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Constraints on the gravitational constant at large distancese
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D. R, Long and others have speculated that the gravitational force betvreen point masses in the Newtonian

regime might not be exactly proportional to 1/r 2. Distance-dependent deviations from the 1/r ' law can be

represented by a distance-dependent gravitational "constant, " 6(r). Long has summarized the experimental

evidence rvhich constrains 6(r) to be very nearly constant for 5 cm g r g 1 m. This paper presents

observational evidence for constancy in the range 103 km g r & 10 km, and points out that the value of
6(r)= 6, in this range has not been experimentally determined. Constraints on 6(r) in the intermediate

distance range 10 m g r & 1 km are so poor that one cannot rule out the possibility that 6, differs greatly

from the laboratory value 60. Models of the earth and sun are used to argue that 6, differs from 60 by not
more than -40%. Methods of improving the determination of 6, are suggested.

I. INTRODUCTION

It is widely recognized that the univex'sal constant
of gravitation, G, is the least mell-determined
fundamental physical constant; indeed some have
questioned whether G is RctuRlly constallt. The
usual concex'n has been the time dependence ' of
G, but me considex' here whether G vax'ies with
distance. We investigate the hypothesis that the
gravitational force betmeen point masses in the
Newtonian regime (GM/c'r « I) departs from an
exact invex'se-square lam; i.e., me inquire whether
the quantity

G(r) = S„„„r'/M-m

is a constant function of distance. Several authors
have provided theox'etical bases' ' fox variations
in G(r), and recently Long' has presented experi-
mental evidence for a departure from the inverse-
square lam of gravitation.

We shall consider a gravitation constant„G(r),
mhich is a functioD only of the distRDce between
tmo gravitating bodies, but not one which is a func-
tion of position in spacetime (e.g. , the gravitation-
al constant determined by Cavendish experiments
in the Brans-Dicke theory of gravity'). Nor are
me concerned mith the mell-established relativistic
post-Newtonian corrections (of order GM/c'r) to
Newtonian gravity which are better understood
mithin the framework of relativistic metric the-
ories of gravity' rather than as manifestations of
a variable G(~).

There are hvo general sources of data useful
for determining the behavior of G(r): laboratory
gravitation experiments and celestial mechanics.
Laboratory experiments (see Sec. IIA) are of
relatively high absolute accuracy; that is to say,
all quantities on the right-hand side of Eq. (1) may
be accurately measured. We shall refer to the
approximately constant value of G(r) at laboratory

distances as Go. Qbsex'vations of the motions of
artificial and natural members of the solar system
(see Sec. IIB) demonstrate that G(r) is constant to
high precision for 103 km & x & 108 km; me shaQ
refer to this approximately constant value of G(r)
RSQ.

While the product Q, M has been observationally
determined with gx'eat precision for many bodies
in the solar system, the value of G, can be ex-
tracted only if the mass M of one of these bodies
is known. The masses found in standard astro-
physical reference morks cannot be used for this
purpose since they are obtained from G, M on the
assumption that t", =go.

After discussing the experimental and observa-
tional evidence for the constancy of G(r) in Sec. 11,
me derive upper and lomer limits on G, . In Sec.
III, 6, is constrained by geophysical arguments,
and in Sec. IV by considerations of solar struc-
ture. In the final section me suggest methods
which might be used to determine G, more pre-
cisely.

II. EXPERIMENTAL AND OBSERVATIONAL
CONSTRAINTS ON G(r)

A. Laboratory experiments

During the last three centuries many attempts
have been made to determine the value of Newton's
universal constant of gxavitation, Q. The earliex
attempts used parts of the Earth (e.g. , mountains)
as gravitational sources, Rnd their results typical-
ly agree with the modern value to within a factor
of 3. ' EKperlments of this type are plRgued by
unseen and unmeasux able local density inhomo-
geneities in the Earth's crust. Later laboratory
experiments which used carefully constructed
gxavitational sources proved capable of relatively
great precision" (1-0.1%). Long" has compiled
the results of a number of the more precise labor-
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atory determinations; while the data are consis-
tent (at the SII level) with a constant value of G(r),
they do not rule out changes of up to 1% vrhen v

varies from 5 cm to 1 m. More recently, Ionge
has claimed positive detection of a variation in

