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The general problem of scattering and absorption of waves from a Schwarzschild black hole is investigated. A
scattering absorption amplitude is introduced. The unitarity theorem for this problem is derived from the
wave equation and its boundary conditions. The formulation of the problem, within the formal scattering
theory approach, is also given. The existence of a singularity in space-time is related explicitly to the presence
of a nonzero absorption cross section. Another derivation of the unitarity theorem for our problem is given by
operator methods. The reciprocity relation is also proved; that is, for the scattering of waves the black hole is
a reciprocal system. Finally, the elastic scattering problem is considered, and the elastic scattering amplitude is

calculated for high frequencies and small scattering angles.

INTRODUCTION

This article represents a contribution to a line
of research that was initiated by Matzner,! con-
tinued by Persides® and myself,® and on which
much remains to be done in the future.

In this scattering problem, the exact solutions
for the scattering parameters have not been found
even in partial waves. The complexity of the ex-
act radial wave solutions® makes it very difficult.
Approximate analytical results for the phase
shifts, absorption coefficients, and elastic and
inelastic cross sections have been reported pre-
viously by us.3

However, in scattering theory it is not only the
explicit expressions for the cross sections (and
other scattering parameters) that are interesting,
but also general properties satisfied by them. In
this paper, we consider this last problem for the
specific case of scattering of waves by a black
hole. The existence of a singularity in space-time
is related explicitly to the presence of a nonzero
absorption cross section, and general properties
of the wave scattering amplitudes from a
Schwarzschild geometry are established.

The wave equation in Schwarzschild space-time
has singularities at » =0 and »=7,, and the radial
behavior of the solutions near these points is the
same as the behavior of the quantum-wave solu-
tions near the origin for an inverse-square at-
tractive nonrelativistic potential. As is known
(see, for example, Ref. 4), the physical solution
for such potentials cannot be determined uniquely
from a regularity condition, and additional as-
sumptions are required to specify it. In this
black-hole problem, the physical solution of the
wave equation is such that it has only purely in-
going waves on the horizon »=7.!

In Sec. I, we introduce a regularization in order
to have the physical solution well defined even for

16

v=7¢ It is based on the analytic continuation of
the solution in the variable 7.

If we take € =Im7 positive, it can be seen that
the physical solution is regular at the horizon.
This suggests that we define the physical solution
as the € ~ 0+ limit of the regular solution.

In Sec. II, an absorption scattering amplitude,
whose modulus squared gives the differential ab-
sorption cross section, is introduced by means of
the behavior of the physical solution for » —7+.
We relate the total absorption cross section ob-
tained from this amplitude to the parameters con-
nected to the asymptotic behavior of the solution
for » -, and also to the » - 0+ behavior of the
solution.

Within this context, we establish general pro-
perties of the wave scattering amplitudes from a
Schwarzschild geometry. We derive a unitarity
relation which takes into account the absorption of
waves by the black hole. This relation generalizes
for our case the well known unitarity theorem in
elastic potential scattering theory. It is well
known that one can describe an absorption process
in one-channel scattering theory by using a com-
plex (nonsingular) potential, that is, a non-Her-
mitian Hamiltonian. We find that, in our problem,
although the effective Hamiltonian is real, it is
not Hermitian, because of its singularity at the
origin (this is shown in Sec. III). Moreover, in
the € -~ 0+ limit, the Hamiltonian is Hermitian and
the current density is conserved for all » #0 (even
at r=7,). We will see (in Sec. III) that the diver-
gence of the current density is proportional to a
Dirac 4 function.

In Sec. III, we formulate the scattering problem
by a black hole in the formal scattering theory
approach. The use of this powerful formalism
has permitted a better insight into the absorption
problem. In this formalism, it is convenient to
work with an “effective Hamiltonian” which plays
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a role similar to that of the true Hamiltonian in
the time- independent quantum- scattering theory.
We find that this effective Hamiltonian is Her-
mitian except at the origin. This non-Hermitian
character is due entirely to the singularity pres-
ent at the origin of the Schwarzschild space-time.
The expression for the difference between the ef-
fective Hamiltonian and its adjoint is derived. It
is a distribution concentrated at the origin [Eq.
(46)]. An absorption matrix is introduced as a
measure of the difference between the unit oper-
ator and the product SS' (S stands for the elastic
S matrix). We derive the relation between this
absorption matrix and the anti-Hermitian part of
the effective Hamiltonian, which was previously
found. Thus, the relation between the singularity
at the origin of the Schwarzschild space-time and
the presence of absorption processes is explicitly
shown.

