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The equations of motion, based on the retarded Liénard-Wiechert potentials, for two charged particles of like
sign in classical electrodynamics are considered. The two charged particles areassumed to be movingalong the x
axis. No forces are considered except those produced by the two particles themselves. The “radiation reaction”
is not considered. Because of the finite speed of propagation of electromagnetic effects, the equations of
motion form a system of delay-differential equations. In general, for such a system one needs to specify the
past trajectories of the two charged particles over a period of time to determine a unique solution in the
future. But one generally expects that instantaneous values of position and velocity should suffice to determine
a unique solution in a physical problem. A simple example shows that this should not be expected in the case
of delay-differential equations. Consider the equation x’ = — x(t —7/2) and x(0) = 0. Then x = asint is a
solution for any a. Uniqueness fails to be true even for such a simple equation. However, for the one-
dimensional two-body problem of classical electrodynamics, Driver and Zhdanov have proved under certain
restrictions on the given instantaneous positions and velocities of the particles that a unique solution is
determined. In this paper, we shall give an existence and uniqueness theorem which extends some of

Zhdanov's results. If two particles are separated far enough and are moving toward each other but not too
fast at =0, then we shall show that their trajectories are uniquely determined both in the past and the
future by their positions and velocities at # =0. The contraction mapping scheme is used in the proof.

I. INTRODUCTION

Using the retarded Liénard-Wiechert potentials,
the equations of motion for the two-body problem
of classical electrodynamics, in the one-dimen-
sional case, can be written as a system of delay-
differential equations where the time delays de-
pend upon the unknown trajectories. The delays
arise because of the finite speed of propagation of
the electromagnetic effects.

We shall consider two particles of like sign mov-
ing along the x axis. No forces are considered
except those produced by the two particles them-
selves.

Let %(¢) and x(¢) be the positions of the two par-
ticles on the x axis at observer time ¢, relative
to some inertial reference frame, with

x(t)<x(2).

Then the equations of motion of the two-body
problem are

TP P ) (1a)

- ;'2)3,2 o :2[ [1 11'2(&'_?5]] ; (1b)
where

cT=|x-%(t-T), (2a)

ct=|x(t-%)-%|, (2b)

16

x'=cv, (3a)
X'=c?, (3b)

b, b, and c (the speed of light) are positive con-
stants, and x,%,x’,%,v,7,v",?’,T, ¥ denote x (¢),
% (0), %' (1), %' (), v(t), ¥ (2), 0" (2), 9" (1), T(2), *(2). A
prime denotes d/dt.

Some authors include the Dirac “radiation-reac-
tion” terms in the equations of motion. However,
it has been proved that these terms lead to some
paradoxical results.”? So in the present paper
these terms are excluded.

For a delay-differential equation, the usual for-
mulation of the problem is as follows: One speci-
fies a rather arbitrary “initial function” on an
“initial interval” and seeks an extension into the
future so that the delay-differential equation is
satisfied there. For Egs. (1a)-(3b), Driver
proved that rather arbitrary continuously differ-
entiable “initial trajectories” of the particles will
uniquely determine the trajectories of the particles
in the future.®*

Another approach to the equations of motion of
this electrodynamic problem can also be taken.
One might specify the positions and velocities of
the two particles at #=0 and demand Egs. (1a)-
(3b) to be satisfied for all time (both in the past
and the future). This has been conjectured to be
a well-posed problem.>:®

However, consider for example the following
scalar linear equation with a single delay:

x'==x(t-1/2)
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and x(0)=0. Then x=asin¢ will be a solution for
any constant a. Thus uniqueness fails in such a
simple case. Indeed even if all the values of the
derivatives of x are given at =0, the equation
still has infinitely many solutions.’

Therefore, for the much more complicated de-
lay-differential equations of the two-body problem,
we must be careful not to jump to conclusions
about the existence and uniqueness of the trajec-
tories when only instantaneous values of the posi-
tions and velocities are given. This then motivates
the “backwards problem” for Egs. (1a)-(3b),
which can be stated as follows:

Problem P. Let x,,%,,v,, 7, be given numbers
satisfying %,< x,, |v,1<1, |0,[< 1. We seek functions,
x and ¥, on (- «,0] with continuous first deriva-
tives such that ¥ (0)=%,, x(0)=x,, %'(0)=c?,, x'(0)
=cv,, ¥<x on (-=,0], [¥'|<c, |*'|<c on (- =,0],
and (1a)-(3b) are satisfied on (-, 0].

