, -cfo(f, —J,)]' y, '(q) f','(q)
'

sup /v, (s)-v,{s}f+sup fv, (s)-v, (s)/

eo
+ ——

2
' [G(n)+G(R)]cM s"p (v (s)- v (s) ~+ s"p ~v (s) v (s)

(1-u)' g&Ss'0 tj& S&0

d[(vga vl)l (v2I v2)] (1 }R(1 2)lsi2 (1 g)+(g ~ ) (1 g)

Since J [G(g}+G(q)]cM dq is bounded
there exists a number a&0 such that when-
ever max(b, b)c/(x, x,) «n-, u will be small enough
to make the coefficient of d[(f„f,),(f„f,)] in the
above inequality less than 1. Therefore T is a con-
traction mapping on a complete metric space T(A).
So T has a unique fixed point in T(A}. Equivalently
me proved that yx'oblem P has a, unique solution.
Q. E.D.

Remarks. (a}We conjecture that the assertion of the
theorem mould be true for the more general case
where —1&v, &v, &1 (instead of —1& v, ~0~v, &1).
One might be tempted to follow the method used by
Travis —choosing a, net reference frame which
travels with the speed, say vo, relative to the
or1ginal 1nertlal reference frame, ln 01dex' to x'8-
duce the problem to the case treated in the theo-
lem How'ever& 81multRQeous events 1n one 1Q-

ertial systexn are not necessarily simultaneous in
another. Thus in the neer reference frame me
would have the particle on the right arith a Qon-

positive velocity given at one instant and the parti-
cle on the left vrith a non-negative velocity given
at another instant. Then one would have to solve
a harder problem of finding a unique solution of
system (5a)-(6b) for which the values of functions
8 ~ Rre given Rt one 1nstRnt Rnd 5 ~ Rre given Rt
another instant»

This boundary-value px'oblem remains to be
stud1ed.

(b) We found the value of a very small. One con-
jecture is that some estimates better than those
given in part 4 of the proof might give a largex' a.
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