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We consider a dual multiperipheral model at and near ¢t = 0, and argue that the usual imposition of a
Regge-cluster finite-energy sum rule is probably redundant. Instead we require that the 7 amplitude satisfy
the Adler PCAC (partial conservation of axial-vector current) condition and crossing near s = t = 0. We
then set up a specific Padé approximation to the multiperipheral model. This becomes exact for a
factorizable model, but takes into account transverse-momentum effects and explicitly incorporates the
deferred thresholds arising from the production of clusters. We do not make the dual-tree approximation for
our Reggeon couplings, which we represent instead by a more general exponential form. If we then assume a
linear Reggeon trajectory a(t), self-consistency gives an intercept a(0) = 0.49 and a triple-Regge coupling
which is in reasonable agreement with experiment. There are no arbitrary parameters in our model.

I. INTRODUCTION

The first step in any strong-interaction dual-
unitarization program, such as the Veneziano
1/N expansion,''? is the “planar bootstrap.”® This
is a self-consistent calculation of exchange-de-
generate Reggeon poles based on planar unitarity,
and is unaffected by Regge-cut corrections, fixed
poles, diffraction, and absorption.?* One then adds
in corrections (cylinder, torus, etc.) which bring
in a Pomeron and its interaction with the Reggeon
and with itself.?°

Planar bootstrap calculations are generally
carried out within a cluster multiperipheral-
model framework. In addition, we normally have
the following:

(i) Rather simple kinematics is usually assumed.

This does not take into account threshold and
transverse-momentum effects which are known to
be important in certain problems.5"’

(ii) Clusters are related to Regge exchange
using either explicit finite-energy sum rules® or
local duality.? We shall argue that such a pro-
cedure may sometimes be redundant.

(iii) Unless the planar bootstrap is used merely
to fix certain parameters for cylinder and torus
calculations, the dual-tree approximation gener-
ally has to be made for Regge couplings.®® It
would be desirable to do a calculation in which as
many coupling properties as possible are deter-
mined by the bootstrap itself.

In the present paper we set up a model in which
the above three difficulties do not arise. In pre-
vious planar bootstrap calculations crossing was
only applied in a very limited way. In the present
calculation we shall apply it directly in the neigh-
borhood of s=¢=0. At the same time we require
that the nm amplitude satisfy the Adler PCAC
(partial conservation of axial-vector current) con-
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dition. If we then assume a linear Reggeon tra-
jectory and a general exponential form for our
Regge couplings we find that we can calculate all
the parameters of our model.

In Sec. II we review the dual multiperipheral
model. In Sec. III we discuss the Adler PCAC con-
dition'® and crossing near s=¢{=0. In Sec. IV we
discuss a Padé approximation to the multiperipher-
al model. This involves a box graph, which is
evaluated in Sec. V. In Sec. VI we write down our
bootstrap results and compare them with the dual-
tree approximation. In Sec. VII we include cylin-
der corrections and calculate the parameters of
the Pomeron at intermediate energies. These are
then compared with experiment. Finally, in the
Appendixes we discuss various multiperipheral
models in detail, and, in particular, the conditions
under which a Padé approximation may be valid.

II. DUAL MULTIPERIPHERAL MODEL

In the multiperipheral cluster-production model,
the absorptive part for a two-body process is
given by a sum of ladder graphs (Fig. 1). The
vertical lines are narrow-resonance clusters a
of mass Vs,. It was argued in Ref. 6 that only a
single meson cluster, with s,~0.5 GeV?® and cor-
responding to the p, w, €,... peaks, is expected
to be important at the sort of intermediate ener-
gies where Reggeons play any important role and
where duality considerations are expected to
apply. In a dual multiperipheral model the hori-
zontal lines are linear combinations of exchange-
degenerate pairs of Regge exchanges a.

(A) At the planar bootstrap level we only have
uncrossed (planar) quark-duality diagrams of the
type shown in Fig. 2. The exchanges then corre-
spond to Regge propagators

885
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R=e ima® sal®) (2.1)

We will assume that SU(3) is exact so that the
p-A,, K*-K**, w-f, and ¢-f’ pairs are all degen-
erate, with a linear trajectory

alt)=a,+a't. (2.2)

All possible quark diagrams have equal weight.

If we are interested in generating the Pomeron,
we must include in the sum of Fig. 1 crossed
(cylinder) loops of the type shown in Fig. 3, in
addition to the uncrossed loops of Fig. 2. In the
former case we then have a Regge propagator

R=1s%® (2.3)

(B) In order to obtain an additional constraint on
the couplings, the assumption is usually made that
the clusters are dual in a finite-energy sum-rule
sense to Regge behavior. (See Fig. 4, where the
external lines would be either Reggeons or parti-
cles.) This kind of constraint on sums of ladder
graphs was first used a number of years ago
within a pion-exchange model® and has recently
been applied extensively in the dual multiperipheral
apprach,®* often in the extreme local-duality
limit.?2 K I', represents the coupling of the cluster
a to the external lines of Fig. 4, we have a rela-
tion of the form

r,=F,g,8,, (2.4)

where F_ is a purely kinematic factor. We shall
argue in Appendix A that F, has approximate fac-
torization properties. This in turn means that I,
likewise factorizes.

Explicit expressions for F, can be obtained from
finite-energy sum rules (FESR’s). However, there
are two difficulties which then arise.

(i) An explicit FESR involves a separation point
between low and high energies which is only known
approximately.

(ii) Since Fig. 1 itself has the correct analyticity
properties and gives Regge behavior for high s,
our multiperipheral model already relates the
cluster of Fig. 1(a) to Regge behavior. Thus any
further application of an explicit FESR to the over-
all amplitude A of Fig. 1 is redundant and may
even lead to difficulties. At best it may be a crude

(a) (b) (c)

FIG. 1. Absorptive part for a multiperipheral cluster
model.