Such a pair of functions, x and ¥, will be called
a solution of problem P. The solution is said to be
unique if any two solutions associated with the
same “point data” (x,, %,, v,, and 7,) agree with
each other.

We shall give an existence and uniqueness
theorem for problem P. The question of a unique
solution existing also in the future then becomes
an “initial-function” problem which has been
treated.?**

However, before presenting the rather compli-
cated proof, we consider a very simple artificial
example which will illustrate the basic idea. Con-
sider this scalar linear delay-differential equa-
tion

x'=a(t)x(t-1) for t <0
with (E)
x(0)=x,, where x,€R .

If a(t) is continuous and

J” lawlan=r<1,

then a unique bounded solution exists on (=, 0].
This was proved by Doss and Nasr® as follows.
First define a complete metric space

A={f:f €C(-=,0] and f is bounded}
with the metric
d(f,8)=sup |f(s)-g(s)| forf,g€A.

s$=0

We next define a mapping T of A into A. For
f €A, let us consider the ordinary differential
equation

x'=a(t)f(t-1) for t<0
with

x(0)=x, .

A unique solution, x, exists to this ordinary dif-
ferential equation. Let

T(f)=xforfeA.
Then one finds

[T(f(#D = [x(¢)[<sup |f(s)| for t<o0.

$=0

So T(f) € A. Moreover, for any f,,f, €A
d(T(f), T(f,)) srd(f,f,) .

By the contraction mapping theorem, the existence
of a unique bounded solution to (E) then follows.

Let us consider two special cases to illustrate
the above result.®

1. Let a(t)=2te**"! in (E). Then applying the
above, one can see that a unique bounded solution
exists on (- »,0]. However, in this case one
easily sees that there is also an unbounded solu-
tion, x(f)=x,e®’.

2. Let

0 for t< -1
a(t)={-1-—tfor—1sts0

in (E). Again, the above result guarantees the
existence and uniqueness of a bounded solution
on (-=,0]. Moreover, this time there can be
no unbounded solutions since a(¢f)=0 for ¢< -1,
Thus (E) has a unique solution on (-, 0].

Returning now to the electrodynamics equations,
Driver proved that problem P has a unique solu-
tion when v, <%, and (7, - v,)(x, - X,) is large
enough.” Travis extended the existence assertion
to the case where v, <7,.'° However, Travisdid
not prove uniqueness.

Recently Zhdanov, considering the special case
of symmetric motion of two identical charged par-
ticles (i.e., the case when ¥=-x), proved
that a unique solution exists when v+ b/x, is suf-
ficiently small.!*'*? Considering the symmetric
motion, we can see that the results of Driver and
Zhdanov overlap, but neither one of them contains
the other.

It is the purpose of this paper to obtain an exis-
tence and uniqueness theorem for problem P, in
the unsymmetric case with v, <0< 7,. The contrac-
tion mapping scheme is used in the proof.

II. EXISTENCE AND UNIQUENESS THEOREM

The following results about solutions of (2a) and
(2b) were proved by Driver.”

Lemma. Let x and X be two continuously dif-
ferentiable functions with ¥<x and —uc < x’ <0,
0<% <uc on (-«,0] for some u<(0,1). Then
unique solutions of (2a), (2b) exist on (- «, 0] if and
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only if 7(0)=7,, 7(0)=7, satisfy (2a),(2b), re-
spectively, at t=0, and
_v=B(t~T)

T,—-t—,l_)(t—_T)-, (4a)
., =Dtu(t=T) (4b)
H wrrT e )

for £<0. Moreover, {—T and { - T are strictly in-
creasing and

X-x X=X
<7<
c c(l-u)’
X=X _ x-x
<7<
c c(l-u)
for t<0.

Now the main results—the existence and uni-
queness theorem for problem P.

