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Gravitational actions which include terms quadratic in the curvature tensor are renormalizable. The necessary
Slavnov identities are derived from Becchi-Rouet-Stora (BRS) transformations of the gravitational and

Faddeev-Popov ghost fields. In general, non-gauge-invariant divergences do arise, but they may be absorbed

by nonlinear renormalizations of the gravitational and ghost fields (and of the BRS transformations).
Fortunately, these artifactual divergences may be eliminated by letting the coefficient of the harmonic gauge-

fixing term tend to infinity, thus considerably simplifying the renormalization procedure. Coupling to other
renormalizable fields may then be handled in a straightforward manner.

I. INTRODUCTION

It has been suggested by various authors' that
the action for quantum gravity should contain, in
addition to the Einstein action, certain nonminimal
functionals of the metric tensor which involve
more than two derivatives. These suggestions
have recently been highlighted by the nonrenor-
malizability of general relativity. Although high-
er-derivative 'terms in the action would have a
negligible influence in the low-frequency domain
of classical. experiments, at high frequencies they
would dominate the behavior of the theory, lead-
ing to a stabilization of the divergence structure
and consequently to power-counting renormaliz-
ability.

The principal candidates for such higher-deri-
vative additions to the action are contracted quad-
ratic products of the curvature tensor. These
contain four derivatives, and l.ead to a graviton
propagator which behaves like k ' for large mo-
menta, provided one takes care to supply an ap-
propriate gauge-fixing term. Power counting then
shows that all the divergences involving gravitons
have degree of divergence four or less.

In principle, one could also include terms with
even higher numbers of derivatives. One would

only have to be careful to include those terms
which contribute to the propagator, and not just
to the vertices. For example, x'f (lt „„.qR""' "+R')
x~-g would be an admissible addition but
x'JR'&-g alone would not, since it does not
contain any terms quadratic in the gravitational
field. However, such terms with more than four
derivatives mould not be renorma1. ized, since the
maximum degree of divergence mould remain at
four. Also, although the addition of terms with
more than four derivatives would make the theory
finite after a certain order in the loop expansion,
it would not remove the divergences at the one-loop
order. We shall therefore restrict ourselves to

considering nonminimal terms involving just four
derivatives, the simplest extensions of the gravi-
tational action sufficient to obtain renormalizabil-
ity.

To demonstrate renormalizability in a gauge
theory is an exercise in elucidating the conse-
quences of gauge invariance, which is always
haunting the calculations even though it has been
temporarily broken by the covariant quantization
procedure. ' The consequences of gauge invariance
are expressed by the Slavnov identities, mhich re-
late the various Feynman diagrams of the theory.
In deriving these identities, we shall make use of
a residual supergauge symmetry of the quantum
effective action which is analogous to the residual
symmetry of Yang-Mills theories discovered by
Becchi, Rouet, and Stora' (hereafter referred to
as BRS).

The Slavnov identity for the generating function-
al of proper vertices leads to a renormalization
equation mhich governs the structure of the diver-
gent parts of the proper vertices. The solution of
this equation shows that some of the divergences
may be eliminated by renormalizations of the co-
efficients of the gauge-invariant terms in the
action, while others are non-gauge-invariant in
structure and must be eliminated by nonlinear
renormalizations of the gravitational and Faddeev-
Popov ghost fields and of the BRS transformations
themselves.

We shall find that the procedure followed to in-
troduce the gauge-fixing term into the effective
action has a considerable influence on the non-
gauge-invariant divergences of the theory. How-
ever, a special kind of functional identity shoms
that the physically important renormalizations,
those necessary to make the 8 matrix finite, do
not depend upon such artifacts of the quantization
procedure. What is more, the non-gauge-invari-
ant divergences may actually be eliminated by
letting the coefficient of the harmonic gauge-fix-
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ing term tend to infinity. This considerably sim-
plifies the renormalization procedure, which can
then be extended to include coupling of the gravita-
tional field to other renormalizable fields. Cou-
pling to a massive scalar field shall be discussed
as an example.

In our notation, we use the signature (-+++).
The curvature tensor is defined by R„,= ~, I „
+ .

, and the Ricci tensor by R„„=R„q, .

I,ym
= — d x~-g nR ~,R

""-PR + t& yR

(2.1)

where @=2 and x'=32''G. There is no need to in-
clude fd x~gR„,„BR"" in the action because of
the Gauss-Bonnet topological invariance in four
dimensions:

d'R-g (R R"""'-4R R""+R')

vanishes for space-times topological. ly equivalent
to flat space.

The most convenient definition of the gravitation-
al field variable for our work is given in terms of

'

the contravariant metric density:

(2.2)

This definition, together with our choice of the
harmonic gauge, mill considerably simplify some
of the later discussion (Sec. VIII).

The parameters n and P in the action (2.1) may
be limited to satisfy the various experimental con-
straints. For example, the Newtonian limit of the
static field is

N2y g 0
F00

y 3 r 3 r (2.2)

where m, =(,'nx') '~' and-m, = [(3p- o.)xaj
In regions where such a weak-field limit is ap-
propriate, this may be made to approach the New-
tonian I/r as closely as one wishes by ensuring
that m, and ns, are large enough. This is not true,
however, of models which omit the Einstein term
in the action. The action fd'x~g (oR„,R""'+BR')

II. HIGHER-DERIVATIVE THEORIES OF GRAVITATION

Adding quadratic products of the curvature ten-
sor to the gravitational action leads to field equa-
tions in which some terms involve four deriva-
tives. While it is not the purpose of this paper to
investigate the novel consequences of these clas-
sical field equations, a brief summary of some of
the salient features is in order to give a ground-
ing to the following discussion of renormalization.
Details will be left to a separate publication. "

The generic form of the action may be written

leads to field equations in which all terms contain
four derivatives. The potential due to a point
mass is then linear, since V'V'@=5'(r)- @-r

Analysis of the linearized radiation shows that
there are eight dynamical degrees of freedom in

the field. Two of these excitations correspond to
the familiar massless spin-2 graviton. Five
more correspond to a massive spin-2 particle
with mass m, . The eighth corresponds to a
massive scalar particle with mass m, . Al-
though the linearized field energy of the mass-
l,ess spin-2 and massive scalar excitations is posi-
tive definite, the linearized energy of the massive
spin-2 excitations is negative definite. This fea-
ture is characteristic of higher-derivative models,
and poses the major obstacle to their physical in-
terpretation.

In the quantum theory, there is an alternative
problem which may be substituted for the negative
energy. It is possibl. e to recast the theory so that
the massive spin-2 eigenstates of the free-field
Hamiltonian have positive-definite energy, but
also negative norm in the state vector space.
These negative-norm states cannot be excluded
from the physical sector of the vector space with-
out destroying the unitarity of the 8 matrix, as
was shown by Pais and Uhlenbeck in 1950.'

The requirement that the graviton propagator
behave like k ' for l.arge momenta makes it neces-
sary to choose the indefinite-metric vector space
over the negative-energy states. This amounts to
a choice of the signs of the i& terms in the propa-
gator, as is shown in the Appendix. Except for
this choice, the problem of unitarity does not di-
rectly affect the ultraviolet divergences, which
are our main concern here. It should be stressed,
however, that there can be no sensible physical in-
terpretation of these higher-derivative models un-
til the unitarity problem is resolved. We shall
return to this point briefly at the end of the paper.

III. QUANTUM THEORY6

The presence of massive quantum states of nega-
tive norm which cancel some of the divergences due

to the massless states is analogous to the Pauli-
Villars regularization of other field theories. For
quantum gravity, however, the resulting improve-
ment in the ultraviolet behavior of the theory is
sufficient only to make it renormalizable, but not
finite. Thus, a further regularization scheme is
needed. In the following, we shall use dimension-
al regularization.

