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Roy's equations and the study of inelastic effects on the pion form factor
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We study the inelastic effects on the pion form factor using the Muskhelishvili-Omnes integral equation. The
nm phase shifts are required to satisfy Roy's equations which folio~ from crossing symmetry. Effects of the
I = 1„J= 1 resonance p' are manifested remarkably in our results.

I. INTRODUCTION II. MO EQUATION FOR PION FORM FACTOR

Electron-positron colliding-beam experiments
provide useful information regarding the pion
electromagnetic form factor in the timelike region
of the momentum transfer. It follows from unitar-
ity that the phase of the pion form factor is equal
to f = 1, J = 1 mv phase shifts, o', (modulo m) for
q' & 16m„'. However, phenomenologically the form
factor is also fitted with 5', for larger values of
q'. Thus it is of interest to study the manifesta-
tion of inelastic effects in the pion form factor.

It is well known that p appears as a resonance in
the I=J=1 channel, and its coupling to the photon
is expressed through the vector-dominance hy-
pothesis. This hypothesis has been used' to study
the pion form factor in the timelike region.

On the other hand, unitarity could act as a con-
straint in the study of the phase of the form fac-
tor. Such a constraint is introduced through the
Muskhelishvili-Omnia (MO) equation. ' Recently,
using complete unitarity, Pham and Truong' (PT)
have obtained an interesting equation in studying
the phase of the pion form factor. They use the
experimental phase shifts' and the amplitude of
Gounaris-Sakurai' and Frazer-Fulco' to determine
the phase and the inelastic effects in the form fac-
tor.

In the present paper, to study the phase of the
pion form factor, we use a set of xw phase shifts
which satisfies the crossing constraints in the
form of Roy's equations, ' derived from first prin-
ciples. Moreover, the phases satisfy correct
analyticity in the complex energy plane. And since
unitarity is already an input through the MO equa-
tion, we feel that the ingredients in our calcula-
tions are more refined, and thus the results are
expected to be more reliable.

In Sec. II we define relevant quantities and write
down the Muskhelishvili-Omnhs equation. Section
III contains a brief account of the solutions of Roy's
equations. In Sec. IV we discuss our calculations
and results and compare them with those of PT.

We define

&0I~„ I~'(p) v (p');.)= (P -P ')„F(s), (1)

where s = (P+p')'. Equation (1) can also be written
as

F(s) = 4, &0il pg'(p)v (-p);„),

with the normalization F(0) = 1. p is the momentum
of the n' in the c.m. of the ~ m system. It is well
known that F(s) has a cut from s = 4m, ' to ~ and

F(s) is regular, analytic in the complex s plane.
Thus a dispersion relation could be written down
for F(s). We write a once-subtracted dispersion
relation for F(s) as

(3
4ln w

One can then use the standard Lehmann-Syman-
zik-Zimmermann (LSZ) technique and the MO

equations, and follow the formalism of PT to ob-
tain for the phase, Q, of the form factor,

and for iK(s)j.

M's 1
g(s)i =exp —

2
(1 —o')Ma

( ~,),

where AI, 6, e are parameters used to take into ac-
count the effects of higher-mass intermediate
states in mw scattering, and where iK(s)i repre-
sents the deviation of the modulus of the form fac-
tor, iF(s)i, from its Breit-Wigner form. To
evaluate M, 6, 0. , we follow in this work what we
hope will be a more I efined approach than that of
PT, as discussed in the next section.
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III. ROY'S EQUATIONS AND MULTIPLICITY

OF THEIR SOLUTIONS

It is well known' that unitarity, crossing, and

analyticity are powerful constraints on the be-
havior of the scattering amplitude and may alone
define a unique solution for it. Failure to exploit
them fully has led all systems of equations (for
on-shell S-matrix elements) to nonunique solu-
tions. This nonuniqueness appears in partial-
wave analysis either in the form of ambiguities or
in the form of various allowed shapes for the par-
tial waves, from which one does not have the lat-
itude to prefer one to the other solutions.