Theorvem. There exists a number a>0 such that
problem P has a unique solution whenever

max(b, b)c <a
Xy = Xy ’

where x,, %,, v, and U, are given numbers such

-

1. Construction of a complete metric space. The set

that — 3<v, <0 SU,<3, ¥,<%, and
[ v,2 U2
max - 4 ] <
(1=4v )2 (1-45,2)'2
Proof. Suppose that x,, x,, v,, and U, are given
numbers satisfying — 3<v, <0 <9,< 3, ¥,<x,, and

max(b, b)c
X=Xy

2 ~ 3
max[ e 2V1/2 v‘z- 3 1/21 S
(1-4v?) (1-43,%)

Let us choose « (0, 1) such that

max(b, b)c
xo_'io ’

0 W 4max(d,b)c
a _u2)1/2°(4_uz)1/2 - xo—’-‘o

Then

4p,2 24 max(b, b)c u?

<
(1-4v,)'? Xy — %o

= (1 — u2)1 72 *

From the facts that v, <0 and the function,

y/(1-9)*/2, is increasing we get
—3u<v,<0.

Similarly we find that

~ 1
O0<p,<zu.

2bc?(t, - t,)

A=)s(f,?>:f,f €C==,0), ~usf<0, 0 F<u, 0<f(L) = Fltd)< Ty (v o 27 *

- 2bc%(t, ~ t,)

and T =7,

is a complete metric space with metric

d[(f.), (2 D)=su| £(s) - g(s)| + sup| F(5) - 2(5)]

< f(t,) - f(t,) <0 for any ¢,,, € (- »,0] with t1>t2}

for (f, }’) (g,8)eA. This canbe proved by showing that A is a nonempty closed subset of C(~ <, 0]XC(~=,0]. In
other words, let (f,, f,) be any sequence in A which converges to (f, 7) in the metric d. By the definition of
the metric d, we know (f,, F.) converges uniformly to (f,f). It is then a straightforward calculation to
show that (f, ) € A also. Note that (0,0) € A, thus A is nonempty.

2. Pvoof that (v,B) € A for any solution of problem P.

Let x, ¥ be a solution of problem P corresponding to x,, %,, v,, J, given in the theorem. Let v=x'/c and

v=%"/c.

From (1a), (1b) we find that v is increasing and 7 is decreasing. So

v<y,<0and 27,>0 for ¢<0.
First, we are going to show that
—u<v<0 fort<0.

We have either
-u/2<v<0 fort<O0
or
o(t,)=-u/2 for somet, <0.

In the first case we are done. In the second case, we find that

v=-u/2 fort=¢

and
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v<-u/2 fortst,.

Integrating (1a), we get

1+9(n-7(n))

v ___-u f‘l b
A= " @-A77 ), 70 1-5(m-7(n)

From the lemma, we find

dn for t<i¢,.

,_v=0(t-T7)
—m for t<0.
Therefore, from the facts that 7>0, 7> 0 for /<0 and v < — u/2 for t<t,, we have
,_v=0(t-7) —u
T5G-m ~gi-su-n] 0 orish.
So
27’ 1
- — 2 ~ .
” m>0 fOrt<tl
So
v -u b2 1+5(n-7(n) _,
e = T uE +f =) p 7'(n)dn
—-u 4d u 4 max(b, b)c —u
> - 2 - = <t .
@) ut(r,) @z Wty - %) } Aoy orish
Hence, we have proved that e D+f-f(t-T1) (62)
l—f(t_75 ’
—usvs<0 for¢<0.
v=-D-f+f(t-7
Similar proofs can be used to show that F= —T:f%{_(?)——) (6b)

O0<sdv<u.
From the lemma we know that
xX-X X=X

<TS< .
c c-cu

Since

x-c"‘z"o_‘cf‘g_fto[u(n)—z‘)(n)]dn,

and together with (1a), it is clear that

2bc3(t, - t,)

0< - PLLAMA S Wil LA

v(tl) U(tz) (1 - u) (xo - 3—50)2

for ¢,,t, e (= »,0] with ¢, >¢,. Similar proofs can
be used for 3. Thus we have shown that

(x'/c,%"/c)cA.