The gauge choice which we adopt in defining
the quantum theory is the familiar harmonic
gauge,
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Green's functions are then given by a generating functional

(3.2)

where F' =F'„„h"" and F'„„=&'„g (the arrow in-
dicates the direction in which the derivative acts).
N is an irrelevant norma, lization constant. C' is
the Faddeev-Popov ghost field, and C, is the anti-
ghost field; both C ' and 8, are anticommuting
quantities. D"" is the operator which generates
gauge transformations in h"", given an arbitrary
spacetime-dependent vector $ "(x) (corresponding
to x" = x" + ~ $"): 6h"" =D ~' $, where

DPV p
CX g P gf&+ gV gP ~fiji gQ

+x(s $"h '+s $'h "-$ & h"'-& $'%"").

(3.3)

In the functional integral (3.2), we have written
the metric for the gravitational field as

dh

without any local factors of g=detg„„. Such fac-
tors do not contribute to the Feynman rul. es be-
cause their effect is to introduce terms propor-
tional to 5'(0)fd' xl(n-g) into the effective action, '
and 5'(0) is set equal to zero in dimensional regu-
larization.

In calculating the generating functional (3.2) via
the l.oop expansion, one may represent the 6 func-
tion which fixes the gauge as the limit of a
Gaussian, discarding an infinite normalization con-
stant:

(3.4)

In this expression, the index T has been lowered
using the flat-space metric tensor q„,. For the
remainder of this paper, we shall adopt the stan-
dard approach to the covariant quantization of
gravity, in which only Lorentz tensors occur, and

all raising and lowering of indices is done with

respect to flat space. The graviton propagator
may be calculated from I,„+,r 'fd'xF, F-' in

the usual fashion, letting 6-0 after inverting.
In another method of calculation, introduced by

't Hooft, ' the gauge condition is smeared out with
a weighting functional. First, the gauge is
changed to read F'= e'(x), where e'(x) is an arbi-
trary four-vector function. Then, it is anticipated
that the renormalized S matrix will be gauge in-
variant, hence independent of e'(x). Consequently,
the generating functional of Green's functions may
be multiplied by some weighting functional ~(e')

and functionally integrated over [de' j without
changing the renormalized S matrix. If the chosen
weighting functional is

(3.5)

the graviton propagator is obtained as before from
I,„+~r). 'fd'xF, F', but with a now remaining as
a finite parameter.

Whenever one performs manipulations of this
sort with functional integrals, one must make
sure that one has not been too cavalier about
questions of convergence. For the lack of an
intrinsic definition of the functional integral,
one is restricted to perturbation theory in check-
ing whether any new infinities have been intro-
duced. The rationale for using the weighted in-
tegral over [de'] is the gauge invariance of the
renormalized S matrix. This procedure neglects
the fact that the Green's functions are not gauge
invariant, and by using the weighted functional in-
tegral, one possibly may have introduced infinit-
ies into the Green's functions which cancel out
only when the renormalized S matrix is con-
structed.

The need for caution in choosing the gauge-fix-
ing term is underscored by the fact that with the
commonly used weighting functional (3.5), we
have already introduced infinities into the Green's
functions. The expression ,6 ' fd'xF, F—' contains
only two derivatives. Consequently, there are
parts of the graviton propagator which behave like
k ' for large momenta. Specifically, the k '
terms consist of everything but those parts of
the propagator which are transverse in al.l in-
dices. These terms give rise to unpleasant in-
finities already at the one-loop order. For ex-
arnple, the graviton self-energy diagram shown
in Fig. 1 has a divergent part with the general
structure (S h)'. Such divergences do cancel when

they are connected to tree diagrams whose outer-
most lines are on the mass shell, as they must if
the S matrix is to be made finite without introduc-
ing counterterrns for them. However, they great-

FIG. 1. The one-loop graviton self-energy diagram.
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„( 'l=e p (-l *e 'Je'*, *e' (3.6)

The corresponding gauge-fixing term in the effec-
tive action is

d xE Cl E'. (3.7)

The graviton propagator resulting from the
gauge-fixing term (3.7) is derived in the Appendix.
For most values of the parameters a and P in I,„
it satisfies the requirement that all its leading
parts fall off like k ' for large momenta. There
are, however, specific choices of these paramet-
ers which must be avoided. If @=0, the massive
spin-2 excitations disappear, and inspection of
the graviton propagator shows that some terms
then behave like k '. Likewise, if 3P-n=O, the
massive scalar excitation disappears, and there
are again terms in the propagator which behave
like k '.

Unfortunately, even if we avoid the special
cases e = 0 and 3js —a = 0, and if we use the propa-
gator derived from (3.7), we still do not obtain a
clean renormalization of the Green's functions.
To examine the question further, we must now
turn to the implications of gauge invariance.

ly complicate the renormalization of Green's func-
tions.

We may attempt to extricate ourselves from the
situation described in the last paragraph by pick-
ing a different weighting functional. ' Keeping in
mind that we want no part of the graviton propa-
gator to fall off slower than k ' for large momen-
ta, we now choose the weighting functional

The result is

5gRg h""=aDc"C

6„,C =-~'~BC C'~~,

6~RSC, = -z'6 'Oj'E, 5 A, ,

(4.2a)

(4.2b)

(4.2c)

where 6A. is an infinitesimal anticommuting con-
stant parameter.

The importance of these transformations re-
sides in the quantities which they leave invariant.
First, note that the transformation (4.2a) is just
a gauge transformation of h"" generated by ~C 6A, ,
so gauge-invariant functionals of h"" alone, like
I,~, are BRS invariant too. Another BRS invari-
ance shows that the transformation of C' is nil-
potent,

5,„,(s,C'C') =O.

The transformation of h"' is nilpotent also,

(4.3)

(4. 1)

In this equation, we use an extended summation
convention: Repeated indices denote both summa-
tion over the discrete values of the indices and

integration over the spacetime arguments of the
functions or operators indexed. This abbreviated
notation is necessary to simplify the writing of
the often complicated equations to follow. When
there is a possible ambiguity, we shall write out
equations in fuller detail.

The BRS transformations for gravity' appropri-
ate for the gauge-fixing term (3.6) are

5 „(D"'C ) =0. (4.4)

IV. BRS TRANSFORMATIONS FOR GRAVITY

The basic tools which we shall employ in the
following are a set of supergauge transformations
of the gravitational and ghost-field variables that
are analogous to those introduced for Yang-Mills
theories by Becchi, Rouet, and Stora. ' These
transformations express a residual symmetry of
the effective action which remains after the orig-
inal gauge invariance has been broken by the addi-
tion of the gauge- fi xing term and the ghost action
term.

Before we write down the BRS transformations
for gravity, let us first establish the commutation
relation for gravitational gauge transformations,
which reveals the group structure of the theory.
Take the gauge transformation (3.3) of h"", gen-
erated by g", and perform a second gauge trans-
formation, generated by q", on the h"" fields ap-
pearing there. Then antisymmetrize in $" and q".

This last equation follows from the commutation
relation (4.1) and the anticommuting nature of C'
and &A..

As a result of Eq. (4.4), the only part of the
ghost action which varies under the BRS transfor-
mations is the antighost C, . Accordingly, the
transformation (4.2c) has been chosen to make the
variation of the ghost action just cancel the varia-
tion of the gauge-fixing term. Therefore, the en-
tire effective action is BRS invariant:

(4.5)

Equations (4.3), (4.4), and (4.5) now enable us to
write the Slavnov identities in an economical way.

V. SLAVNOV IDENTITIES

In order to carry out the renormalization pro-
gram, we will need to have Slavnov identities for



the proper vertices. Our development continues
to follow the lines of recent work on Yang-Nil. ls
theories. "'" We proceed in steps, first discuss-
ing the Slavnov identities for Green's functions.

