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Rotating nonspherical masses anti their effects on the precession
of a gyroscope
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The formula due to Lense and Thirring for the dragging of locally inertial frames is generalized, in the limit

of weak stationary fields, to any arbitrary axisymmetric spinning body. %'e determine the multipole structure

of the off-diagonal terms in the metric resulting from the mass current of the body. For a rotating mass

divided into nearly spherical strata of equal density, the relativistic multipole moments are related to the

deviation from spherical symmetry in a quite simple manner. We apply our results to an oblate spheroid

stratified into slightly flattened ellipsoids. Thus a realistic geophysical model enables us to evaluate the

contribution of the earth's nonsphericity to the Lense-Thirring precession of a gyroscope. The magnitude of
this contribution does not exceed the experimental error for observations covering a span of about one year.

I. INTRODUCTION

The gyroscope experiment, proposed by Schiff'
and presently conducted at StaIIford University by
Everitt, Fairbank, and their co-workers, ' is a
test of the general theory of relativity sensitive to
the off-diagonal potentials resulting from the
diurnal rotation of the earth, the so-called Lense-
Thirring' terms in the metric tensor. In all the
calculations of these terms, the earth is assumed
to be spherically symmetric. However, this as-
sumption is not realistic and it has been already
shown by O' Connell, ' Barker and O' Connell, '
and Wilkins' that the quadrupole moment of the
earth gives a measurable contribution to the pre-
cession of the spin of a gryoscope when the earth' s
rotation is neglected. So our purpose in this work
is to determine the additional contribution due to
the deviation of the central body from spherical
symmetry when the rotation is taken into account.

%e assume the central body to be axisymmetric
and to spin around its axis with a small angular
velocity (d. In Sec. II, the linearized Einstein
equations are solved in the first-order approxima-
tion with respect to ~. It is shown that the off-
dlRgonR1 potent1Rls Rrlslng f1 0m the rotRtloll 1n-
volve in fact a single function H to be determined.
Then we get, for the dragging of the inertial frames
by an axisymmetric rotating mass, a formula gen-
eralizing the Lense- Thirring formula.

In Sec. III, we perform the multipole expansion
of H and we write the relativistic multipole coef-
ficients K„ involved in this development in a con-
venient form for further comparison with the New-
tonian 2"-pole moments. Then we derive the cor-
responding expansion of the angular velocity of in-
ertial axes. The computational details are given
in the appendixes. ' %e may note that Krause' and
Martin' used similar expansions, although they did

not generalize the Lense- Thirring formula of pre-
cession.

In an earlier work, ' we determined the terms
K„ for a spinning heterogeneous sphere by making
use of the orthogonality properties of the spherical
harmonics. Therefore, only nonspherical config-
urations are considered here.

Section IV is concerned with rotating bodies made
of nearly spherical layers of uniform density. The
expressions of the multipole moments are quite
simplified when one neglects terms of higher order
than the first with respect to the deviation of each
layer from spherical symmetry. A detailed t.".eat-
ment is given for a spheroid stratified into slightly
f1.attened ellipsoids of revolution. The coefficient
K, is shown to be then the only significant relativ-
istic multipole moment. Moreover, our theory
yields an expression of K, close to that of the
Newtonian quadrupole moment J,.

These latter results are applied to the terres-
trial spheroid in Sec. V. The coefficient K, is esti-
mated from a classical model of the earth. %e
can thus discuss the influence of the internal lay-
ering of the earth on the Lense- Thirring preces-
sion of an oxbiting gyroscope.

II. STRUCTURE OF THE GRAVITATIONAL FIELD

Let us consider an isolated axisymmetric body,
slowly spinning with a uniform angular velocity

The gravitational field is assumed to be weak
and stationary, so that the metric components may
be written in some quasi-Galilean coordinate sys-
tem x'=gt, x'=(x, y, z):

g„„(x')=q„„+h„„(x'),

(p, v) = (0, l, 2, 3), i = (i, 2, 3),
where q„„=diag(l, -l, -l, -l) and h„„are small
quantities. Moreover, let us impose the gauge
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conditions

g'~e, h)~ - 28~h = 0, h = g"h

Then, the linearized Einstein equations are

0 outside the matter

2x(T„„-—,
' Ti}„„)inside the matter,

where T„„is the energy-momentum tensor, I'
=

7/ T~, and K is the Einstein constant K =8vG jc'
=1.8V x 10 "mkg ' (c is the speed of light and G
the Newtonian constant of gravitation).

