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Probability distribution for radiation from a black hole in the presence of incoming rarhation*
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Using only results from quantum field theory in curved space-time, ave derive the formula for the
probability that k particles in a given mode ~ill emerge from a Kerr black hole if j particles in that mode
are sent in at late times. Our formula agrees ~ith the formula previously derived by Page and by Bekenstein
and Meisels using other arguments. In particular, this proves that a Schwarzschild black hole responds to
incoming radiation exactly as a blackbody does.

It is now well established that, as first shown by
Hawking, ' spontaneous particle creation in the
strong gravitational field outside a Schwarzschild
black hole results in a steady flux of particles at
large distances from the black hole with an exactly
thermal spectrum. " Thus, a Schwarzschild black
hole '*emits" radiation just like an ordinary black-
body at temperature T =h~/2ksw, where x denotes
the surface gravity of the black hole. This analogy
between black holes and blackbodies is particularly
striking in view of the close analogy, noted prior
to the quantum calculations, between the laws of
thermodynamics and those of black-hole mechan-
ics." These analogies have suggested a new law
of physics —the generalized second law of thermo-
dynamics' —as well as a number of other intriguing
ideas.

However, the fact that a Schwarzschild black hole
spontaneously emits particles in exactly the same
manner as a blackbody does not, of course, imply
that it must continue to behave just like a blackbody
in the presence of incoming radiation. Using ther-
modynamic and information-theoretic arguments,
Bekenstein and Meisels' recently obtained a formu-
la for the probability that k particles in a given
mode will emerge from a Kerr Mack hole if j are
incident. Their formula agrees with a formula
derived by Page' for stimulated emission from a
hot amplifier, i.e., from a collection of oscillators
at temperature T. Thus, in particular, if the Bek-
enstein-Meisels formula is valid, it implies that a
Schwarzschild black hole does indeed behave exact-
ly like a blackbody even in the presence of incom-
1ng radlatlon.

The Bekenstein-Meisels formula was derived
using maximum-entropy arguments as well as
other ud Ao& assumptions concerning the black-hole
eInission process. On the other hand, in quantum
field theory, the complete information concerning
the state of the system is contained in the quantum
state vector. A formula for the "out" state vector
corresponding to a situation where j particles are
incoming was derived by one of us' using quantum
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(I jftj )„,.„
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where 8 is the classical reflection amplitude for
the mode, and

x = exp[ —m((u —mn)/a], (2)

where 0 is the angular velocity of the black hole.
We shall now calculate P(k j j) from the quantum
"out" state vector and show that the result agrees

field theory alone. In Ref. 9 a forInula was derived
for the expected number of outgoing particles when

j particles are sent in. Howevex, the detailed
probability distribution P(klj) was calculated only
for the simple case of a superradiant mode in the
limit a'-0.

In this paper, we shall calculate P(kjj ) for all
modes of a Hermitian scalar field from the quan-
tum state vector and show that it agrees with the
previously derived formula of Bekenstein and Mei-
sels' and Page. ' Thus, the additional assumptions
which entered the Bekenstein-Meisels derivation
can be justified from quantum field theory. The
analogy between black holes and blackbodies is
confirmed.

We consider a Hermitian scalar field in the Kerr
spacetime geometry. We shall follow the notation
and conventions of Refs. 2 and 9 except that we
will use the notation rather than the index nota-
tion to denote symmetrized tensor-product states.
We wish to consider the effect of sending in j par-
ticles at late times in the state y corresponding to
a wave packet with angular quantum numbers I, m
and frequencies peaked about v. (The effect of send-
ing in particles at "early times, "i.e., during the col-
lapse phase, was treated in Ref. 9.) The formula
given by Bekenstein and Meisels' for the probabil-
ity that k' particles in this mode will emerge is



with Eq. (1).
Let p denote the outgoing-particle state associ-

ated with the mode y; let 0 denote the correspond-
ing "late-time-horizon state'" and let 7 denote the
corresponding "early-time-horizon state" con-
structed in the manner described in Ref. 2. Consi-
der' fix'st the cRse of R Donsupex'I'RdlaQt mode.
Then we have2

+0=% 0 + „Se
where the tMTo-particle stRte ~ 18 glveD by

e = 2x(XSr), (5)

where &=I;p+r&, where t and x are the classical
transmission and reflection amplitudes for a wave
packet with the same frequency and angular depen-
dence Rs p but incoming froIQ the pRst hox'lzon of
the vacuum Kerr solution. The time-reflection
symmetry of the Kerr solution implies the follow-
ing relations between t, r and T, 8:

where T and 8 denote the classical transInission
and reflection amplitudes for the Inode y, and C
and D are the operators' describing classical scat-
tering, from which the quantum 8 matrix is con-
stx'ucted.

The formula for the "out" state vector describing
spontaneous emission in the mode of interest is'

(5b)

For nonsuperradiant modes we also have jt j'+ jrj'
= jTj'+ jfij' =1. This implies that f= T and r
= -TR*/T('. (For superradiant modes jrj' —jf j' =

j ftj'
—jTJ' =1, and we obtain t = Ta-nd ~=-T&+/T+. )
It is easy to check that the normalization constant
f(I' in Eq. (4) with e given by Eq. (5) is gj' = 1-x.