A. Green's functions

To simplify writing the Slavnov identities, we
consider an expanded generating functional of
Green's functions,

~[T„„P„P',&„„,L.] =X " II dh"" [dC'I[dC, ] exp[i(Z(h", C', C„ff„„,L, ) +P,C "+C,P'+ «T„,h"")].
p~~

(5.1)

Anticommuting sources have been included for
the ghost and antighosi fields, and the effective
action Z has been enlarged by the inclusion of
BRS invariant couplings of the ghosts and gravi-
tons to some external fields E„, (anticommuting)
and f,, (commuting),

where we have used the relation

5Z 5Z
~" eg„„eC, (5.6)

When we examine the Jacobian which arises
upon performing the BRS transformations on the
integration variables of a functional integral, we
find that the metric

+I{',K~„,D"„C +K L ~e,C C (5.2)
[dC ][dC ]

-tf ~u

Z is BRS invariant by virtue of Eqs. (4.3), (4.4),
and (4.5). We may use the new couplings to write
this invariance as

is BRS invariant. For infinitesimal transforma-
tions, the Jacobian is 1, because of the trace re-
lations

5Z 5Z 5Z 5Z 3 ~ 2 5Z
~Z g~' ~L ~C" '~C

(5.3)

$2Z

m '&"'
(vt)

(5.7a)

Z =Z+-,'~'~-'I, O'E'.

Substitution of (5.4) into (5.3) yields

6Z 5Z 5Z 6Z

~Z„. V" ~L. ~C

(5.4)

(5.5)

In this equation, and throughout this paper, we
use left variational derivatives with respect to
anticommuting quantities: 5f(C") =5C'5f/5C'.
Equation (5.3) may be simplified by rewriting it
in terms of a reduced effective action,

$2Z

6C '&L (5.7b)

both of which follow from fd'xa+ =0. The paren-
theses surrounding the indices in (5.7a) indicate
that the summation is to be carried out only for
p, ~&v.

The Slavnov identity for the generating function-
al of Green's functions is obtained by performing
the BRS transformations (4.2) on the integration
variables in the generating functional (5.1). This
transformation does not change the value of the

generating functional, so we obtain

N II dh"' [dc "][dc,](«'T„„D""c -«'p, s c c +«'a 'p' o' F,„„k"")exp[i(z+«T„„h"'+ p,c'+c,p')]=0.
P (fj

(5.8)

Another identity which we shall need is the ghost equation of motion. To derive this equation, we shift
the antighost integration variable C to C, +6C, , again with no resulting change in the value of the generat-
ing functional:

N Q dh"' [dC'][dC, ] —+P' exp[i(Z +«T„„h"" +P, C+C,P')]=0.5Z

We can now define the generating functional of
connected Green' s functions as the logarithm of
the functional (5.1),

W[T„p, P ~, P', Kq„, f „)

=-iinZ[T„„P., P', fc,„,L,J, (5.10)
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and make use of the eouplings to the external
fields K„„and L„ to rewrite (5.8) in terms of W:

5I' GATV

5K„„(x) 5Kq„(x} '

5I' 5W

5L.(x) 6L.(x)
'

(5.16a)

(5.16b)

(5.11)

Similarly, we can rewrite the ghost equation of
motion:

Finally, the Slavnov identity for the generating
functional of proper vertices is obtained by tran-
scribing (5.11) using the relations (5.13), (5.15),
and (5.16}:

8. Proper vertices

(5.12)
y PP gL gCG TPP

(5.17}

A Legendre transformation takes us from the
generating functional of connected Green's func-
tions (5.10) to the generating functional of proper
vertices. First, we define the expectation values
of the gravitational, ghost, and antighost fields
in the presence of the sources T„,, P, and P'
and the external fields K„P and I,:

(5.13a)

Vfe also have the ghost equation of motion,

5I' 5I'
~' az ec (5.18)

Since Eq. (5.17) has exactly the same form as
(5.3), we follow the example set by {5.4) and de-
fine a reduced generating functional. of proper
vertices,

1 = f'+-,'x'a '(F,„„h"')CI'(Fp,h~') . (5.19)

Substituting this into (5.17) and (5.18), the Slavnov
identity becomes

QV
C, (x) =-,

)
. (5.13c}

~I" ~r ~r
m„, v~' ~L,. ~C' (5.20)

%e have chosen to denote the expectation values of
the fields by the same symbols which were used
for the fields in the effective action (5.2).

The Legendre transformation can now be per-
formed, giving us the generating functional. of
proper vertices as a functional of the new vari-
ables {5.13) and the external fields K„„and L„

r[a"', C', C„K„„L.j
= W[T„„,P „P',K „„,L,]-~T „,h, "' -P,C ' -C,P' .

{5.14)

In this equation, the quantities T», p~, and P
are given impl. icitly in terms of 0 ', C, C, , E„P,
and L, by Eq. (5.13).

The relations dual to (5.13) are

KT p U(x)
5& p pg(

6IP'{ }
5C ()'

5I'
i},(x}—— —

( )
.

(5.15a)

(5.15b)

(5.15c)

Since the external fields K„„and L~ do not partici-
pate in the Legendre transformation (5.14), for
them we have the relations

and the ghost equation of motion becomes

OI eI

Equations (5.20) and (5.21) are of exactly the same
form as (5.5) and (5.6). This is as it should be,
since at the zero-loop order,

I co)

VI. STRUCTURE OF THE DIVERGENCES

The Slavnov identity (5.20) is quadratic in the
functional I'. This nonlinearity is ref l.ected in the
fact that the renormalization of the effective action
generally also involves the renormalization of the
BRS transformations which must l.eave the effec-
tive action invariant.

There are two different approaches to this prob-
l.em in the literature on the renormalization of
Yang-Mills theories. The first of these' begins
by showing formally that the effective action may
be renormalized in such a way that the analog of
our equation (5.3) holds exactly. This equation
then determines the structure of the renormalized
effective action. The second approach" '" uses
the Slavnov identity for the generating functional
..f proper vertices to derive a linear equation for
the divergent parts of the proper vertices. This
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equation is then solved to display the structure of
the divergences. From this structure, it can be
seen how to renormalize the effective action so
that it remains invariant under a renormalized set
of BRS transformations.

We shall follow the second of these two approach-
es because it keeps to the forefront the structure
of the divergences, and is thus more appropriate
for establishing renormalizability.

A. Renormalization equation

Suppose that we have successfully renormalized
the reduced effective action up to n -1 loop order;
that is, suppose we have constructed a quantum
extension of Z which satisfies Eqs. (5.5) and (5.6)
exactly, and which leads to finite proper vertices
when calculated up to order n —1. We will denote
this renormalized quantity by Z " ' . In general,
it contains terms of many different orders in the
loop expansion, including orders greater than
n —1. The n —1 loop part of the reduced generat-
ing functional of proper vertices will be denoted
by r("-').

When we proceed to calculate I'"', we find that
it contains divergences. Some of these come from
n-loop Feynman integrals. Since all the subinte-
grals of an n-loop Feynman integral contain less
than n loops, they are finite by assumption.
Therefore, the divergences which arise from n-
loop Feynman integrals come only from the over-
all divergences of the integrals, so the correspond-
ing parts of l '"' are local in structure. In the di-
mensional regularization procedure, these diver-
gences are of order e ' = (d —4) ', where d is the
dimensionality of spacetime in the Feynman inte-
grals.

There may also be divergent parts of I'(") which
do not arise from loop integrals, and which con-
tain higher-order poles in the regulating parame-
ter e. Such divergences comes from n-loop order
parts of Z " "which are necessary to ensure that
(5.5) is satisfied. Consequently, they too have a
local structure.