G(I"); this result is, however, unconfirmed.
For purposes of exposition and analysis we shall

adopt a specific fox m for the gravitational poten-
'tlRl V(t ) R't R distance r fl'0111 R point. soul'ce:

V(r) = -(G.IIII/I")(I +ac "") (0 &-1) . (2)

We shall refer to ~ Rs the "amplitude" of the vari-
ation and to p,

' as the "range. " The form of Eq.
(2) has been suggested theoretically' ' and the
specific value z =-,' has been pxoposed. " The
gravitational force which results from Eq. (2) is

y „,„=(G,Jtfm/r') [I+Ir(I+qr) e ""j-

Note that when ilr «I, G(r) =G,{1+n) and when

iII' » 1, G{I')=G„ this is consistent with our defi-
nition of Q, in Sec. I since w'e shall later require

&&10 km. If we Rlso require p, &10 m%e hRve

G,=G, (1+0) and we are confronted with the inter-
esting possibility that G,v G, . The form of G(r) in

Eq. (3) is consistent with the laboratory data dis-
cussed above if p '&(:50m('~' m; note that even )a)
—1 ls avow'ed if p, &10 m.

Unfortunately, conventional laboratory experi-
ments are inherently insensitive to variations with
range p, '& 10 m„so me turn to the field of celes-
tial mechanics to determine G(I") for larger dis-
tances.

B. Celestial mechanics

Our discussion of large-scale gravitation vrill be
confined to the solar system where, in recent
yearsy prec1slon tracklDg of plRI1ets Rnd spRce-
craft has made possible many imyortant tests of
gravitational theories. Much larger gravitational

systems exist, of course, but the masses and mass
distributions of these systems are so poorly
known' that @re can say only that gravitational
forces appear to exist at distances up to a few Mpc
wiih G(v) wlthln all 01'del' of magn1tude of ca.

Orbital precession provides the most sensitive
test of the constancy of G(r). It is well known that
Rn hlverse-square fox'ce 1Mv leRds to c1086d el-
llptlcRl ox'bits and that Rny deviation from such R

law will, in general, cause orbital precession.
This is R secular effect, so even a small vax'iation
in G (r) becomes detectable after a long period of
time. In the case of a variable G(r) we may use
standard techniques of perturbation theory to cal-
culate the precession of a bvo-body orbit due to a
perturbing fox'ce

SF = ac(r)-Imr/ra',

where 5G(I') =G(r) —G(a) and a is the semimajor
axis of the unperturbed orbit. The angular pre-
cession 5(d per orbit is given, to first order in
tIG{r), by"

=[ea( )| ' I sa(r&cos au,

where x is given by the unperturbed relation for an
orbit of eccentricity e: r =II(I —8')/(I+8 cosa).
EKpRIldlllg G (f') ill R TRylol' sel'les yields Rll Rp-
proximate result useful fox smaH e:

5v ac'(a)
2G(.)

"'
where the prime denotes differentiation. It is
evident from the form of Eq. (4) that the preces-
sion test is less sensitive to oscillatory variationss
lll G(t') tllRII to 1110110'tonic VR1'IRtloIIS ovel' the orb1t.

Planetary orbits are observed to precess, but
almost all of the physical precession is accounted
for by the purely Newtonian mutual perturbations
of the planets. The residual rates of precession
(observed rate minus Newtonian rate) for Mercury,
Mars, and Icarus are shown in Table I (the ob-
served rates are obtained from Hefs. 15-18).

TABLE I. Rates of post-Newtonian apsidal precession.

Periastron
(km)

Apastron
(km) Predicted a

Sun
Mercury
Mars
Icarus

0.5 &10
2.3 X10
0.3 x10'

0.7X10'
2.Q ~10
3.0x10'

7.98x10 '
2.0 ~10 '
8.7 ~10 '

8.00 + 0.04 X10
2.0 +0.9 &&10 '
8.2 +0.7 ~10 '

' Calculated from the general-relativistic formula 6(df2~ =3&Moftc2a(1-e )],
Assumes a solar quadrupole moment appropriate for uniformly rotating Sun; this is ob-

servationally supported by Ref. 16.
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TABLE II. Planetary ma88 determjnatjons.