The angular velocity ~ is directed along the z
axis. If one neglects the pressure and terms of
second order in (~0jc)',"where r, is a character-
istic size of the body, the nonvanishing components
of the energy-momentum tensor are„ for a volume
distribution of proper density p,

(3)

The matter is supposed to be distributed in a
finite number of domains 8, limited by closed Lia-
punov surfaces" 9,. In each domain S„ the density

p is assumed to admit a gradient satisfying a uni-
form H5lder condition. However, p or its first
derivatives may be discontinuous across the sur-
faces 8,. Under these assumptions, there is one
and only one system of solutions of the field equa-
tions (2) such that the gravitational potentials sat-
isfy the Lichnerowicz axioms, i.e.:

(a) They are continuously differentiable every-
where.

(b) They have piecewise continuously differenti-
able partial derivatives of second order.

(c) They are regular at infinity j I
rh „„I

and

Ii'SP„„I are bounded when r=(x'+y'+z')'" be-
comes larger and larger].

Replacing T„„by (3), we have for the nonvanish-
ing h„„

xiii p(r')y' xe p(r')x'
27FQ ~ $j 27k C

x = $ cosy, y = $ sing, $ ~ 0, 0 ~ y & 2g,

K(dh= H —'
2M' 9+

where H is a function which depends only upon $
and z. So, passing again to the quasi-Galilean co-
ordinates, we get

hoi(x, y, z) =-——H(), z},
K' QPy

g &X
ho2(x, y, z) =

2
—H(), z) .

(8)

Thus, the off-diagonal potentials due to the ro-
tation of the central body can be constructed with
a unique axisymmetric function. In order to obtain
an integral expression for H, let us differentiate
h„with respect to y and suppose the current point
is in the xOz plane. Thus, we get from (8)

8 K(d—Iioi($, 0, z) =-
2 H((, z).

This relation defines H((, z) on the z axis itself.
Now, let us replace hoi by expression (8). We may
differentiate under' the summation sign, since hog
is a Newtonian potential. So we get

I2
H(), z)=, dr

~ AS I „q

$"sin'(p- ci')

verified by the functions h„„." Now, put

8 8h=h —+hOl e~ 02
gy

From a mathematical point of view, this 3-vec-
tor may be identified with the magnetic vector po-
tential created by a steady axisymmetric distribu-
tion of electric currents j =(xj2wc)pv. But it is
well known that the orbits of such a vector field are
circles around the z axis. Hence, if we define $
and p by

where S is the union of the domains S„dv is the
volume element of the Euclidean 3-space at the
point (x', y', z'), and ft =

I
r- r' I, r and r' denoting,

respectively, the position vectors of (x,y, z) snd
(x', y', z'}.

Here, p is a time-independent axisymmetric func-
tion. Hence the relations Q s T z=0 hold for the
tensor (3), or eiluivalently the conservation law of
the mass current

On the z axis, this formula becomes

1 (I2
H(z) & P [gt2+( t)R]3/2 dr '

The off-diagonal potentials h» and h» induce a
precession of the spin of a gyroscope, the rate of
which is given by"

Q=2gV&h.
V (pv) =0, v=ru x r.

As a consequence, the gauge conditions (1) are

(6) From a mathematical point of view, Q is the mag-
netic induction associated with the vector potential
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~eh. Hence, in free space,
Z„=— „pr'"P„(cos8')dr .

My' "

The components of 0 are, in the natural triad
associated with ((, y, z),

(13a)

Similarly, a standard method of potential theory
leads to a unique absolutely and uniformly converg-
ent expansion for H in the region r ~ r, &r, (see
Appendix A):

(13b)

A„=o. (13

I.et u and k denote the unit vectors in the r and
g directions, respectively. %e can write

8H0 = —-r u+ {2H+—r—. VH)k
4g Bg

y ff

H(r, 8)=, 1 —g K„—' P„;,(cos8), (18)

where I is the moment of inertia of the body about
the z axis, and

2 My'~z„=,' {L,„-z„~),

On the z axis, this expression reduces to
1 pr'" P„(cos8')dr .