We may separate the divergent and finite parts
of P(~)

I( ) z( )+I( )
fjjy fj11jtC (6.1)

(i) (n-s) (s)
&I"finite &I fj~~e &~rindle

5h" v 5L 5C

(6.2)

If we insert this breakup into Eq. (5.20), and keep
only the terms of the equation which are of n-loop
order, we get

er(") er(" 6r(" 6r,(",„) or(") 6j. ") 6r") Or(g)

Since each term on the right-hand side of (6.2) re-
mains finite as &-0, while each term on the left-
hand side contains a factor with at least a simple
pole in &, each side of the equation must vanish
separately R. emembering (5.22), we can write
the following equation, called the renormalization
equation:

Sr(")=0,
where

5Z
Pv

OKER
5C 5L~

(6.3)

5Z 5 5Z
K Oh'

+
gL~ gC

(6.4)

In similar fashion, collecting the n-loop order di-
vergences in the ghost equation of motion (5.21)
gives us

(6.5)

B. Local solutions

Our task now is to construct local solutions to
Eqs. (6.3) and (6.5). This may be done if we note
that the operator defined in (6.4) is nilpotent:

9'=0. (6.6)

To show this, it is convenient to write 8= Qy+Qp,
where

and

5Z 5 5Z
6h "v

OKER, 6C &L,

where 3 is an arbitrary gauge-invariant local func-
tional of h"' and its derivatives, and X is an arbi-
trary local functional of h"', C', C', K„,, and

and their derivatives. Kluberg-Stern and
Zuber" have made the conjecture that the analog
of our Eq. (6.7) is in fact the most general local
solution to the Yang-Mills renormalization equa-
.'ion. This conjecture has been proven for Yang-

5Z 5 5Z

~K„„V~' ~L. ~C'

The operator 9p just generates the zero-loop BRS
transformations (4.2a), (4.2b), so by (4.3) and (4.4)
we know that it is nilpotent. Explicit calculation
then shows that the remaining terms cancel:

6,'+ (g„g,}= 0.
Equation (6.6) leads us to consider Local solutions

to Eq. (6.3) of the form

r&g& = S(h"") +8[X(h"',C, C', Kq„, L„)], (6.7)
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Mills theories by Joglekar and Lee,"using a
rather involved argument. We shal. l not attempt
to dupl. icate that argument here, and shall be con-
tent to leave (6.7) as a conjecture of the general
local solution to Eq. (6.3). It will be sufficient for
our purposes to show the difficulties which solu-
tions of the form (6.7) get us into.

In ordex' to satisfy the ghost equRtlon of motion
(6.5) we require that

(6.8)

(b)

A glance at the effective action (5.2) shows that
we may define the following consexved quantity,
called ghost number:

FIG. 2. The three types of divergent diagram which
involve external ghost lines. Arbitrarily many gravi-
tons may emerge from each of the central regions. (a)
Ghost action type. (b) E type. (c) L type.

N, [a""]=0, X,[C']=+I, X,[C,]=-I,
X,[ff„,]=-I, Z, [1,.]=-2.

It follows from this definition that

~,[Z]=X,[l ]=a. (6.10)

logical rel, ation

21Q 2SQ 28L, +Pl@ Ec Eg

to write the degxee of divergence as

D 4 2pgg pg J 2' Q Ep 2EQ ~ (6.15)

X,[8]=+1,

we require of the functional. X that

X,[X]=-1.
To complete our analysis of the stxucture of

I ~dj„', we must supplement the symmetry equations
(6.7), (6.8), and (6.12) with the constraints on the
divergences which Rl ise from power counting. Ac-
cordingly, we introduce the following notations:
m& =number of graviton vertices with two deriva-
tives, nG. = number of Rntighost-graviton-ghost ver-
tices, n& = number of E-graviton-ghost vertices,
nI. =Dumber of I.-ghost-ghost vertices, I& = num-
ber of internal-ghost propagators, Ec =number of
external ghosts, E&= number of external anti-
ghosts.

Since graviton propagators behave l.ike k ', and

ghost propagators l.ike k '„we are l.ed by standard
power counting to the degree of divergence of an
Rrbltl Rx'y dlagx'am

a=4 —2ns+2fo —2nG —3nL, —3n~ —Ec. (6.13)

The l.ast term in (6.13) arises because each exter-
nal antighost line carries with it a factor of ex-
ternal, momentum. We can make use of the topo-

Together with conservation of ghost number,
Eq. (6.15) enables us to catalog three different
types of divergent structures involving ghosts.
These are illustrated in Fig. 2. Each of the three
types has degree of divergence D =1 —2vz. Con-
sequently, all the divergences which involve
ghosts have nz =0. Since the degree of divergence
is then 1, the associated divergent structures in
I div have an extra dex'lvatlve Rppeax'iDg on ODe of
the fields. Diagxams whose external l.ines are all.
gxavitons have degree of divergence 8 =4 —2n&.

Combining (6.15) with (6.12), (6.8), and (6.7),
we can finally write the most general. expression
for I'd~";„~ which satisfies all the constraints of sym-
metries Rnd powex' counting:

I',",&=8(I ~ )+8[(K„„-~-'|.F„„u"P ')
+ r.„q,'(a ")c'], (6.16)

where P"'(h ) and Q,"(h ) are arbitrary Lorentz-
covariant functions of the gravitational field h"',
but not of its derivatives, at a single spacetime
point. 8(h"") is a local gauge-invariant functional
of k"" containing terms with foux', two, and zero
d ex'lv Rt ives.

Expanding (6.16), we obtain an array of possible
divergent structures,

QD Po

hippo

po 'F po y jib

fy

@2L g C fyqBC +I 7 CTD jfljc Ct+ +BL q tyg C7"C 8
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The breakup between the gauge-invariant diver-
gences 8 and the rest of (6.17) is determined only
up to a term of the form

&I'x(q" ' + xh '"
)l 5Isym

z6h"' (6.18)

which can be generated by adding to P"" a term
proportional to g"'+ ~h""= ~-g g"". Explicit cal-
culations of sample one-loop diagrams reveal that
divergences such as those allowed by (6.17) do
occur. Aside from the fact of their not vanishing,
the results of these calculations are not particular-
ly enlightening, and wil. l not be presented here.

VII. RENORMALIZATION

The profusion of divergences allowed by (6.17)
appears to make the task of renormalizing the
effective action rather complicated. Although the
many divergent structures do pose a considerable
nuisance for practical calculations, the situation
is still reminiscent in principle of the renormal-
ization of Yang-Mills theories. There, the non-
gauge-invariant divergences may be eliminated
by a number of field renormalizations. We shall
find the same to be true here, but because the
gravitational field h"' carries no weight in the
power counting, there is nothing to prevent the
field renormalizations from being nonlinear, or
from mixing the gravitational and ghost fields.

A. Field and transformation renormalizations

Leaving aside the gauge-invariant divergences,
(7.1) is not yet suitable as a renormalization of
Z " "because it does not satisfy Eq. (5.5), and

because the non-gauge-invariant divergences are
not all canceled until we add the additional counter-
terms

HAPP
[xffq, -(CF'p„)] „„„D"'C (7.2a)

and

QD~
~L ' C'D""C -~'L Q'~ C'C~.

fI g Pij CX Q 7 8 (7.2b)

Fortunately, these two problems solve each other
to a certain extent. Addition of the terms (7.2) to
(7.1) results in an expression which satisfies Eq.
(5.5) up to n-loop order, since the n-loop-order
parts of this expression satisfy (6.3).

The additional counterterms (7.2) provide cor-

Many of the divergences in (6.17) are canceled
if we replace the reduced effective action Z'" "by

E'" "[h"'—P""(h" ), C "+Q,"(h )C', C, , K„,, I-,].
(7.1)

(7.3)

we find that the gauge transformation (3.3) does
correctly transform h &"„",.