In Sec. IV, we show that for the scattering of
waves the black hole behaves reciprocally. We
give another independent proof of the reciprocity
theorem by formal operator methods. Although
the effective Hamiltonian is neither symmetric,
nor time-reversal-invariant, the reciprocity re-
lation holds because of the equality of some ma-
trix elements of the effective Hamiltonian and its
transpose.

In Sec. V, the elastic scattering problem is
considered. We calculate from the scattering in-
tegral equation the elastic scattering amplitude
for high frequencies 2 and small deviation angles
6. The differential elastic cross section obtained
from this amplitude gives the Rutherford law plus
corrections. In the limit 2—, the geometrical
optical result is recovered.

1. GENERAL CONSIDERATIONS

We begin by considering a complex scalar field
in a curved space-time. It satisfies the equation

&¥%,,,=0, 1
as does its complex conjugate,
g7k, =0, 2

where the semicolon denotes covariant differ-
entiation.

Multiplying (1) by ¢*, (2) by ¢, and subtracting,
one obtains

9y ay*
—got| vk _ =
[\’ g9 (w 7 d)axuﬂ’“ 0. @)
Here the comma denotes ordinary differentiation.
This is a conservation law associated with the in-
variance of the Lagrangian under the transforma-
tion

) -~ Pei® (a is a real constant).

It is clear that Eq. (3) is only valid at points where
the metric tensor is nonsingular.

We integrate Eq. (3) over a three-dimensional
volume and use Gauss’s theorem to obtain

§ Vmgetiyasi=~ [=(gi)av, @

where

. 1 9 oY*
vy (Vo Yt )

Er T
(5)
S WA TR
7*“27(‘”*57' W)
and
dr="Egds°. ®)

The four quantities j7,j* are the components of a
conserved current density. In certain cases it is
possible to relate the spatial current J to the
Poynting vector S.

From now on we will consider coordinate frames
where g,,=0. The general expression for Sis
then

Sp= aowakd"k"‘ 9,9%0,9 ; (7

it can be obtained from the energy-momentum
tensor of the scalar field.
If one considers a single-frequency solution

Pp=e 9ty (8)

from (5) and (7), one gets
§=207.
Thus, in order to express the energy flux both
vectors are equivalent.
We shall consider Eq. (1) for static gravitational
fields, and make the temporal separation (8).
Then

800 Mol oik 20 =
‘/'*g_l.ai( Ig’g ak\p)‘k‘l’-os (9)

where
t=x°,
k=w,

We write (9) as
HY=Ek2Y (10)

where H is the energy-dependent operator
H=8,(VIglg**8,)+k*(1- Vgl g%). (11)

Now we write Eq. (10) in the Schwarzschild metric.
It gives
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2
[_ .l <a,2+% a"ﬁ%?ﬂ‘l’: Ry, (12)
8

The behavior of the physical solution of Eq. (12)
for » - 7+ reads

Y= -7)""*sg(6,0)[1+0(r-7,)]; (13)

it has a divergent phase for r=7,.

One can use a regularization in order to have
¥ well defined also at the Schwarzschild radius.
We make an analytic continuation taking 7, com-
plex. We write

ris=a+ie, €>0,. (14)

The plus sign in (14) guarantees that solution (13)
is finite in ¥ =7, Thus, with (14), the operator
(12) also contains the boundary condition, and the
physical solution can be obtained as the e~ 0+
limit of the regular solution.

We proceed to consider the analytic continuation
of the currentﬁ [Eq. (5)] as a function of ¥s. In
order to preserve the validity of the conservation
law [Eq. (3)] for complex 7,, we define

+ 1

To=gs (1- 22,0005, 20) - w05, 476)]

g 00Tk ) -2 ) Tt 0)], (15)

where "70 denotes the angular part of the gradient.
The component j,. can be written as

jre =% <1 -%> Wr[\Il*(Vs*) y\Il(Ts)] )

where W, is the radial Wronskian. It is easily
seen that for » #7, the €~ 0+ limit of the right-
hand side of Eq. (15) coincides with Eq. (5).