From Eq. (2.14)of Ref. 9, the state vector describ-
1Qg emlsslonwhen) pRl tlcles lQ the stRte +Rr'e 1Qcl-
dent is

III("((r( —('(D w)I) +„
where a denotes the "in" creation operator and &

and & denote the "out" annihilation and creation
operators. Using Eqs. (3), (4), and (5) we can ex-
pand the right-hand side of Eq. ('I) as a sum of

n-0+j
states of the form rSp cr.

The probability p(Aj j) that & particles in the state
p will be seen to emerge from the black hole is
given in terms of 4, by

P(kj j) =g j(u, ff j4)j',

where j}t,H) denotes the tensor product of a state
desc12)ing ~ pRI'tlcles ln the stRte p with R hox'l
zon state" H, and the sum runs over a complete
orthonormal basis of horizon states.

From the above formula for 4& we find

Where any binomial coefficient (,) =p!/q!(p- q)! is understood to be zero if q & 0 or q & p. Expanding the
square in Eq. (9}, rearranging the sum, and using the relations between f, r, T, and 8, we obtain

[-j&j'/(I - jf~j')]"'j!A'! ~ n!(n- ~+i)!
m!I!(j—I)!(0-l)!(j- )!m( !t }!m~ -( n0 )+!m( n0 I)!+'

Writing u =@jftj', we recognize the sum over n as the series expansion of

(k-m)!u '(d~ '/du' ')[u' /(1 —u)' "J.
Writing y =1 —u, binomially expanding u =(1-y) ", and performing the differentiation term by term we
obtain

(11)
where her'e and in the following the sum ranges over' all non-negative values of the' summation variables
such that all the integers in the factorials are non-negative, and where
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(12)

Our task now is to show that this rather complicated finite sum is, in fact, identicalto Eq. (1}.Tofacili-
tate comparison we change independent variables from (R(' and x to u and &, defined by

(13b)

In terms of u and &, we have

1!tp/{1- (lip) =[u+(u+ue)'~']/(l-u).

Sllbstl'tlltillg 'this var1able cllRIlge in Eq. (11)Rnd blllolnlR!!y expRlldillg [u+(u+uv) ] i we fllld

P(kij) =&Z.Z Z.Z.
~r r ~ klgl(k+j-m-l —P)l(m+l)l(-1)"+'+~u '(1-u)~{u+uv)'~'

plmlll(k-l)! (j -l}!(k-m- p)l(j -m-p)! (m +I —i)li!

The sum over l ean now be rewritten as

~( ml+)l(j k+- ml-P)lk! (-1) I d' ~, ~
d'

~1 {m+1 —i)!(j - l)!{k- l)l ll dp' ~ da'

i!ml (-1)'(k-m- p)! ( j-m- p)! k!
, ql(i-q)!(q-m-p)l(j-q)i(k-q)i(m-i+q)l '

(Tile fll'st equRlliy 111Ry be vel'lfied by blnomlally
expanding and then differentiating, while the sec-
ond equality follows by differentiating using the
Leibnitz rule. ) When this replacement is made, a
number of caneellations in the faetorials occur,
and the sum over P ean be recognized as the bino-
mial expansion of [1-(1-u)]' =u' . Thus, we
obtain

P(k j) =K~ k!jl u' '(u+uv)'~'(-1)'~ q! (k-q)! (2q-i)! (i -q)! ( j-q)l
(2q —i)!(-1)x Y'

+„(m-i-q)!(q-m)! '

The sum over m can now be recognized as the
binomial expansion of (1-1}"', which vanishes
unless i =2g. Thus, rve obtain

k!j!(1+v}'
P(ki j) =E Z

Blnom1ally expanding (1 + &) ~ we get

and equating the coefficient of e~, one can prove
the identity

Ill lS( g,g)
kl( j-s)! (k+j- s)!

q'(k-q}'(j -q)'(q -s)' j.(k-s)!

(21)

This shows that

~ (k +j- s) l I"
, s!(k —s)!(j—s)! '

Recalling tile deflnltlolls of K Rnd 'U, Eqs. (12) Rlld

(13b), it now can be easily seen that Eq. (22) is, in
fact, identical to the formula of Bekenstein and
Meisels' and Page' [Eq. (1)].

For the case of a superradiant mode, a number
of modifications must be made in the above calcu-
lation of P(k(j). The state vector describing spon-
taneous emission is still of the general form given
by Eq. (4), but now we have [see Ref. 2, Eq. (5.4)]

miso, &) mi!IQ,A)
kl jf&P(k( j)=ff

(q —s) lslql(k —q) l( j—q)!
(19)

Finally, by binomially expanding both sides of
the equation

(1+~)'(1+ II)' '=(1+~)'" '

Furthermore, in place of Eq. (3) we have

Dy = gc7.

From Eqs. (7) and (S) we now obtain

(24a)

(24b)

(25)



Expanding the square and performing the summa-
tion over n in a manner similar to the nonsuper-
radiant case, we again get precisely Eq. (11)
which, of course, may again be reduced to Eq.
(22). Thus, the validity of the formula of Beken-
stein and Neisels and Page is proven for superra-
diant modes also.

We note that Bekenstein and Meisels obtained
their formula for P(&~j) hy considering a black
hole in equilibrium with incoming thermal radiation
and assuming that the probability distribution in
that situation is the one that maximizes the entropy

subject to a constraint on the expected number of
outgoing particles. Hence, by reversing the steps
of their argument, it follows that their maximum-
entropy assumption is indeed valid. Of course, if
the incoming distribution is not thermal, then the
outgoing distribution will not be the one of maxi-
mum entropy.
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