3. Definition of a mapping T from AtoA. For
any (f, f)€ A, we consider the system of ordi-
nary differential equations

v’ b 1+f(t-7)

A= " 7T21-F(t-1)" (52)

v _=b 1-ft-%)
aA=-77"F2 1+7t-7"

(5b)

for ¢ <0, where f, f denote f(¢), 7({). And for ¢=0
1)(0) =V, 5(0) = 770 s T(O) =Tos T-(O) = 110 ’ (7)

where 7,, 7, are the unique solutions of the follow-
ing two equations respectively:

Xo =
c

y=To= %o +f_yf(n)dn,

X, - %, °
y= °c ° _f-, f(ndn .

This is a system of ordinary differential equations
with data given at /=0 and a Lipschitz continuous
right-hand side. So there is a unique solution
v,?,7T,T to this system. And we define an opera-
tor T on A by

T(f,f)=(v,9).

First we shall prove that T(f,f)cA. We begin
by showing that 7>0 and #>0 for ¢{<0. From (6a),
we find

"2y FHf-ft-T)1=T"),

where 7/ stands for 7/(¢). Integrating both sides,
we get
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=-7(0)
7(0)- 7= f[v(n)-v(n)]dn+ F(mdn~ J’T f(m)an

- f [o(n) - 5(n)}dn - j F(mn
t t=T

0

+ F(man.

=-1(0)
Using the value of 7(0), we find

T— f(n)dn—

t-T

Yo [ Lot - 5 an . (82)

Note that the right-hand side is positive and the
left-hand side is an increasing function of 7 and
equals zero at 7=0. So

7>0 for t <0

is uniquely determined, and

) _ fo [v(n) - B(m)]dn
<7
oo

Similarly from (6b) and the value of #(0), we find

T+ f(n)dn_

t-T

%o [ Lotm) - o(lan

(8b)
So

7>0 for <0,

and

ﬁ’-%’?ﬂ - fto[v(n) - #(n)]dn

- [ 1ot - 500 dn} .

(9p)

From (8a), we find

|7, - 72|=‘ fto[vl(n) - 7,(n)]dn- fto[vz(fl) - Dy(n)]dn-

Ifl-les[ sup [v,(n) = v(m) | + suplvl(n) ,(n)

So

|1’1_72|$ 1

Similarly we can prove

Next, from the definition of the set A, we find
that for every (f, /)€ A, f is an increasing func-
tion and f is a decreasing function. Then the proof
that T(f, f) belongs to A is quite similar to the
proof that (x'/c, %’ /c) belongs to A for any solution
x,% of problem P.

T(A) is thus a subset of A. Furthermore, T(A)
is closed. To show that T(A) is closed, one con-
siders an arbitrary sequence T(f,,f,) in T(A)which
converges to (g, &) € A and shows that (g, g)
= T(f,f) € T(A), where f,, f, converge to f,f, re-
spectively.

We have proved that for any solution x, % of
problem P associated with the x,, %,, vy, 7, given
in the theorem, (x’/c,% /c) belongs to A. 1t is
theh clear that (x'/c, % /c) is a fixed point of T
and therefore belongs to T(A)._ On the other
hand, for any fixed point (f,f) of T on T(A)
let x'=cf, ¥ =cf with x(0)=x,, ¥(0)=%,. Using the
lemma, it is then easy to show that x, ¥ is a solu-
tion of problem P associated with x,, %,, v,, 7,
Therefore, we can say that finding a solution to
problem P is equivalent to finding a fixed point of
T in T(A).

4. Some estimates to be used in proving that T
is a contraction mapping. The estimates inthis sec-
tion are obtained following the method used by
Zhdanov. !

For any solution », 7,7, ¥ of system (5a)~(7), let

0
x=xo-f cv(n)dn
t

and

0
#=% - f ca(n)n .
t

We shall consider the restriction of T on T(A).