M~,"
{20)

0 = —H(z)~.2x

III. MULTIPOLE EXPANSIONS OF POTENTIALS

AND OF Q

Now, Egs. (12) and (13) enable us to derive from
(18) the following expansions for the components
0, and 0, in the region r ~ r, &r, (see Appendix B):

introduce the spherical coordinates (r, 8, p) rela-
tive to 0 as origin; U and H can be expressed in

terms of r and 8 only. Let r, be the radius of the
smallest sphere around 0 containing the whole

body (in practical cases, r, is the equatorial rad-
ius). For any r, &~„ the Newtonian potential is
represented in the region y ~ r, by the absolutely
and uniformly convergent expansion

M y'~
U{r, 8) = —1- g J„—' P„(cos8)

where M is the total mass, P„ is the I egendre
polynomial of degree pl y and

40 ff

x 3cos8- g (n+1)K„—' P'~( cos)8

nial

(21)
Gl(d 3cos 8- &
C f'

yf

—P (s+1)(m+2)Z„—' P„(cos8) .
(22)

Using the recurrence formula

(n+ 2)P„~(cos8)= cos&P„'~(cos8) —P„'.,(cos8),

(21) and (22) may be condensed in a single vectorial
expression

n

Q = 2+ 3 cos8u- k- m+1 X„' I"„~cos8)u- P„'„cos8k
~0

(23)

The relativistic coefficients K„are due to the
heterogeneities and jor the nonsphericity of the
spinning mass. In fact, when the central body is
spherically symmetric, the density is a function
p(r), so that the L„viansfohr n ~ 1 as the Z„do
themselves, on account of the well-known orthogon-
ality properties of the Legendre polynomials.
Hence, the E„are null in that case, and we get
from (1S) and (23), respectively,

H= 2, , 0= » (3cos8u-k), r&ro, (24)
I GI+

2r' ' c'r'

where zo is the radius of the xotating sphere.
These formulas correspond to the Lense-Thirring
metric. "

IV. MULTIPOLE MOMENTS OF NEARLY

SPHERKAL BODIES

Suppose now that the rotating mass is di-
vided into infinitely thin strata of equal density p.
More precisely, assume that the strata constitute
a one-parameter family of closed surfaces of rev-
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olutlon about the g axis d8flned by the equations

r=r+(u, u), E(0, u) =0, u=cose.

Hex'e, the range of the parameter I is 0 ~N ~ j. ,
@=0 corresponds to the origin 0 and u =1 to the
external surface of the body; r is the mean radi-
us, i.e. , the radius of the sphere enclosing the
same volume as the vrhole body.

Then the density is a function p(u), assumed to
be piecewise continuous on the interval 0 ~ g ~ 1.
Moreover, we suppose that E(u, u) possesses a
contlnllolls fll'8't del'1VRtlve 8E/Su & 0. So E is R

monotonically increasing function of g for any fixed
value of p, , @which agrees with the assumption of
intexnal layering.

We can modify the integral expressions (IV) and
(20) for Z„and I,„, respectively, by passing from
the variables (r, 8, (p) to (u, u, y).17 Since SE/Su
& 0, the Jacobian of this transfox'mation is admis-
sible. Then a straightforward calculation gives

fthm

p(u) — E"~(u, u)P„(u)d udu, (25)dl

and using the orthogonabty relations behveen the
Legendre polynomials, we get from (25) and (26),
respectively,

J„=-3e — p(u) —[u""C„(u)]du, (29)
&m

pm o dQ

nA
I,„=-3e -[L — p(u) —[u"~C'„(u))du .

p o dQ

(30}

In ordex tosimplifyexpx"essionsof M and I, let
us connect g to the mean radius y' of the corre-
sponding layer by the relahon u= r'/r . Then
4,(u) =0 (Itef. 18) and

M =4m' 3
p u u du

am, ', d(=
~

r„' p(u) u'-c —„[u'o.(u[]Id

If such a Quaslspherical body ls homogeneous put

~(u) =~(1,u), c'. =C„(I).
Tile llltegl'R'tioll of (29) Rnd (30) gives

(31)

dx p(u} — E""(u,u)P„(u)dudu, (26)
o du -j

vrhere p denotes the mean density of the spinning
body.