The inverse of the field transformation (7.3) is
given by

h"'=h"„",+P*""(h&„',) . (7.4)

Although P"' contains only terms of n-loop order,
since all the lower-order divergences are as-
sumed to have been canceled by previous renor-
malizations, its nonlinear structure implies that
the inverse transformation (7.4) does contain
terms of order higher than n loop. These higher-
order terms in P*""are also of higher order in the
dimensional regularization poles in e. Such terms
must be taken care of in subsequent renormaliza-
tions, but since at this stage we are only trying to
make the proper vertices finite to n-loop order,
they do not concern us now. Limited to the n-loop-
order terms only, we have

[Pg && v
J (7.5)

It follows from Eq. (7.4) that the correctly re-
normalized gauge transformation of h"' is given
by the operator

81
D&"»"[h 8]=D&,'v[h" J+ ' '"''D&, [h~ J

(~)
(7.6)

This renormalized gauge transformation operator
can now be used in constructing the renormalized
ghost action and K interaction terms. Equations
(7.5) and (7.6) show that when D," ""[h ] is used
in these constructions, the resulting n-loop-order
changes in the reduced effective action are, aside
from the replacement of h"" by h&"„"&(h ), the addi-
tion of precisely the expression given in (7.2a).

Similarly, the change in the functional depen-
dence on C leads to a change in the BRS trans-

rections to the forms of the BRS transformations
and the ghost action. The necessity for these cor-
rections may be appreciated if we remember that
the BRS transformations (4.2) were derived for a
specific choice of the gravitational and ghost fields.
In (7.1), we have made substitutions in Z'" "cor-
responding to nonlinear transformations and mix-
ing of these fields, and should change accordingly
the forms of the ghost action and of the K and L
interaction terms.

To explain these changes in more detail, let us
first concentrate on the renormalizations which
are necessitated by the divergences dependent
upon P"". The gauge transformation (3.3) does
not leave f,„[h"'—P"'(h )] invariant, because
the functional dependence on h"' has been changed.
However, if we define
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formation of C . We define and here also we have, at n-loop order,

C(„)(c&,h") =c'+q,'(h "}c'.
The inverse transformation is

O' = C('„) —Q,* (h(„))C'(„),

(7.7}

(7.8)

(7 8)

The renormalized gauge transformation (7.6) still
satisfies the commutation relation (4.1). Conse-
quently, Eq. (7.8) shows that the co»ectly renor-
malized L, interaction term is

ga
LoUp," [h ]C C'=x LgB, C(„)C(„)+xLg 6 '(L„(h(„))c(„)D( [h("„)]C("„)—(( Log,* (h(g))sqc(„)C("„)

( ac)

(7.10)

At the n-loop order, the changes in the reduced
effective action brought about by (7.10) are, aside
from the replacement of C' by C('„)(C ~, h" }, the
addition of the expressions given in (7.2b).

B. Gauge-invariant renormalizations

We have not yet taken into account the gauge-
invariant divergences 8(h ) which occur in
(6.17). These must be canceled by gauge-invariant
counterterms in the reduced effective action.

As we noted in Sec. VI, the gauge-invariant di-
vergences involve either four, two, or zero de-
rivatives. There are only four such invariants for
us to consider:

s = a '"' z a&'a-g —P'"' P2 &-g

+p K R~-g

(V. lib)

where z'", P ", A.~", and A.
" are some divergent

coefficients.
The divergences (7.11a) may be canceled by re-

normalizations of the appropriate coefficients in
I,„.The divergent structure (V. lib) is more
troublesome. Its presence may be verified by an
explicit calculation of the one-loop tadpole diagram
shown in Fig. 3. Such tadpoles do not occur in
general relativity, or in a. model whose action
consists solely of quadratic products of the cur-
vature tensor, because all the poles in the prop-
agators for such models are massless, and di-
mensional regularization sets the integral f d'h
equal to zero. The graviton propagator derived
from the action (2.1) contains massive poles,
however, so the tadpole no longer vanishes. The
parameters n and P occur in the tadpole diver-
gence in the form b,a~+ b, (3P —a} 2, where f),
and 5, have the same sign, so there are no special

+ x'L~Up", ' [h ]C PC'. (V. i2)

Z "' satisfies Eq. (5.5) by construction.
The full effective action Z'"' is obtained by

adding back the gauge-fixing term:
Z'"'=Z'"' —' '& '(F' h"")CI'(F h~')

(7.18)

There are no divergences in (6.17) which must be
removed by renormalizing the gauge-fixing term.

FIG. 3. The one-loop graviton tadpole diagram.

values of n and P which give cancellation.
If we had started with an action which included

a cosmological term Xx 4f d'xv'-g, we could re-
normalize the parameter A. to eliminate divergen-
ces like (V.lib). We have not done so because
flat space would then no longer be a solution of
the classical field equations. Instead of getting
involved in the resulting complications of defining
initial and final states, etc. , we simply chose to
make the renormalized value of A. equal zero. Our
renormalized action does then contain a cosmo-
logical term, but it is present only to cancel out
the divergences like (7.lib).

To summarize this section, we give the pre-
scription for constructing the renormalized re-
duced effective action Z "'. The gauge-invariant
divergences in I d";,

~ are eliminated by adding e'"~,
P ", y'", and A.

" to the corresponding coefficients
in Z'" ", The non-gauge-invariant divergences
are then eliminated by substituting h""-P""(h }
for h"' as the argument of the (gauge-invariant)
terms depending on h"' alone, and by replacing
the terms involving ghosts with

& "„„=(x&q„—C, F'„„}D," 4'[h ] [C'+Q, (h "~)C']
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This term has been taken care of automatically
in our discussion through the definition (5.4) of the
I'educed effective action. In partieulax', it should
be noted that the substitution of h""-P"'(0 8) for
h"' is not carried out in the gauge-fixing term.
Also, the sources T„„and(, in the generating
functional of Green'8 functions remain coupled just
to A"" and C . It is on account of these unxenor-
malized terms that we have absorbed the field re-
normalizati. ons into changes in the functional form
of Z, instead of making more direct use of the

bRre quantltles A(g) and C(g). Oux' dex'lvRtloQ of
the Slavnov identities has relied upon the fact that
the gauge-fixing term (3.7) is derived from a gauge
condition (3.1) which is linear in the gravitational
field h"". If we were to xewrite the theoxy in tex'ms
of the field Pl(„), the cox'respoQdlng gRuge condition
would be nonlinear. Such gauge conditions ean be
handled by the BRS methods 's but we shall not
pux'sue the details here.

D~„=0~,(k)

1 2P][)')]P,(k) 2P])'), [)0(k)
(2m)'' a*(a~*)*+@) a*[(3))-a)g')."+]y])'

(8.2)

The definitions of the projectors P ' and P ' '
are given in the Appendix.

The Rntlghost-graviton-ghost lnteractlon 18

(8 3)

The fix'st two terms in this expression contain the
gauge condition (8.1), and consequently do not con-
nect to the graviton propagator (8.2). Similarly,
integration by parts in the remaining term ean be
used to move the dex lvRtlves onto the ghost field
C . %'hen these derivatives fall one~, they form
the gauge condition (8.1) again, so we have ef-

fectivelyy

VIII. CLEANER METHODS

The renormalization pxocedure desex"ibed in
the last section is sufficiently complicated to
make prRctlcal cRlculRtlons uQRppeRllng, %e Qow

turn to other choices of the gauge-fixing term
which greatly simplify matters by eliminating the
need for the field and transformation renormal-
1zatiOQS,

A. Unweighted gauge condition

Expllclt cRlculRtlons of 8RDlples of the Qon-

gauge-invariant divergences allowed by (6.17) re-
veRl thRt they depelld upon the gauge-flxlng pa, -
rameter 4 which was introduced into the effective
action by the weighting functional (3.6). This sug-
gests that lf we take the limit ~-0, all the field
and transformation renox malizatlons Inay dlsRp-
pear. This limit as 6- 0 returns us to the un-
weighted gauge condltlon

(8.1)

vrith the same Feynman rules as those obtained using
the simple Gaussian representation (3.4}of the
gauge-flxlng 5 function.