II. THE ABSORPTION PROBLEM

The asymptotic behavior of the solution of the
wave equation [Eq. (12)], which describes the
scattering of a plane wave by a Schwarzschild
black hole, reads (see Appendix A)

‘l’; = ei;- #-ikrg In(kr(1-cosd)]

+L1(’i)eikr+ikrs 1n2kr+ o) (% ) , (16)
where Kk stands for the wave vector of the incident
wave (cos@:E +?), and we have taken into account
the Coulomb tail of the interaction. Here f(6) is
the elastic scattering amplitude whose modulus
squared gives the differential elastic cross sec-
tion. As we will see in a moment, the function
2(6) in Eq. (13) results in the absorption scattering
amplitude.

In order to find a general expression for the
absorption cross section, we consider the current

density given by Eq. (16). The differential flux
absorbed by the black hole can be written as

d®,.= 2ka2<1ri¥3 j,‘) as. ($%))

This flux gives the energy absorbed by unit proper
time 7, and unit solid angle, as one can see from
Eq. (4). Then

ogs _ 1 d®,,

aQ B, d
=a? lg(e)]z ’ (18)

where the incident flux &,,, is 2¢°.
The absorption scattering amplitude can be ex-
panded in partial waves,

g(0)= xZ: g, P,(cos6). (19)

The partial-wave absorption coefficients g, can be
related to the imaginary part of the phase shifts
5,(k).

We can write

¥(F) = xi ®,(7)P;(cosH) , (20)

where ®,(7) satisfies the radial wave equation

IR, d®,
a7t (r-r)@r-7v,) e

r(r-ry)?

+[ -1+ 1) (r-7)]®,=0.
(21)

From Eqs. (13), (19), and (20), it follows that
®,(r) o~ gir=7r)*s[1+0(r-7))]. (22)

The Wronskian of two radial solutions behaves
like

* — KI
W[ 1)@'1]‘ ’)’(’V—’}’s) ’ (23)
as can be proved easily from Eq. (21). The con-

stant K; can be evaluated from the behavior of
®,(r) near the Schwarzschild radius [Eq. (22)]

K,=-2ikrs? |g, |2. (24)

This constant can also be obtained from the
asymptotic behavior of & ,(r) for ¥ -« ,

®,(r)= [% sin(kr- l 12T+k1fs In2ky + 6,(k)>]
1
+0 (p)
with

apeit ) g, o)
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Equating both results, we obtain

l

g, = sinh2g, , (25)

where
B;=Imb,.

This formula shows explicitly the relation of the
imaginary part of the phase shifts to the partial-
wave absorption amplitudes.

We now proceed to express the total absorption
cross section 0,,, in a partial-wave expansion.
From Eqs. (18) and (19), it follows that

om=a2f !g(e) ]2d9

=~ g, P
- 2 :
4na ; S (26)
Substituting Eq. (25) into Eq. (26), we see that
we have obtained, solely from the wave equation
(and the boundary conditions), the standard ex-
pression for the total inelastic cross section,’

T ane = % 3 @+ 1)(1- ). @7)
1=0

We wish to point out that this expression is de-
rived in standard textbooks® from assumptions on
the unitarity of the multichannel § matrix, without
reference to wave equations. We also recall that
the absorption cross section has been defined by
means of the behavior of the solution for »—»+.
In Eq. (27), we give its expression in terms of
parameters related to the asymptotic behavior of
v—, We can also obtain an expression for the
total absorption cross section in terms of param-
eters related to the behavior of the solution near
the origin.

In the neighborhood of » =0, the behavior of two
linearly independent radial solutions is®

®R,;=1+0(0), (28)
Ry =1r[1+0()]+1+0(r). (29)

We have chosen ®,; and &,; as real functions.
As we know, in the neighborhood of =7 two lin-
early independent radial solutions are given by
Eq. (22) and their complex conjugate, which we
denote ®,,, and &®,;..,, respectively. These func-
tions are related by

& =C®,;+D, &, , (30)
Ry = Ci®y;+ DY Ry, . (81)

It is easily seen that the constants C,, D, are ex-
pressed as

v
Cl=_ ',r— (’V— rs)W[(Rzn(Rlﬁ)] ’
s

v
D,=-y— (T" Ts)W[®117ml(+)] .
s

We evaluate the constant K, [Eq. (23)] with the
solutions given by Eqgs. (30) and (31) and, using
(24), we obtain

lg; P =’k17‘ Im(C;D,) . (32)

That is to say,

4m' ol (CrD)
Z @I +1) +1' (33)

=0

which gives the total absorption cross section in
terms of the Wronskians between the radial solu-
tions defined near the origin and near the horizon.
These Wronskians and their properties have been
studied by Persides.?