G mo/6 M~ G Mo//G(x)

4x M&

1x10
3x 10

'See Ref. 21. See Ref. 22. c See Ref. 23. d See Ref. 24.

These "post-Newtonian" precessions are in good
agreement with the predictions of general relativ-
ity" (see Table I), so we shall adopt the point of
view that variations in G(r) can be related only to
differences between the observed and predicted
rates of precession. According to Eq. (5} the
agreement between the observed and theoretically
predicted motions rules out variations in G(r)
larger than a few parts in 10' for 0.3x10'km&r
& 3&10' km. Similarly, the observed rate of pre-
cession of the orbit of the binary pulsar (see Table
I, Ref. 20) provides evidence that G(r) is constant to
withinafewparts in10'for 7x10'km& r&3x10 km.

The strictest limit on variations in G(r) which
we have obtained is the above limit of rG'(r)/G(r)
~10 ' for distances r -10' km. %e shaH denote
this nearly constant value of G(r) as G„and in
the remainder of the paper we ~elate G, to G(~)
at smaller distances.

Planetary mass determinations provide evidence
for the constancy of G(r) down to distances r 3-
&10' km. These determinations are actually mea-
sures of G(r}M, where r is the distance between
a planet of mass M and a body whose carefully ob-
sex'ved motion is perturbed by the planet. For
historical x'eRsons the mRsses Rre reported Rs
fractions of the solar mass; the commonly quoted
inverse mass is thus m ' =G, Mo /G(r) M [G,MO

appears here because the value of G(r)Mo is de-
rived from analyses of planetary orbits with radii
of order 10' km]. In Table 11 we present two mass
determinations each for the three inner planets.
The first value (obtained from Ref. 21}of each
pair was derived from perturbations of bodies at
distances of -10'km, so G(r) = G,. The second mass
for the Earth-Moon system (Ref. 22) was derived
from lunar laser-ranging data, so x is the Earth-
Moon separation, which is roughly constant. Mar-
iner 10 tracking data. provided the final mass de-
terminations (Refs. 23 and 24). In these cases, the
minimum distances between the planets and Mariner
10are taken as r since most of the change in the space-
craft velocity occurs in the x'egions near the plan-
ets." The fractional differences between the mass-
es of each pair are equal to [G(r) —G, ]/G, and are
listed in Table II.

It would appear from the x"esults of Tables I and
II that G(r) =G, to within 0.03% for 104 km& r &3

x10' km. Long" s' proposed form

G(r) =G, [1+0.002 In(v/I cm)],

which was fitted to his determinations of G(r) at
lRbox'Rtox'y distances» clearly cannot continue to
hold for x &10~ km since it disagrees with the ob-
served high degree of constancy of G(r) at these
larger distRnces.

The absence of gravitational data near the sur-
faces of celestial bodies with radii less than 10'
km precludes direct determination of G(r) at
smaller distances. It is possible, however, to in-
fer the behavior of G(r) at these distances, since
the mass within 10' km of a point just outside the
surface of a large body contributes significantly to
the gravitational acceleration there. It is helpful,
in discussing the behavior of G(r) at these dis-
tances, to use the proposed potential given by Eq.
(2}. The gravitational acceleration g at an altitude

h above the surface of a, sphere of radius' and
uniform density p is then

g(h) =[G,M/(R +h)']

x [1+a/(x)(1+x+ph) e ""]

with f (x) =3e ' (x coshx-sinhx)/x' and x = pR.
%hen p, »R and p,

g(h) =G.M(I +~)/(R +h)',

aJld when p, «R Rnd g «pg»

g(h) = [G,M/(R +h)']

x [1+3ae ""(x +Q)/2x'] .
From the above, it is clear that the values of o.
which are consistent with a given observation
depend strongly on the range p.

' when it is smaller
than either R or 5, and only weakly when the range
is much greater than both R and&.