The expx'esslons for the mass and the moment of
inextia about the z axis become, respectively,

2n, ' d
p(u)— E*(u, u, }dudu,3

4m, ' dI =—y
' p(u) F—'(u, u)15 o du

x [P.(u) —P.(u)ldudu

For a body layered into very nearly spherical
concentric surfaces, the function E(u, u) may be
vrritten as

E(u, u) =u[1+eC(u, u)],

where 4 (u, u} is a continuously differentiable func-
tion and e a small dimensionless llnantity. If terms
of higher order than the fix st with respect to z are
neglected, the powers of E(u, u) may be written as

F'(u, u) =u~[1+ke4 (u, u)].

Substituting these expressions in«(19), we g«
g„ in terms of Newtonian 2"-pole moments"

~+ ~e

Noir let us apply the preceding results to a
spheroid stratified into ellipsoidal shells, the flat-
'telllllg of which is R snlall fnnctlon o[(u). If t' u ls
the mean radius of the layer pax'ametrized by u,
OQ8 may %(rite

~4 (u, u) =- -', a(u)P, (u) .
Using the orthogonabty relations satisfied by the

P„, we deduce from (29}and (30) that the only non-
vanishing J'„ and 1.„are those vrhere n =2:

p(u) —[u'&(u)]du,
"e pm o

2 r„41 ' dI.,= —" — p(u)——[u'o[(u)]du .
5 r, p o du

Therefore, all the relativistic coefficients K„are
nuQ, except E2:

(35)

~'„(u) =k C(u, u}P.(u)du
e$

(28) According to the present viewers in geophysics and
seismology, such a stratified ellipsoid constitutes
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a good model of the earth. So we are now in a posi-
tion to evaluate the influence of K, on the behavior
of a gyroscope in orbit around the earth.

V. APPLICATION TO THE GYROSCOPE EXPERIMENT

It is usually assumed that each layer of equal
density within the earth is like an equipotential
surface under the combined influence of the New-
tonian attraction and the centrifugal acceleration
due to the axial rotation. Under this condition of
equilibrium, the flattening u(u) is connected with
the density distribution by the Clairaut equation. ~o

Moreover, it is natural to suppose that the density
increases with the depth, so that dp/du ~0. Then,
it can be shown from the Clairaut equation that the
flattening is a monotonically increasing function
of gg. Therefore, 8, and K, are positive and have
the same order of magnitude. The most recent de-
termination of the quadrupole moment J, is"

Z, = (1082.64+ 0.01) x 10-'. (36)

On the other hand, an accurate value of the rel-
ativistic coefficient E, can be obtained when the
density and the flattening are known for a suffi-
ciently great number of layers. Let u„0 & i & n be
a finite set of real numbers such that u, =0, n,.
&u;„, u„=l. From p(u)&0, dp/du&0, o((u}&0, and
da/du&0, we derive the inequalities

The orbit selected for the gyroscope experiment
is a slightly distorted circular polar orbit. The
corresponding equations of motion can be derived
from the classical Lagrangian of the earth-gyro-
scope system":

r(t)=a 1+-,"Z, —' cos2nt (39)

where n denotes the mean motion of the satellite
and a the mean radius of the orbit. It is clear that
the equatorial radius a, of such a trajectory is

a = a 1+ 4 eJ2—

Inserting now expressions (39}and (40) in (38)
and integrating over a period, we get the average
of 0:

(41)

where terms of higher order than the first with re-
spect to J, and K, are neglected. Thus, we find for
the correction of the Lense- Thirring secular term
(QLr) = GI~/2c'a' the following:

p uq+0)A,-,
(42)

In order to evaluate {0»), let us decompose this
quantity as follows:

k+1 d
A, = —[u'&(u) ]du

d(M

= u(~~ &(1C(~~) —B( D(ECg) .

To form an estimate of the lower and the upper
bounds of the above integral, we use the density
law and the flattening computed by Bullen and Bul-
lard from seismological, data." Substituting the ob-
tained values into (34}and (35) we find

0.861 & 10 '&&2&0.887 & 10 '.
In the following we shall adopt the mean value

K, =0.874 x10 '

to be compared with the value of J,.
From (23), we get for 0 at a point of latitude