We will now derive the unitarity theorem which
relates the absorption cross section to the elastic
scattering amplitude. We consider two solutions
¥;(7) and ¥y, (T), whose asymptotic behaviors are
given in Eq. (17). We denote the elastic scattering
amplitudes for ¥; and ¥, as f (K, K,) and f(K',k,),
respectwely,where]k] |K’| and k,= |k |7.

It follows from the wave equation (12) that we
have the identity

[qh Vi - UV

- 7
-, =% (Y30, Vg ~ ‘Pi‘»ar\l';)] =0.

We integrate this expression over the volume that
extends for »=», to a large spherical surface
(r=R). Using Green’s theorem, we find

9RW’R['I‘E’\IJ€']dSR
—ﬁ 1 -2 W, [¥;, ¥]1dS,=0
Rerg R RLYE Yie [AO =V

From the asymptotic form (16) of the solution and
the behavior (13), one obtains in the R -« limit,
by using the stationary-phase method

i e 1 * e -

57 [, K) - f (K, )]
k T Vekii T ka? 9) |2
7ff(k,k,)f (k,k,)ds’z,___‘;”f l2(0) 2a.

(34)

This is the unitarity theorem for the scattering of
waves by a black hole. The first term on the right-
hand side takes into account the elastic scattering
and the second term takes into account the absorp-
tion process. It must be pointed out that Eq. (34)
has been derived from the wave equation and its
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boundary conditions without any further assump-
tions.

It is well known in potential scattering theory
that absorption processes are related to non-
Hermitian Hamiltonians. This suggests that we
study the properties of our effective Hamiltonian
[Eq. (11)]. In the following section we will find
that this Hamiltonian is not Hermitian, although
it is real. This non-Hermitian character is the
reason for Eq. (34). We are thus motivated to
derive a more abstract unitarity relation by using
the results and methods of formal scattering
theory.

IIl. FORMAL APPROACH

Let us derive the scattering integral equation
from the wave equation and the boundary con-
ditions. It is convenient to split the effective
Hamiltonian H, Eq. (12), into two parts,

H=Hy+H' ,

so that H, is an exactly soluble differential oper-
ator.

We define the “free” Green’s function as the
solution of the equation

(Hy- B)G (T, T)=6(F-T), (35)

which at large distances contains only outgoing
spherical waves. The wave equation can be written
as

(Hy— K)(P) = ~H"¥(). (36)

From Eqgs. (35) and (36) and integrating over the
domain between the spherical surfaces S at »
=7, and S’ at =R —~, we obtain

3G v ,
v®=v0)fs (v 57, - 6 57 as
+ DG F T () U (F) By 37)
Ts

where ¥, is a solution of the homogeneous equa-
tion

(Hy= E)¥ o) =0 (38)

that has been added in order to obtain the general
solution of Eq. (36). It is easy to see that the con-
tribution of the integral over S’ vanishes in the
limit R -, (Fromnowon, we will understand that
the limit € - 0+ has been taken.)

The integral equation (37) does not have the
form of the Lippmann-Schwinger equations owing
to the contribution of the surface integration over
S. By operator methods these equations read®

Vi)=Y + G, H' Y, (39)
V=¥ +Go,H'Y,, (40)

where G,, are the Green’s operators
Gy= (R £i0-H)™.

The function ¥, is that solution of the scattering
problem, which has incoming plane waves and
outgoing scattered waves. The term +40 in G,,
guarantees that only outgoing scattered waves
exist. Similarly ¥ _, is that solution which has in-
coming spherical waves and outgoing plane waves.
Also, Eqgs. (39) and (40) can be expressed as

Yy =¥+ 8 H' Y, (41)
Yy =¥+ S H ¥, (42)

in terms of the Green’s operators for H,
S(x)=(R°+40 — H)™.