The graviton px'opagator in the limit 6 0 may
be calculated as suggested above, setting 4 =0
in the propagator calculated for finite b, (cf. Ap-
pendix), or by substituting the gauge condition
(8.1}into the Iinearized classical field equations
and then inverting. The resulting propagator is
constx'ucted entirely fx'OIQ px'ojector8 which Rre
transverse in all their indices:

D(g-0) 4 ~ 2Plg ~ PlL ~ 2SE ~ SEE SEg y
1PI (8.5)

This result would hold even if we had not chosen
(2.2) as our definition of the gravitational field
variable. However, the simple relation (8.4) is
dependent upon that choice, which accords with
the harmonic gauge condition (8.1). Otherwise
there would be a eomplieated cancellation between
veI't lees.

From the power-counting rule (8.5)) we see that
each of the three types of diagrams shown in Fig,
2 is now convergent: The ghost action type has
Dg,'=,] =-2-2ns, the K type has D[]P~(,] =-1—2ns
and the L, type has D(z,

'
0) =-3-2nz. Therefore,

there are Qo parts of I d,„(g 0) which depend upon
ghosts:

(8.6a}

51 ()))(g
5E~„

5p{ll) (g
5L,~

(8.6b)

(8.6c)

V~qg= f)PG Co&~ C = C h~ BP~ C

The symbol = is used to indicate that terms con-
taining 8& A~ or Bpo pg~ have been dropped, since
they do not connect to the graviton propagator.

The power-counting rule given in See. VI must
be modified as a results of (8.4}. In one-particle-
irreducible (IPI) diagrams, there is a separate
vertex V~„~ for each external ghost and a.ntighost
line. Consequently, each of these lines carries
with it two factors of ext:ernal momentum. The
resulting degree of divergence of an arbitrax'y
1PI diagram is
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Insertion of Eqs. (8.6) into the renormalization
Eq. (6.3) yields

5Z 51',",.„'(~=0)
az 5a~'

Together with (8.6a), this implies that I'i~";„'(d =0)
is gauge invariant. All the divergences may there-
fore be eliminated by renormalizations of the pa-
rameters o, P, and y in I,„and by the addition
of a cosmological counterterm. The field vari-
ables and the BBS transformations do not need to
be renormalized.

The contrast between the complicated renor-
malization procedure which one must use when
the quantum theoxy is defined with the gauge-
fixing term (3.V) and the much simpler procedure
for the unweighted gauge condition is reminiscent
of the situation in the axial gauge in Yang-Mills
theory. There, the ghosts decouple entirely from
the Yang-Mills fields if one uses the unweighted
axial gauge condition. However, if one smears
the axial gauge with a weighting functional, the
resulting propagator does connect to the ghosts,
and then there arise non-gauge-invariant diver-
gences. These Yang-Mills divergences are simi-
lar to those we would have obtained in the gravi-
tational theory had we kept the two-derivative
gauge-fixing term derived from (3.5). In both

cases, the part of the propagator which depends
upon the gauge-fixing parameter has a bad asymp-
totic behavior for large momenta, leading to non-
gauge-invariant divergences of progressively
higher order as the calculation proceeds in per-
turbation theory.

Taking the limit h —0 is necessary for the axial
gauge quantization of Yang-Mills theory to avoid
these artifactual divergences. However, this
limit is less useful in other gauges: Although one
obtains an improvement in the power counting just
as we have found for gravitation, the improve-
ment i.s not sufficient to eliminate all the non-
gauge-invariant divergences, and one must still
renormalize the Yang-Mills gauge transformation.
Thus, although taking the limit 6-0 is perfectly
acceptable in. Yang-Mills theory, it is generally
of no particular advantage, and has not been much
gsed in the literature.

B. Third-derivative gauge

Since we are dealing with theories in which the
classical field equations involve fouxth derivatives,
the Cauchy data which must be initially specified
to determine the classical evolution of the field
include the values of the field and up to its thix'd
derivatives on some spacelike hypersurface. Ac-
cordingly, we should also be prepared to use

gauge conditions which involve up to third deriva-
tives. A gauge condition of this type w'hich has the
same structure as the haxmonic gauge condition
(8.1) is

z'0'8 A, ""=0. (8.8)

If we weight the gauge condition (8.8) with the
Gaussian functional (3,5), we get the gauge-fixing
term

Another way to arrive at (8.9) is to start from the
usual harmonic gauge condition (8 1) and io weight
it with the functional

(g, (e, ) =exp I —,'~'n ' ( 'e, )(Cl'e')

5&„,„,C, -g ~ Cl E, 5Z.

The Slavnov identities for the generating function-
als of Green's functions and of proper vertices
must be changed too, but the identity for the re-
duced generating functional of proper vertices,

(8.12)

remains the same as (5,20). Consequently, the
renormalization equation is the same as (6.3).

The Feynman rules which we obtain using (8.9)
differ from those obtained using (3.'I) only in the
replacement of the factors of 4x 'k ' in the gravi-
ton propagator by 4v 'k '. This change brings
about a reduction in the degree of divergence of
those parts of diagrams which depend on the pa-
rameter A. The degree of divergence is reduced
by 2 for each factor of d, so that once again all
three types of diagram involving ghosts shown in
Fig. 2 are convergent. The renormalization equa-
tion then implies that all the divergences ln I (~)d;„
are gauge invariant.

K. GAUGE-FIXING PARAMETER

We have found that the non-gauge-invariant di-
vergences of the theory are dependent on the
choice of weighting functional used to derive the
gauge-fixing term, %'e may ask whether the

(8.10)

When we obtain (8.9) this second way, it is clear
that the ghost action which we must use is exactly
the same that we had before in the generating func-
tional (3,2). This also follows from the first meth-
od of arriving at (8.9), because we may always
redefine the antighost field: O'C, —C,.

The gauge-fixing term (8.9) requires us to change
the BRS txansformation of the antighost field V„.
The new transformation ls
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gauge-invariant divergences (V.ll) also depend on
the choice of weighting functional through a de-
pendence of the coefficients o.'", P ", y ", and

on the gauge-fixing parameter b. We do not
expect this to be so, because unlike the non-gauge-
invariant divergences, the divergences (V.1 1}must
be eliminated if we are to make the 8 matrix finite.
Therefore, with the possible exception of a term
proportional to the classical field equation, the
divergences (V.ll} should not depend on artifacts
of our quantization procedure. On the other hand,
power counting does not exclude a dependence on

To resolve this question, we now write another
kind of identity"' "for the reduced generating
functional F, an identity which expresses the de-
pendence of the proper vertices on the parame-
ter h. We will derive this identity using the
gauge-fixing term (3.V), but since the final equa-
tion will be written in terms of the reduced gen-

crating functional l', it will also be valid for the
theory quantized with the gauge fixing term (8.9).

We begin by adding to the effective action (5.2)
another interaction term which couples the anti-
ghost and gravitational fields:

Z(««", ",F, ~)=Z(«"", .. . ,0, a)

+ ~-'Y F„„I~C. , 91
where Y is a constant anticommuting parameter
with ghost number +1. Next, we define the re-
duced effective action,

Z=Z-x 'YF C +-'a ~ 'F C3 F' (9.2)

The new term in (9.1) is not BRS invariant:

5,„,(«-lFP~C ) = [ F«2g lPo g-2~

+ FC~F„„D"C~]6X. (9.3)

Taking (9.3) into account, the Slavnov identity for
Green's functions becomes

dI Pv dCQ dC +T + +2g 1PT ~2P
P % Iy ]I V fy pv

-2Kb, —+iYC,F„',D""C" expi Z+zT„„h""+,C'+C, P' =0.
da (9.4}

The new ghost equation of motion is
I

Q d«&" [dc'][dc,]{F'„„D«"C «'F F'„—„-«&"+P') exp[i( )]=~0~ .~ (9.5)

Combining this with (9.4), we may write the Slavnov identity for connected Green s functions,

5lV 5F'
g j 7 2~ QV d% T &W

«T«y5ff Po5L +«6 P Cl Fg«P5T 2Fk
d

FP 5Py
0 (9.6}

In order to arrive at (9.6), we have used the fact
that Y' = 0 and we have dropped a term propor-
tional to 5'(0).