(I) = v/2- 8

CI(d GM r, I-A I
2c a 2g a My~

e

where A denotes the earth's moment of inertia
about an equatorial axis. For the speed of light
and the earth's angular velocity of rotation, we
take, respectively, c=(299792.5+0.1) x10' msec '
and (() = 4.'746 682 47 x 108 (sec of arc)/(sidereal
year}.'4 The values of the gravity factor GM and of
the equatorial radius are, respectively, (398600.5
+0.3) x10' m'sec ' (Ref. 21) and 6378140+16 m."
The quantity (I —A)/Mr, ' is the quadrupole moment
Z, given by (36) and I/(I-A) is the reciprocal of
the dynamical ellipticity of the earth. Slightly dif-
ferent values of (I A)/I are found by -various auth-
ors. We take I/(I-A) =305.5+0.5." We thus get

(0»}= (43.88 + 0.07) x 10 ' (sec of arc)/
(sidereal year)

for a quasicircular polar orbit 300 miles =482.8032
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km above the earth at the equator. Note that the un-
uncertainty on (fl») is mainly due to the uncertain-
ty on the quantity I/(I —A). F. or such an orbit, the
correction (42) is

a(A}=-0.05 x 10 ' (sec of arc)/year.

A measurement accurate to 0.001 (sec of arc)/
year seems feasible by use of the London moment-
readout technique. So the contx'ibution of the flat-
tening and of the internal structure of the earth
to the Lense-Thlx'x'lng term ls about bventy times
smaller than what is hoped can be measured.
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APPENDIX A* EXPANSION OF H

I't follows from (2) and (3) that Hx is harmonic
function in free space. Therefore, Hx may be de-
veloped Rs

Hx =H(r, 8)r sin8 cosy

„~ P„'„(cos8)cosy,Hn

where the H„are constants and P„'.,(cos8) denotes
the associated Legendre function sin8P„'„(cos8).
The Rbove expRDsloD ls Rbsolutely and uniformly
convergent in the region r ~ r, for any r, &~, (r, is
defined in Sec. ID). Now, dividing each member by
g sine cos+y %8 Obtain

H(r, 8}= g "„P„'.,(cos8) .

In order to determine the coefflclents H„, let the
cux'rent point be on the positive part of the g axis.
Then P„'„,(cos8) takes the value n(n+ 1)(n+2), so
that

(n+ l)(n+ 2)HnHz =2~ f1+3

nlrb

8

But (10}may be written as

)
y t sin 8

(z'- 2zr' cos8'+ r")'~'

%hen z ~ x, &~„ere have r' ~ r, & z and ere may ex-
pand (z'- 2zr' cos8'+r") '~' into the uniformly con-
vergent series2'

g Ptl

(s'- 2~r' cos8'+~ *)-'~' = g —,.~ P„'.,(cos8')

Substituting this expression in the integral expres-
sion of H(g) and permuting the summation symbols,
%8 get

and compare with (17) the expression of Z„obtained
after replacing H„by (45). We easily get (19) and
(20).

APPENDIX 8: EXPANSION OF Q

Expression (13a), for 0, may be written as

KQp . 9H
Q =- ysln8 —.

4m eg

The function Hx is haxmonic in a vacuum. So
x(BH/Bz) has the same property, since x(BH/Bz)
= (B/Bz)(Hx) More.over this quantity depends upon

y as Hx does itself. Therefore, BH/Bz may be ex-
pRQded Rs H ln RQy I'egloQ 7»» t1 &'P:

BH " H„'„"„P„'„(cos8) .

In order to determine the coefficients H„', let us
write the above expansion on the positive part of
the z axis and compare it vrith the series obtained
by differentiating (44} term by term with respect to
z. We get H,'=0 and H„'„=-(n+1)H„. Then, we de-
rive from (13a}

0,= 4, sm8+ " P„'~(cos8),
~&u . " (n+ I)H„

which is equivalent to (21).
lt follows from (12) that 0, is harmonic in a vac-

uum. Multiplying {44) by zw/2v we obtain the ex-
pression Gf A GQ the 8 Rxls Rs R p0%er sex"les in
the reciprocal of g, since this quantity is x'elated
to H(z) by (15}. Then a classical theorem on the
axisymmetric harmonic fuDctlons allo%Is us to
write immediately

(n+1){n+2)H„
4m~ ~ ys n+2

n=0

This expansion is equivalent to (22).
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ent choice of the time origin; for Barker and O' Connell,
Q =0 when t =0, while P =0 when t =0 in the present
work.

24This value of w is calculated for 1980 A.D. from data
given by C. W. Allen, AstroPhysical Quantities, 3rd ed.
(Athlone, London, 1973), p. 19.
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