In order to use operator methods, within formal
scattering theory, it is more convenient to have
an integral scattering equation of the Lippmann-
Schwinger form. In order to recast Eq. (37) into
the form of Eq. (39), we will extend the three-
dimensional integration over all positive values
of the » coordinate. Because of the behavior of
the solution at the origin,? the surface integral

oG oV
}{,,:5 (qz = _G *>dS

ar ar’!

vanishes in the limit 6 - 0.

Also, we will label the physical solution with the
subscript (+). The solution ¥,, satisfies the
physical boundary condition at ¥ -« at » -7 .

Then we obtain

‘I’H)(f‘) = \I/(O) +fG(+)(F7 Fl)H, (T')‘«II“ )(F,)dsr,‘ (43)

which has the desired Lippmann-Schwinger form.
Also, we define a scalar Hermitian product as

W, &)= [Todr. (44)

Now we will study the non- Hermitian character
of the operator H, with respect to the scalar pro-
duct (44).

By integrating the identity

OHE- tH® =V B (¢, &) (45)

for ¢, £, which are two solutions of the wave equa-
tion (12), where

70,0 (1-22) (93, 0,02,
+oVe5-59, 0,

and from the fact that

tim ., 0,6, D= (1-22) amr2(o0,¢ - £,9) | .
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we obtain the difference H — H' by operator meth-
ods:

H-H'= <1_ %)Es(") a—ar - <6(r) a%)'] (46)

It is seen that the effective Hamiltonian is non-
Hermitian only at the origin. This non- Hermiticity
comes from its singular character at that point,
which reflects the singularity present there in the
Schwarzschild space-time.

Furthermore, it can be proved from Egs. (17),
(20), and (23) that the flux through a sphere with
center at the origin is independent of its radius
(R). This means that the current density is con-
served everywhere except at the origin. In other
words,

T Ty, 600). ()

Now we will proceed to derive in a formal way the
generalized unitarity relation.

It is convenient to take for H, a Hermitian oper-
ator, in such a way that the non- Hermitian piece
of H coincides with the non- Hermitian piece of
H'. For example, we take

= 1 [ 3 3\
- 2 — —_— —_—
Hy=- %= 560 <6('r) ar) _| .
It is easy to check from Eq. (44) that this operator

is Hermitian.
From the standard relation

(“Ilow S\I’oﬁ) = (\I,oay ‘I’og)
- 2wk, - kBZ)TaB(k"’) , (48)
which is between the S and T matrices, and the

Lippmann-Schwinger equations (39) and (41), we
obtain the usual expression for the matrix T,

T=H'+H'S ,H', (49)
where we have used the property
Gy - Gy=2md(k* - H,).

We wish to point out that Eq. (49) is the same
formal expression as that in the Hermitian case.
In Eq. (48), ¥,,, ¥, arethe free states of H,
[Eq. (38)] characterized by labels a,B8. In terms
of G,,, Eq. (49) reads
T=H'+H'G T, (50)
T=H'+TG,H . (51)
From these integral equations and using Eq. (49)
we derive the following relation:
T-T'=-2mT6(k* - H)T'
+(1+8 L H) H -HYA+8,H). (52)
This is the optical theorem, generalized for a
non- Hermitian Hamiltonian as our effective Ham-

iltonian.
From Eq. (48) and using Eq. (52), we obtain

SST=1-2mi6(k% - H))(1+$ ,H')'
X (H'-HM(1+8,,H'). (53)
Thus
@=2mi(1+S, H')'H - H'(1+S,H') (54)

can be considered as an absorption operator, which
measures the difference between the unit operator
and the product SS*. The matrix elements of &
between the ¥, states give the scattering ab-
sorption cross section. This can be seen by in-
tegration of the identity (45). Taking ¢ = \I/f*,,
£=1V¥,,,, and using Eqs. (44) and (47), one obtains

(‘IIM,H\II(,,))— (‘Il(*,,HhI/(*)):ZikGabs . (55)
From Eq. (41) and Eq. (55) it follows that
(¥ 0y, @ (o)) =4TRO 5, (56)

which shows explicitly the connection between the
singularity at »=0 and the absorption of waves by
the black hole.

IV. RECIPROCITY RELATION

We consider two wave solutions ¥3(F) and
¥_; (T) whose elastic scattering amplitudes are
f(k,k,) and f (-K’,K,), respectively, and whose
asymptotic behaviors have the form of Eq. (16).