For any two (f,, f,) and (f,, 7,) belonging to T(A),
let v,,9,,7,, T, and v,, 7,, T,, ¥, be the corresponding
unique solution of the system of (5a)—(7). Thenwe
have

T(f1» i1)=(0n51) P
T(fs) fz)=(vzy 52) .

f (n)dn+ f fz(n)dn’

t=T)

[ (= )+ 7, sup| 7,(n) = Fo(m)| + |7, =7, |u.

n<0

1 ” {[ sup |v,(n) - vy(n)| + sup |5,(n) - z')z(n)l] (= t)+ 7, sup| F,(m) = F,(0)] } . (10a)
- t<n<o t<n<o n<0 )
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|7, =7, T {[ ::’12) |vy(n) - vy(n)] + :323 |5,(n) = B,(n) l] (- )+ 7, sup| f,(n) fz(n)]} (10b)
Second, from (5a) and (5b) we find Third, also from (5a) and (9a) we have
2(1 u)2
° bdn u = > be
T < =T (11a) 1- v§537§ (x-x
Similarly, from (5b) and (9b), we have
and 5 —beuy
° pdn u - x=%7¢
I, ) S T (11b) Let k= min(b, B)e(1 — #)(1 - u?)'/2. We find
)
d 1 + 1 . k 1
E’Z’{(l_vz)llz (1_1-}2)1/2 (x—i)(l—uz)”z
v’ v’
_v[(l-vz)a’z = x)2(1 u2)1,2]+v[ = ——-jz———zw(x_’_‘ 1=z ]so for t<0
So we get
L, 1 k . . 1 . k
A=A " TA- 7 " x-nA-7 Q=) (- TV 2 T (%o - (1 =u?) 2
Subtracting 2 from both sides, we get
v? . 2 . k
A=A A=A T A=A 1+ 1= G- -7
1_(1_7}02)1/2 1_(1_502)1/2 3 _ E?
(PRI A=5" + (g (- 17 LA PP WA where E>0.
L
So Then
v? 72
dw _ R(x' - %)
T=7? BT e aw
= vy ) s
E k
> A= ~ G- So
Since v<0and 720 2%k’ <1
=200+ P> E2-k/(x-%)>0. (ET-w?c
Therefore

Integrating both sides with respect to ¢, we find
v-<-[E>=k/(x-%)]/2.
Let

w=[E2-k/(x-%)]*/2.

f“’o 2k dn <t
, (EZ-myc

where w,=[E?- k/(x, - %,)]*/2. Integrating by the method of partial fractions, we obtain
f 2k dn 1

E?=PyPc ~ cE? [(x"_%)(E _Ziﬁ)”z—(x—i)(y_}%)m]
k

(%o = %) /{E+[ E? - k/(x - %,)]'/?}
N R T ) L R oL/ ) e N
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In[(x - £)/(x, - %,)] In2 ]

o= 30— Do - 5) * o=

-t 1 k 1 %o = %o +1nl>s + k [L

<1, k In2 + 1 ]—M
T c CES[XO—J.CO 2e(x,-%,) ]

[Note: M=0(u") as u—~0, souM is bounded as » —0.]
5. Proof that T is a contraction mapping on T(A). From (5a), we find
b1+ f,(n - 7,(n)] b[1+ fon=T,(n)]

< J-t TEm1 -7 (-7, ~ 7M1 -fAn-T7,(m)] dn.

Using the triangle inequality and the inequality
2

d (1+y
35 (15| <y tor bol<u<t,

we find

) 0

v
v, - Uzls,(l_ viz)uz - (l-v:2)1’2

lvl_vzlS J; {(T_—u%[lfl(n—ﬂ(ﬂ))—fz(ﬂ— T1(n))l + |f~2(n—T1(n))—f2(n—‘rz(rl))“‘

b(1+u) 1 1 |
T u [1'12(71)1'2(17) * n(n)'rzz(n)] | 7atm) = 7o) }dn ’
Now, using the fact that (f,, f,) € T(4), we get

< (°20d[(f1, F1), (fa Fo)]
2= ] < J; T-wrim "

+_Eb_ J‘o({ 2bc
1-u J, ‘(1‘u)lez(n)[xo"io‘Cf:(fz-f2)]2

1 1
T2mr,m Tl('rﬁ-rzz(n)} |7.(n) - Tz(‘n)|)dn

From (10a), we find

< °2bd[(f1,f1) (fz:fz)]
v, =, < f T-wrrim "

L2 f{ 2bc 1 1 PR S |
A-uf )y \Q=-uf 77M) [xo-%~c [ 3(f2—f2)]2 oM7) T ()T ()

X:[ sup |v,(s) = vy(s)| + sup |7,(s) - z')z(s)|] (=)

n€s=0

+d[(f0, 72), (Far 7o) min(r,(n), u(n»} an.