Recently, Roy' has expressed the crossing prop-
erties of the scattering amplitude in terms of the
physical region partial waves in a form which has
proved to be very useful for practical applica-
tions' "in pion-pion scattering. Roy s equation
for the f= 1 P-wave amplitudeg, (s), is

Reg(s) = (s —4m„') dx K'(s,x), + DT
lmg(x)

x-4m, '

(6)

The term DT is the driving term, fixed by the
S-@rave scattering lengths and a sum of integrals
over the absorptive parts of all the other partial
waves. The kernel K'(s, x) is known; it contains
the principal values P(1/(x- s)) as a singular term.

Most careful numerical calculations'" show that
given the analyticity of g(s) the range of possible
solutions of Roy's equations is rather large, once
DT and the scattering lengths are fixed. The ex-
perimental phase shifts happen to be one of these
multiple solutions. The dimension of the multi-
pbcxty of solutions is given by'"

2
n, = —5(s,)

where 5(s,) is the phase shift at the inelastic
threshold. A nonzero value of n, results from two
facts": (a) The P-wave Roy equation (i.e. , usable
form of physical-region crossing constraints)
combined with unitarity and analyticity require-
ments does not constrain g(s) above the inelastic
threshold s,. (b) The very existence of the p me-
son implies 5(s,) & s/2 and n, w 0.

Thus instead of using the experimental phase
shifts to fix M, 6, n, we use the multiple solutions
of Roy's equations. " These solutions have been
obtained by assuming elastic unitarity in the in-
terval 4m, ' ~ s ~ s„~vhere s, = 60m„'. However,
imposition of analyticity properties of the scatter-
ing amplitude on these solutions of Roy's equa-
tions extends" the domain of their validity to the
internal 4'„' ~ s & g„ independent of the choice of

so (so& s,}. Thus it is hoped that these I=J=1'

phases allowed by such formal properties of the
scattering amplitude as unitarity, crossing sym-
metry, and analyticity will reflect the inelastic
effects more accurately.
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FIG. 1. fl5 (s) and K(s) up to 2.5 GeV. The straight
solid lines represent this analysis. The dashed lines
represent the PT analysis. The slanted lines indicate a
band of ~K (s) ~

values allowed by Boy's equations.

IV. CALCULATIONS AND RESULTS

Pomponiu and %anders" have obtained four bands
of phase shifts for the 1=7=1 wave. %e use them
in Eq. (4), For 5 we use the formalism of
Gounaris and Sakurai. A least-y' fit to all four
bands of phase shifts, "taken simultaneously,
gives M= 1.542+ 0.009 GeV, ~=0.169+ 0.001 GeV,
and e = 0.28252+ 0.1. The ratio y'/NDF was 0.85.

The results for @(s) and ~K(s)~ up to 2.5 GeV are
plotted in Fig. 1 along with those of PT. It is in-
teresting to note that in the lowest-order approxi-
mation used by us, the modulus of the form factor
deviates from the usual Breit-signer form only by
6 to 7 j~ for energies up to 1 GeV. This is perhaps
due to the fact that although the inelastic 4m' chan-
nel opens up at 0.56 GeV, still the inelasticity is
negligible up to the KK threshold =1 GeV.

It is only after 1 GeV that the diffexences between
our results and those of PT are perceptible. Al-
though qualitatively they agree in the sense that in
both calculations P(s) and (K(s}) show a, downward
trend after 1 GeV and reach a minimum around
1.6 GeV, still quantitatively P (s) occurs at 1.55
GeV in our case and PT obtain P (s) at 1.6 GeV.
This produces a. minimum at 1.45 GeV for (K(s)( in
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our case to be compared vrith PT's minimum at
1.55 GeV.

Beyond this f(s) increases rapidly to a value
around 170'. This manifests itself as a peak for
)K(s) ) at 1.625 GeV. We consider this a striking
result since there exists a 8= 1, 1= 1, resonance,
p', at 1.62 Ge V in» scattering. It must be no~ed,
however, that PT get a peak in (E(s) ) at 1.7 GeV.
We attribute this improvement over the result of

PT to the ingredients of our calculation, vrhich are
derived from first principles.
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