In Fig. 1 we present upper bmits on (o.(, as a
function of p. , which are consistent with the mass
determinations for Venus and Mercury presented
in Table II. These limits are obtained by equating
the uncertainties in [G(r) —G, ]/G, to the term
)n~f(x)(I+x+nh)e "" from Eq (6), where. h is
taken to be the minimum altitude achieved during
the encounters. ~ It is evident from Fig. 1 that if

'&102 km the form of G(r) implicit in Eq. (6} is
consistent with the observed constancy of G(r) even
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uncertainty in the gravity measurements should be
-0.1%. The observed values" do agree with

g =G, M/r' to within 0.1% (r is the distance to the
center of mass), so we infer that

~o~ f (x}(1+x)~10, x = p,R .
This limit on

~ a ~
is also shown in Fig. 1 as a, func-

tion of p, .
Note that the limits derived here together with

the limits in Sec. II A cannot restrict
~
o.

~
&1 if 10 m

'&1 km. Thus, it is entirely possible, in the
face of all the evidence favoring constancy of G(r)
presented thus far, that G, differs significantly
from Gp. However, if we could estimate the mass
of some cosmic body with a measured value of

G, M we could estimate G, directly and compare it
with G„we address this problem in the next sec-
tion.

FIG. l. Upper limits on the amplitude
~
n

~
of the

variation in G(r) [see Eq. (2)] as a function of the range
p-1

when
~ z I

= 1. The limits on
~ o, ~

can be significantly
improved for shorter ranges only if Q is reduced.

C. Lunar surface gravity

Fuji4 has pointed out that surface gravity mea-
surements provide strong constraints on ~o. ~

when
the range p

' is small compared to the radius. "
We feel that measurements of the lunar surface
gravity provide the best limits when p, '&10' km.
The density is probably nearly constant throughout
the moon, s' so Eq. (4) should provide a good ap-
proximation to the surface gravity:

g = (G, M/R ) [I +~ (1 +x)f (x)] .
This is expected to be only approximately correct
for several reasons:

(i) Local density inhomogeneities generate local
gravity anomalies" as large as 0.1/0.

(ii) The lunar surface is not exactly spherical.
(iii) The center of mass is offset from the center

of figure by a distance d=10 R.
Problems (i) and (ii) can be handled by averaging a
number of measurements at dispersed sites and

applying the free-air and Bouger corrections. "
However, all the available surface gravity mea-
surements~ are on the near side of the moon and
will be systematically affected by problem (iii).
The fact that the center-of-mass offset could be
caused by many different nonspherical density dis-
tributions, each of which may cause some system-
atic gravity anomaly of order ag/g=d/R =10 ' on
the near side of the moon, means that the a priori

III. THE DETERMINATION OF G, FROM

GEOPHYSICAL CONSIDERATIONS

The mass of the Earth is conventionally deter-
mined by measuring G, M, setting G Gp and
solving for M+. In this section we shall estimate
Me directly and solve for G, . We estimate M by
the use of simple density distributions in the
Earth's interior. Very detailed models of the Earth
have been developed by geophysicists using a
wealth of seismic data. " We cannot use these
models to estimate the mass of the Earth, how-
ever, because they are always constrained to have
a mass of G, Me/Go. This "known" mass of the
Earth is a very important constraint on models,
because there is no accurate way currently known
of estimating the density distribution from seismic
data alone.

We shall attempt only crude estimates of M.
Our models of the Earth are required to obey only
the following constraints:

(i) The density must decrease outward.
(ii) The dimensionless moment of inertia, I*=I/—

MR', must equal 0.33, the observed value for the
Earth.

(iii} The central density, p„must be no greater
than 15 gcm '.

(iv) The surface density, p„must be no less
than 3.3 gcm '.
While shear stresses in solid regions may cause
(i) to be violated in the real Earth, the expected
strength" of the material is too low to permit
significant violations at depths greater than -100
km. The density constraints are obtained from the
observed seismic velocities in the Earth's central
and outer regions with the use of semiempirical
relations~'37 between seismic velocity and density.
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For a given composition there is a one-to-one re-
lation bet|veen seismic velocity and density; for a
given velocity, the higher the mean atomic number
of the material the higher the density. All ele-
ments with Z greater than iron are rare, "and if
we assume that the Earth's core is mostly iron
we obtain the upper bound on the central density
of -15 gem from the observed seismic velocity
in the core. It seems likely that the mean atomic
number of the material in the outer mantle of the
Earth is close to that of the rocks in the crust;
with this assumption, it follows that p, -=3.3 gem '
(we ignore the crust, which is the very thin outer
layer with a density of -2.6 gem ').