The generating functional of proper vertices is
still defined as in Eq. {5.14}. Noting that dr jPd
=dW/db, , we may transcribe (9.6) to obtain the
Slavnov identity for the generating functional of
proper vertices:

+2'—- FC, —=0. (9.7)
dx er

Following the example of (9.2), we define the re-
duced generating functional of proper vertices,

r = r —«-'FF„„«""C.

+ -'«*~ '(F «"")a'{F' «l")

When we rewrite the Slavnov identity (9.7) in
terms of I', we obtain the simpler equation

51' 51 5F 5I' dZ'

6k~' M„, ai..ee (9.9)

We have also the ghost equation of motion,

5r 5I
~'5X (9.10)

Equation (9.9) leads to a modified renormaliza-
tion equation for the n-loop divergences
r'.",„'(«"",. . . , F, ~):

(9+2F«.„r',",„'(«"",—. . . , F, ~) =0,
dh

(9.11)

where the operator 9 is the same as in (6.4).
Takillg a derlvatlve with respect to F ill (9.11),
and then setting Y equal to zero, we obtain finally
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Equation (9.12) then yields directly

d~(6) aim

dh
(9.14)

Noir tha, t we know how to ca.xx'y out the renox-
malization procedure for a purely gravitational
model, it is straightfor%"ard to include coupling to
othex' renormalizable fields. As an example, we
discuss a massive sealax' field in interaction with
the gravitational field alone, adding to the action
(2.1) the additional term

d x -@8p 8„g""-gm 4-g . 10.1

This transformation is nilpotent:

9 p(ff) gjfP y ~ 9 12

Comparison of (9.12) with (6.16) shows that the
gauge-Invariant dlvel'gellces 8 (Il" ) al'8 llldepell-
dent of the gauge-fixing parametex 4, up to terms
of the form

d'x(XI" "+sh "") &~gym

~Q jib

these latter terms may be absorbed by a field
renormaiization [cf. Eq. (6.18}].

If we use the gauge-fixing term (8.9) in the quan-
tization px'oc8dure, vM cRQ Rvoid xnRking use of
the conjecture (6.7), since then conservation of
ghost number and power counting imply that

—I"('",I) g„(h"",..., F,b, ) =0. (9.12)

In ordex to write the Slavnov identities, we make
use of (10.2) by adding a term coupling the scalar
a.nd ghost fields to R Q8% Rntieomxnutlng external
field B(x}:

+a'L,,esc C -~'8&„&C". (10,4)

{10.6)

where ss is the number of 8-scalar-ghost vertices
and Ez is the nu. mber of extex'nal scalar lines. The
external scalar lines are counted twice in (10.6)
because of the linkage of scalar fields and deriva-
tives in the interaction between sealars and gravi-
tons (the mass term is super-renormallzabie and
is not included in the power counting). This link-
age is sl, medlar to the lmkage of ghosts Rnd derl, va-
tives which we have already encountered.

Tile pow8r-colllltlllg x'ule (10,6) togs'th8x' with
the eonsex'vation of ghost numbex, shows that all
1PI diagrams with external ghost lines are con-
vergent, so that

5Z @ 5I'gd;„5Z@ 67~@„&) (n)
(M.v)ea ay M.„„~a~"

Consequently, 1"~«)~„ is gauge invax'iant. The only
gauge-invariant structures consistent with (10.6}

In the generating functional of Green"s functions,
the scalar field is coupled to a source J{x};the
Legendre transformation then trades this depen-
dence on J'(x) for a dependence on P(x) =M'/5J(s)
in the genex ating functional of proper vertices.
The 81Rvnov identity fox' the x'8duced generating
functional of px'opex' vel trees reRds

57851'y 51'8 51 y 51"8 51'y
0 ( 0 )58 5P 5Kq„5ll" 51~ 5C

As before, this identity leads to the renormaliKR-
tion eguatlon fox' I yg;q 8

Power counting, using the unweighted gauge con-
dition, gives the degI'88 of divergence of RQ ar-
bitrary 1PI diRgx'Rm,

I~, ),„=&& ) g„,g~"a g -P&"& Z'C-g +~t")~ ZV-g -~&")&"

+!y'"&/a, ys„yg~"v--g+l(nrem')'+Jy'v-g .

These divergences may be eliminated by x'enox'-

malizations of the appropriate coefficients in I,„
Rnd Jy2 Rnd by the addition of R cosmologIcal
counterterm. It should be noted that the absence

of a term like J RP' 4-g in (10.8) is due to the
linkage of sealars and derivatives. If this linkage
were broken by the inclusion in (10.1) of a scalar
self-interaction JP'4-g, then it would be nec-
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essary to include as mell the nonminimal gravi-
tational-scalar interaction.

The scalar field example shows that once re-
normalizability has been established for a purely
gravitational model, the inclusion of couplings to
other renormalizable fields poses no further prob-
lems (except possibly the necessity for a non-
minimal gravitationa'I-scalar interaction), In par-
ticular, the Faddeev-Popov ghost machinery re-
mains unrenormalized just as it did in the purely
gravitational case. The allowed divergences may
be summarized by assigning a power-counting
weight to each field, and then requiring that di-
vergent structures be gauge invariant and of pow-
er-counting weight four or less. It is necessary
to take into account any linkages of fields and de-
rivatives in the interactions by augmenting the
weight of a field by the number of derivatives
linked to it. The weight of the gravitational field
is zero, and before linkages with derivatives are
taken into account, the weights of other fields are
simply given by their canonical dimensions.

XI. A NOTE ON GENERAL RELATIVITY

The gauge-invax iant divergences which make
general relativity nonrenormalizable are by now

familiar. ' We can use power counting and the re-
normalization equation (6.3) to predict the kind of
non-gauge-invariant divergences that are also
likely to occur.

The renormalization equation (6.3) is valid for
all values of e and P, including zero, so it holds
unchanged for genexal relativity. The power-
eounting rule is now quite different, however,
since the graviton propagator behaves like k ' for
large momenta. This leads to the degree of di-
vergence of an 1PI diagram,

(6=0) 4+ 2 I h+ 2 Ig 2n$2ng
—3n —3n —2E~ —2E-,

where I„ is the number of internal graviton propa-
gators. To eliminate Ih and Ic,, we use the Euler
relation for the number of loops in a diagram,

& —1 =I„+Eq —nE —n~ —ng —n~ .
Thus,

.einstein, 1PI
II~ ~=0) 2 + 3 I "s. nr —3Kc —3Ec ~ (11'3)

At first glance, it would appear that a divergence
of the form O'C82C could develop at the one-loop
order. However, according to (6.7), this diver-
gence would have to come from
9[(K» —t& 'C, F'„,)P"'], and power counting now
would require that P"' contain two derivatives,
so there mould also have to be divergences of the

form ~CBAB'C. These do not occur, since two
derivatives must appear on each ghost and anti-
ghost field. Thus, P,",'„„=0, so all the divergences
at the one-loop order are gauge invariant (pro-
vided one uses the unweighted gauge condition).