By integrating the identity

Y g HVz— Y3 HY 3, =0

and following lines similar to those in Eq. (34),
one obtains

f&K)=f(-K,-B). (57)

This is the reciprocity relation. A physical
interpretation of Eq. (57) is that the reciprocity
symmetry ensures equality of the elastic scattering
amplitude when source and detector are inter-
changed.

It is readily shown that if the Hamiltonian is
both Hermitian and time-reversal-invariant, the
system is reciprocal.® But although Hermiticity
and time-reversal invariance of the Hamiltonian
are sufficient, they are not necessary for reci-
procity. This black-hole problem, where neither
Hermiticity nor time-reversal invariance [the
boundary condition, Eq. (13) is not time-reversal-
invariant] is fulfilled, is a clear example. Another
sufficient condition (but not necessary) for reci-
procity is the symmetry of the Hamiltonian.” We
shall consider in a formal way the reciprocity re-
lation and the conditions which guarantee it for
our problem.

We take the transpose of both sides of Eq. (51)
and, subtracting it from Eq. (50), we obtain
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T—TT=(1+8,,H)TH - H'T)(1+$,,H'). (58)

The matrix elements of Eq. (58) between the free
functions are given by

(Yoo, (T= TT)Wog)= (¥ yqy H = H' ¥ () -

(59)
If the condition
(¥ H = H',,.)=0 (60)
holds then
(Yous T¥og) = (Yous TT ¥o5) - (61)

In order to obtain the reciprocity relation, it is
convenient to transform the right-hand side
of Eq. (61) by an antiunitary operation @:

Y=y,
QH=H"Q.
Equation (61) reads
(oo T¥08) = (¥ogq T‘I’ono) ’

which is the reciprocity relation. Condition (60)
is also expressed as

(T eyar H' ¥ (1yp) = (¥ (yp0 H' ¥ (1)) - (62)

For «o =E, B:l.c.', and for @, the operation of com-
plex conjugation, Eq. (62) gives formula (57). In
our case, condition (60) holds, because from Eq.
(46) and Eq. (20)

4r .
(¥, H - H’)\If(*))—z S Um0 -7 )WIR,R,]

=0. (63)

Thus, reciprocity is derived as a consequence of
the equality of the matrix elements of H and HT

[Eq. (63)], although H is not a symmetric operator.

V. ELASTIC SCATTERING

In order to obtain the elastic scattering ampli-
tude, we separate explicitly the Coulomb tail of
the effective Hamiltonian. Thus, we take

2,
Hy=-V2_ Zkrrs : (64)
Then
H’=V-(T—sé,a,>
v
2 Vs 1=2v/r
A vy (65)

For this case, the Green’s function of Eq. (35) is
the Coulomb Green’s function, whose asymptotic
behavior for » -« is®

el‘kr+£krsln2kr

G, F)=- FF7), (66)

where

e,
=tku, °r

F@, 7= e TAZIRT)

X F(ikrg; 1;ik(r' + ¥ +0,)) .

F(a;v;Z) is the confluent hypergeometric function
of the first kind, and

a,=%/r.
The solution for the homogeneous equation (38) is
¥ oy = €™/ 2 (1= ikr )ei**
X F(ikrg; 1;ikr(1 - cosb)) (67)

In order to find the elastic scattering amplitude,
we are interested in the behavior of the solution
of Eq. (43) at 7 — =,

Using Eq. (66) and the asymptotic behavior of
Eq. (67), it follows that

O =10~ [ ¥ EEOISENEY, (68)
o
where

f0(9)= Y p2ikrslin sin6/ 2-areT (ikry)] (69)

2sin?6/2

is the scattering amplitude for H,. We compute
now the first-order contribution to f,(6), taking
¥(F) = ¥, (T) in the exact expression for f,(6) given
by Eq. (68). This is a high-frequency and small-
scattering-angle approximation. For Egs. (65).
(66), and (67) we evaluate the integral (68) for
that case. We obtain (see Appendix B)

1602 M2 (15m)% M2 81 (2M)3/2 1r>‘/2
2 _ 15 Il S N
O =+ # 7+ 5 e (k

81 /m\¥/?2 157\ 1
+—1—,Tg(-,;> (2M)3/2<1 +—§4—>+-4—k§. (70)