We now derive the minimum and maximum mass-
es which are consistent with constraints (i)-(iv)
above. It follows directly from (i) that p ~p, and
thus M ~ —,xp, R'; but if p, were as small as p„ I*
would be 0.40 instead of 0.33. In order to reduce
I* to the observed value we must add mass to the
central region of the model. The amount of addi-
tional mass is minimized by concentrating it in the
central region so that its contribution to I is mini-
mized. Thus, the density distribution which mini-
mizes M consistent with the stated constraints has
the form p =p, for x less than some radius R„and
p =p, for r &R,. The density distribution which
maximizes the mass is obtained by an analogous
argument: First let p =p, throughout, then reduce

p to p, in the outer region to reduce I* to the re-
quired value while minimizing the reduction in M.
Density distributions of this type have

M =
3 wpR (1+as ),

I = —,~ vp, R '(1+as '),
where s =R, /R and a =(p, -p, )/p, . ln order that
such a model have a particular value of I*, we re-
quire that

a = (1-2.5I+)/[s'(2. 5I*—s')] .
For each value of a & (2/3I*)'I'(1 —2.5I*)/I* there
are two values of s which satisfy Eq. (I); they
correspond to the minimum and maximum mass
models introduced above. With our chosen values
of p„p„and I* we find that 0.76&M~/MD&2. 0,
where M, =G,M~/G„and thus

0.50&G, /G, &1.32.

In the following section similar constraints are
found thr ough the use of solar models.

IV. DETERMINATIONS OF 6, FROM CONSIDERATIONS

OF SOLAR STRUCTURE

While the solar-neutrino problem continues to
remain an embarrassment for solar modelers, "
Newman and Fowler~ have shown that elementary

requirements of hydrostatic equilibrium, energy
conservation, etc. , can make considerations of
solar structure a powerful tool for constraining
hypothetical deviations from the laws of physics
as observed in the laboratory or inferred from
terrestrial measurements. Ulrich" has considered
the possibility that the gravitational constant on the
solar scale may differ from that of the laboratory,
and has shown that solar models of somewhat re-
duced neutrino-counting rate can result. We ex-
tend Ulrich's work to show, in the manner of New-
man and Fowler for the proton-proton rate, that
values of G, very different from Go are incompat-
ible with solar observations.

A solar model is a model of a solar mass star
which attains the solar luminosity and the solar
radius after evolving for to =4.~&&09 years fro
the zero-age main sequence. In an effort to quench
the troublesome solar neutrinos, many solar mod-
els have been constructed in recent years with
some input parameter altered. In general the re-
sult is a star which does not reach solar conditions
at solar age. To recover solar conditions the in-
itial luminosity must be adjusted by altering the
primordial composition, while the radius is ad-
justed by changing the mixing length parameter of
the convection theory until I.~,RO is again achieved
at to.

We have constructed a sequence of solar models
with the product |',M fixed at its observed value
GOMO (Mo denotes the conventional value G, M/G,
of the solar mass}, but with G, /G, = (M/M„. ) ' al-
lowed to vary, from model to model. In our mod-
els decreasing G, /G, (increasing M/M. ) depressed
the central temperature and density, and the lumin-
osity. The initial mean molecular weight had to be
increased to compensate for this effect, as Ulrich4'
found. Increasing G, /G, (decreasing M/Mo ) ele-
vated T„p„and the luminosity, and thus the initial
mean molecular weight had to be decreased to re-
cover solar conditions at to. Varying G, had little
effect on the radius, so significant adjustments in
the mixing length parameter were not found to be
necessary. For each value of G, /G, the model was
reevolved from the zero-age main sequence to to
after adjusting the initial composition.

The initial helium mass fraction, Y„required
to compensate for various values of G, /G, is
shown in Fig. 2. By beginning with a star of essen-
tially pure hydrogen we could accommodate G, /G,
as large as 1.85; larger values of G, produce I, (f ~}
&L, o and are therefore excluded. While one might
think that it would be very difficult for the sun to
be powered by hydrogen-burning nuclear reactions
with a very small hydrogen mass fraction, the very
large solar mass required for G, /G, «1 allows the
total amount of fuel available to be adequate. ~'
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I I I ) t I i I gued that the helium mass fraction is universally~9
in the range 0.22 to 0.34; this implies that 0.75
«G, /G, «1.06. We consider it quite likely that 0.1
& 7'0 ~0.4 in the protosun. If so, then our solar
models constrain G, such that

0.6 «G, /Go-«1. 5.