In higher orders, non-gauge-invariant diver-
gences should be as plentiful as the gauge-invari-
ant ones presumably are, in any covariant gauge
and regardless of whether one weights the gauge
condition or not. Like the gauge-invariant diver-
gences, they will also involve progressively higher
derivatives of the gravitational field.

XII. CONCLUSION

The renormalizable models which we have con-
sidered in this paper should be regarded as con-
structs for a study of the ultraviolet problem of
quantum gravity. The difficulties with unitarity
appear to preclude their direct acceptability as
physical theories. They do have some promise as
phenomenological models, however, for their
unphysical behavior may be restricted to arbi-
trarily large energy scales by an appropriate lim-
itation on the renormalized masses m, and @f0.
Actually, it is only the massive spin-two excita-
tions of the field which give the trouble with uni-
tarity and thus require a very large mass. The
limit on the mass m0 is determined only by the
obsexvational constraints on the static field.

It remains to be seen just how much the analogy
to Pauli-Villars regularization remains valid in
the full quantum theory for these models. The
higher-derivative additions to the action do not
make them finite, but do control the divergences
enough to make them renormalizable. The Pauli-
Villars analogy would seem to indicate that letting
the mass m, go to infinity will just bring back some
infinities which have been postponed by the higher
derivatives. On the other hand, the quantum inter-
actions may change the stxucture of the theory in
such a way that letting the renormalized mass m,
tend to infinity makes sense even though the same
limit with the unrenormalized mass is unaccept-
able. Alternatively, perhaps there is a may to
obtain a unitary theory without going to the in-
finite-mass limit. Further investigation of these
questions appears to require the use of nonper-
tur bative techniques.
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APPENDIX: THE GRAVITON PROPAGATOR

The inversion of the gravitational kinetic matrix
which is necessary to calculate the graviton prop-
agator involves a substantial amount of Lorentz
algebra on symmetric rank-two tensors. To or-
ganize the calculation, it is convenient to use a
set of orthogonal, projectors in momentum space.
We choose a set of projectors which emphasises
transversality, '6 since this is important in
Sec. VIII.

Our projectox s are constructed using the trans-
verse and longitudinal projectors for vector
quant lt le s ~

e„,=q„„k„k„/k',
cop v

= k„k„/k' .
(Ala)

(Alb)

(o-s)
ppv po

= 3~jiv ep o &

~(o-~)
Priv po UPS v QPp o ~

(A2b)

(A2c)

(A2d}

The four projectox s for symmetric rank-two ten-
sors are then

Puu pa
= &(~u p eva+ ep ai)up} &epv ep a s (A2a)(2}

(1) & j
Ppv pa

= p(ep papua+ i}p a~up + eup+p a+ Sva+p p }t

For a massive tensor field in the rest frame, the
projectors (A2a)-(A2d) select out the spin-two,
spin-one, and two spin-zero parts of the field.
However, the projectors (A2) do not span the op-
erator space of the gravitational field equations.
In order to have a complete basis, we must also
include the two spin-zero transfer operators,

(0 scp) 1/2
p]iv po

= 3 eIivp o &

(0

-pcs�)

-z/3
priv po 3 {djiv( po ~

The orthogonality relations of the projectors
(A2) and the transfer operators (A3} are

(AS a)

pi -apj-b gi jgabpj-b

pi -abpj-cd gi jgbcpj -a

pi -apj -bc pi jgabpj -ac

pi abpj-c gi jgbcpj -ac

(A4a)

(A4b)

(A4c)

(A4d)

where i and j run from 0 to 2, and u and b take on
the values u and s.

In order to calculate the graviton propagator,
we must first write out the part of the effective
action (5.2) which is purely quadratic in the grav-
itational field h"'. Going over to momentum space
and using (A2) and (AS), we have

d4kku "(-k){-(nK'k'+y)k'P„',
p (k)+& 'K'k P„p (kv)+a(Sk'[(Sp —n)K'k'+ py]+2& 'K'k )P„',p, (k)

+k'[(SP —n)~'k'+-,'ygP" '(k)+W3[P" *'(k)+P ' ' '(k)]))k '(k). (A5)

The combination of parameters (SP - a) which occurs throughout this expression is an echo of the confor-
mally invariant action fd'x4 g(R„„R"-"-—,R') = —,

' fd'xv'-g C,„BC"",where Cu„z is the Weyl tensor.
The orthogonality relations (A4) may now be used in inverting the kinetic matrix shown in (A5) to obtain

the graviton propagator:

(2w)'i k'(n~'k'+y) k'([SP —n]x'k'+-,'y) x'k'

&{SP'„'„,", (k) —&3[P'„'„;,'(k)+P'„'„„*'(k)]+P'„',o'{k))
x'k~ (A6)

To determine the propagator (A6) completely, we must specify how the k, integration contour is to skirt
the poles in calculating Feynman integrals. %e do this in the customary way by including ie terms in the

denominators of the individual poles, which must first be obtained by separating (A6) into partial fractions,
Ignoring for the moment the terms proportional to 4, we find

(2v) i yk' y(k'+y[ns ] ') y(k +y[2(SP —n)v'] ')

Normally, one requires that quantum states have
positive-definite norm and energy. Such states
give rise to poles in the propagator with positive
residues. Since both the massless pole and the
pole at k =-y[2(SP - n)x'] ' in (A7) do have posi-
tive residues, we shift them in the standard fash-

I

ion, replacing the denominators respectively by

(k' —ie)

fk'+y[2(SP- n)a'] '-ie).
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(0'+y[o.~') '- ie) . (A10a)

As the Pauli-Villars analogy leads us to expect,
the choice (A10a}, together with (AB) and (A9),
gives a high-energy behavior of the total propaga-
tor which is like k . To see this, one may, for
example, perform a Wick rotation into Euclidean
space and then drop the ie terms. This is allowed

On the other hand, the negative residue of the
massive spin-two pole at it' =-y[o.e'] ' faces us
with a choice between two unfortunate alternat:ives:
to give up either the positive definiteness of the
norm or of the energy of the corresponding quan-
tum states. Both choices give the required nega-
tive residue, but they differ in the way the pole
must be shifted.

If the massive spin-two states are taken to
have negative norm, the situation is analogous
to a Pauli-Villars regularized theory. We recall
that in the usual derivation of the propagator, one
starts from (0[ 7fh„gx) h~ (x')] (0}, transforms
to momentum space, and sums over a complete
set of momentum eigenstates inserted between
t'he two field operators. The only difference in
the present case is that the negative-norm states
must be accompanied by a vector space metric
factor of (-1) in the sum over states. This gives
rise to a negative residue for the massive spin-
two pole, but does not affect the location of the
pole, whose denominator is consequently given by

because (A10a), (AB), and (A9) all shift the poles
ln the same way

If the massive spin-two states are taken to have
negative energy, the pole in the propagator ac-
quires a negative residue for a different reason.
In this case, there are no vector space metric
factors in the sum over stat:es, but the expansion
of the field operators into creation and annihila-
tion operators involves normalization factors
(2~ &J ) '"= (-20,) "'. These contribute an over-
all minus sign to the massive spin-two part of
the propagator, In addition, the sign of the energy
flow for a given time ordering is opposite to that
for a positive-energy field, so the denominator
of the pole is now given by

(k +p[QK ] +fe}. (Alob}

The difference between the poles given by (A10a)
and (A10b) is a term proportional to 5(k'+y[nz'] ').
While the choice of (A10a) leads to the desired
k ' behavior, this additional term effectively
spoils the high-energy behavior of (A10b), Thus,
our power-counting requirements lead us to adopt
an indefinite-metric state vector space, following
the analogy to Pauli-Villars regularization.

The pure k terms in (AB), proportional to 6,
may be handled by confluence, replacing them by

g '[(0'- ie) '- (0'+g -ie) '], and then letting
g - 0 at the end of the calculation.
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