Then, from (11a), we get

-

< 2d[(fu f;):(fz’fz)] 3u 2cud
[o2==l< e e (1-u2)”2(xo-fco)(1-u)4]

2bc* 1 1 N 1 [
f ( (T-uy 7,(n) [xo—xo—Cfv(fz -f2)fF 2(n) 72(m)

x[ sup |v,(s) = v,(s) | + sup |7y(s) - vz(s)l] max( -nc —1c

2, (M) = %,(n) * x,(n) = %o(n)

Now, applying (12), we get

)

(12)
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2u 2¢cb - -
|v1 - v2|$ (1 _u)2(1 - uz)l/z [3+ 1- u)‘(xo— ’-Co)] d[(fv fl)? (fz’ fz)]

+ —(-1—_—21—55 J;OG(n)cM[ sup |v,(s) = vy(s)| + sup |7, (s) - 52(3)]] an,

n<s<€0
where
1

n<s<0

()= 2bc b L b b
PET—uP 7 Tro=Fom ¢ 2= JF 72 70

Similarly, we find

|.. B '< 2u [3+ 2¢h
O RS TP A U T, - 3

ML CATART A

+ a _2u fto é(n)ch: sup | v,(s) - v,(s)| + :1:30 |5,(s) = By(s) !} dn,

n<s<0

where

1 b b

b

G = 226 + +
1 -u)? 7.(n) [x,-%,~ cf: (f, ..fz)]z I X )

So

sup va(s)- Uz(s)l + sup |171(S) - 772(5)1
t€s=0 t€s<0

4u

2c max(b, 5)

< A-al1<w)r®

+ (1 _u)4(x0_ ;;)] d[(fU f].)y (f27 fz)]

+ (1—_2—;‘—)5 J-:[G(TIH C(TI)]CM[ sup |v,(s) - v,(s) | + nilslfo |5,(s) = B,(s) [:l dn.

So by Gronwall’s lemma, we find

2¢ max(b, b)

n<s<0

{2

- - 4u o L \
d[(vv 1)1), (1)2, vz)] s (1 - u)a(l - u2)1/2 [3+ (1 - u)4(x0 - ;éo)] exp](l - u)z J:”[G(n)"’ G(ﬂ)]CM dT)s

Xd[(fly f1)9 (fz:fz)]‘

since [ [G(n)+ G(n)]cM dn is bounded
there exists_a number a>0 such that when-
ever max(b, b)c/(x, - %,) < a, u will be small enough
to make the coefficient of d[(f,, f,), (fz, f2)] in the
above inequality less than 1. Therefore T isacon-
traction mapping on a complete metric space T(A).

So T has a unique fixed point in T(A). Equivalently
we proved that problem P has a unique solution.
Q.E.D.

Remarks. (a)We conjecture that the assertion of the
theorem would be true for the more general case
where - 1<v,<7,<1 (instead of — 1< v,<s0<7,<1).
One might be tempted to follow the method used by
Travis—choosing a new reference frame which
travels with the speed, say 7,, relative to the
original inertial reference frame, in order to re-
duce the problem to the case treated in the theo-
rem. However, simultaneous events in one in-
ertial system are not necessarily simultaneous in
another. Thus in the new reference frame we
would have the particle on the right with a non-

positive velocity given at one instant and the parti-
cle on the left with a non-negative velocity given
at another instant. Then one would have to solve
a harder problem of finding a unique solution of
system (5a)-(6b) for which the values of functions
v, T are given at one instant and 7, ¥ are given at
another instant.

This boundary-value problem remains to be
studied.

(b) We found the value of a very small. One con-
jecture is that some estimates better than those
given in part 4 of the proof might give a larger a.
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