V. DISCUSSION

FIG. 2. Initial helium mass fraction To needed to com-
pensate foI' tI'ial values of G /Go.

The predicted neutrino-counting rate for the ~7C1

eKpe1'1111ellt dec1'eases w1th 1'edllced G~ /Go —as
Ulrich41 found —for values of G, /G, near 1. For
low G, /G, the helium mass fraction is so large
that PP II and PP III completions of the proton-
proton chain begin to dominate, and Pay again
rises. The smallest neutrino-counting rate
achieved was about 2.3 solar neutrino units near
G, /G, =0.5.

The VRlue of Q~ lnfel x'ed from our solRl Dlodels
is a function of the adopted helium abundance. If
this abundRnce 18 Unlestricted, 0 ~ go~1, %'e find
that G, /G, lies in the range -0.05 to 1.65, a rather
loose constraint. Better limits on Q, can be ob-
tained if we specify the present surface solar hel-
1Um abundRnce Py R quRntlty %'hlch ls quite dlffl-
cult to detex mine. ~~ Boss and Aller ' have surveyed
the available estimates and conclude that 0.13~p
«0.28; this implies that 0.90 «G, /G, «1.36. How-
ever, all direct abundance determinations sample
only the surface material, and several authors~
have suggested that the solar surface has been con-
taminated by accretion. Even if this is the case, it
is possible to make a plausible indirect estimate of
Fo because most estimates of the helium abundance
in many different kinds of objects lie in a relatively
x estricted x ange. ~' Searle and Sargent4' have ar-

While a considerable body of evidence demon-
strates that G(& ) is very nearly constant for dis-
tances 10' km&ad &3&10' km, the actual value of
that constant is only poorly determined. We feel
that our lowest reliable upper bound on G, is that
which follows from the lower limit on M derived
in Sec. III, while the solar models discussed in
Sec. IV coupled with the restriction Yo&0.10 px'o-
vide the highest reliable lower bound on G,. The
resulting allowed range 0.6&G, /Go& 1.3 is rather
broad, and does not even rule out Fuji's suggested
value G, /G, =O. V5. Fortunately, there appear to
be several ways of detexmining G, more precisely.

A precise estimate of the mass of a body for
which G, M is known or can be measured would be
of obvious va.lue. Both the upper and lower limits
on M, and hence G„could be tightened if the full
range of available seismological informa, tion con-
cerning the Earth's interior were used to deter-
mine the density distribution. The major problem
here is finding a way to unambiguously determine
the composition of the various regions of the Earth.
If the question of the helium abundance of the Sun
could be settled definitively the work of Sec. IV
would provide a much more precise determination
of Qc.

Gravitation experiments in the intermediate dis-
tance range between 1 m and 10 km would remove
the large uncertainty in G(r) in this range Such.
experiments may also provide a good determination
of G, if they are conducted with a source-detector
distance so large that G(r) can be related to G, .
Second-generation gravitational radiation detectors,
especially those sensitive to frequencies below 1
kHz, may be cRpRble of detectlllg time varying
Newtonian gravitational soux" ces at distances up
to 10 km. Available indirect evidence (see the
discussion of Fig. 1) indicates that G(r) at such
distances differs from G, by no more than -10$().
Spacecraft tracking during close encounters of
celestial bodies with radii «5 km (e.g. , the moons
of Mars, small asteroids) might enable one to re-
late G, directly to G(r) at distances «a few km.

While Newtonian grRvltRtlon has been tested Rs

yet only for laboratory distance scales (5 cmsr
«1 m) and solar system distances (10' km «r «108
km), the behavior of G(r) for 1 m «r «. 10' km is
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susceptible to experimental determination. We
hope that our present efforts mill arouse interest
in the problem, and that the large uncertainty in
G(r) at these distances will be reduced in the near
future.
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