This expression for the differential elastic
cross section shows the well-known Rutherford
behavior for 6~ 0 plus corrections. It can also be
pointed out that in the 2 -« limit, expression (70)
gives the optical geometrical result.®
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APPENDIX A

We consider the asymptotic behavior for » —«
of the partial-wave expansion Eq. (20). It is
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,--un

_k_ Z 2l + I)P,(COSG)[(— 1)xe-i<kr+krs 1n2k7)
1=0

- eziﬁlet(knkrs lnzkr)] ,

(A1)

where we have used Eq. (24').
For +0, Eq. (Al) can be written as

~ _7'_ - 1 ,=i(kr+kr, In2kr)
v T IZ; 2!+ 1)P,(cos(9)[(-1) e s

+f(9) pi(krekrs lnzkr)] .
‘T,

(A2)
On the other hand, we consider the function
etkreos® Z( ikr , 1,ikr(1 - cosb)),

where Z stands for the confluent hypergeometric
function of the second kind.
For 7 - =, the asymptotic behavior is'®

ikrcosd 7~ oTRYs/2 pilkrcosf-krg 1nkr(1-c086)]
re o

x [1+o<%)]. (A3)

By using the integral expression of Z, we write

gikrcoso Z(ik'rs, 1,ikr(1- cosb))

1 f‘” : : ;
= tirrgmL (1 4 f)-ikTs gikrt Hikr(et) gy
TaEry ) L A+

e

(A4)

With
e'#reo%f = 5™ (21 +.1)i%,(k7)P,(cos6) ,
1=0
where j,(k7) is the Bessel function, the right-hand

side of Eq. (A4) is equal to

i i'(21 + 1) P,(cosb) e, (k7) ,

1=0

where
G;(k'r) 1kr )f t'l“‘k's (1+t) ikrs e“’"‘],(kr(1+t))dt

(A5)
We evaluate @,;(k7) for k¥~ and obtain

e 7( iky  1,ikr(1 - cosf))

PR
=== (2l +1)P,(cosb)(~1) e"*"s’?
2ky g

x[1+0<%>] , (A6)

Comparing Eq. (A6) with (A3), one sees that

ei[lzr cos=k7g Ink7(1-cosd)]

=LT E (_1)1(21 +1)P,(COSG)€“””"3 1n2kr) .

1=0

By replacing this expansion in Eq. (A2), we ob-
tain Eq. (16) (Sec. II).

APPENDIX B

By using known properties of the confluent hypergeometric functions, the integral in Eq. (64) can be

written as

fom £F(’?,r’)k2%[— (172-,\) F(1)+2(1 - ikr)(1 - coso) (1+ >F(2)

where

F(A)=F(A -ikrgA; —ikr(l - cosé’)), forA=1,2,3

4,7 =7'[cosh cosh’ + sinf sinb’ cos(d - ¥’)].

Using!®

f e 2" F(a;y; p2)F(a’; y; p'2)dz = Ty "7 (= p)™™ (A = p')®
(]

the first term of the integral (B1) is equal to

ikrs[l(a)+d—il(a)] ,

a=1

where

- (1 -ikry) (

iky

>(1_cose)2F(3)]e'”' 5, (B1)

( ¥R pl;f; p'))

(B2)
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I(a)= f [~ik(1+ @) #*"s (s = p’)*7s L F (ikrs, 1-ikrg;1;
()

with
p=ik(1+cosfcosé’ +sindsind’ cosy’) ,
p’=-1ik(1 - cos?d’),
s—p=—ik(l+a),

s —p'=ik[1l - @ - cosé’(1 - cosh) + sinf siné’ cosy’].

TS———i%?S——[)T» sin9’d9'd1>’ ,

The second and third terms of the integral (B1) can be reduced to an expression similar to that of (B2).

By means of the relations!®
F(a,B;B;2)=(1-2)",

L) @-a)

F(a,B; 7;2)=————F(ﬁ)r(7_ )

(—1)“2""F<a, a+l-y;a+l- 3;%)

T - £ (—1)“’2"’F<B, B+l-y;B+1-a; %)

T(@TGH-8H

and using the stationary-phase method, we obtain the asymptotic expression for f(6) for high frequencies
and small angles. The modulus squared of this amplitude is given by Eq. (66).
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