Vo=

FIG. 2. Uncrossed (planar) quark-duality diagram.

and indirect way of imposing corssing, since
crossing-symmetric dual amplitudes are known to
satisfy simple FESR’s. However, a better pro-
cedure would be to avoid an explicit FESR altoget-
her in this case and impose crossing directly in-
stead. This will be discussed in the next section.

III. ADLER ZERO AND CROSSING

Suppose we consider 77 scattering for simplicity,
with m,2~ 0. Adler’s self-consistency condition'
then requires that the amplitude

T(s=0,t=0)=0. (3.1)

Now the planar amplitude satisfies a fixed-t dis-
persion relation
1 f * , AWV, 1)
== —_l .2

(025 | 45 557 (3.2)
where v=3(s —u)=~ s+ 5t is the usual crossing-sym-
metric variable used in finite-energy sum rules.
If we expand in v,

©

T (s, 8)= 2 V' Ab), (3.4)
1=0
where
A,(t)=fm2 ds'vTPTAQ, L) . (3.4)

At t=0 this coincides with the usual Mellin trans-
form. We shall see in Sec. IV that it also arises
naturally for ¢#0. If we follow Lovelace'! and
apply Eq. (3.1) to Eq. (3.3) we obtain

A,(0)=0. (3.5)

Further constraints can be obtained by combining
Eq. (3.4) with the planar crossing condition

T(s,t)=TI(t,s). (3.6)

Jooe

FIG. 3. Nonplanar (cylinder) quark-duality diagram
with crossed and uncrossed loops.
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X =,
a -
g, g,
(a) (b)

FIG. 4. Average duality relation between cluster (a)
and Reggeon (b).

In particular the relation

which relates the amplitude along the lines s=0
and t=0 in Fig. 5, gives the relations

AL0)=3A,(0),... . (3.8)

From Fig. 1(a) we have a contribution to the ab-
sorptive part

W(s,t)=T({#)d(s—-s,). (3.9)

Figures 1(b), 1(c),..., on the other hand, give
rise to approximate Regge behavior. We can
therefore make the usual FESR assumption that

(3.10)
(3.11)

where N is midway between s, and the next cluster
above it. If we take both of these to lie on the tra-
jectory (2.2) we then have

A(s,t)=W(s,t), sS<N,
=b()v™P, s>N,

Nya'=1.5-q,, (3.12)
where
a'=(1-ay)/s, .- (3.13)

If we now insert Egs. (3.10) and (3.11) into Eq.
(3.2) and impose the conditions (3.1) and (3.7) we
obtain

L) =F)b(t),

where, for small ¢,

(3.14)

FIG. 5. Mandelstam diagram illustrating planar s —¢
crossing.

S o3 1 1
F =N %o —2 1 ! —_
(£)=N, Olo{ +a t[lnN°+2a’No +a’sa o

a, (@’'N,) ! |
-2 _&;:.si. ]+}
(3.15)

We will use this constraint instead of Eq. (2.4) in
what follows.

IV. PADE APPROXIMATION

Let us consider the usual Froissart-Gribov pro-
jection of Eq. (3.2)

1 * !
T,(t):—zvtzf zdS'A(SI,t)Q, <1+§s‘?) N (4.1)

amoy

where q,>=4t-m,? and A is normalized so that
A(s,0)=22(s, m?, m )04 (), (4.2)

with AM(x,y,2)=x%+y?*+2%~-2(xy+yz +2x). For
small {, we can make the asymptotic approximation

Q,z)=B(l+1,3)(22)"**, (4.3)

where B is the usual Euler beta function. A com-
bination which is free of kinematic singularities in ¢
is then

21B7M(1+1,3)q, 3T, (t) = A1), (4.4)

where A,(t) is defined as in Eq. (3.4). If we apply
this projection to Eq. (3.9), for example, we obtain

W, () =T()(s,+3t) " (4.5)
If the sum of Fig. 1 is treated as an expansion
A O)=W,(0)+By () -+, (4.6)
the [1,1] Padé approximant has the form®:?

[1,1]=w,(t)/D,(#), (4.7)
where
D,(t)=1-B,t)/W,(¢t) (4.8)

and B, is the contribution of Fig. 1(b).

An advantage of the “diagonal” [N,N] Padé ap-
proximants is that they satisfy a version of ¢-
channel unitarity in which the particles lying on
the exchanged Reggeon trajectories appear in the
intermediate state.'® If we include m exchange
along with the Regge exchanges of Fig. 1, these
approximants also satisfy elastic ¢-channel uni-
tarity exactly in the elastic region. Furthermore,
in the case of a factorizable multiperipheral mo-
del, it is simple to show that the [1, 1] approxi-
mant is in fact exact.®

The practical advantage of using the [1,1] Padé
approximant is that we only have to evaluate the
first two diagrams of Fig. 1 explicitly. We do
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not have to first set up a full-fledged multiperi-
pheral integral equation.
V. BOX GRAPH NEAR THE FORWARD DIRECTION

We will assume that the coupling I', in Fig. 6
factorizes so that we can write

T,= 75" )V ralt’ ).
In the forward direction, Fig. 1(b) then gives

(5.1)

1 te
B(s, O)=IGTS f dt'ITR(t',O)129(8-4Sa),
t_

(5.2)
where 6 is the usual step function,

tiu —%[51/2 F (S _450)1/2]2

L.

We will see later how v, can be related to the
aaa triple-Regge coupling. For the present we
shall simply parametrize it as

|X(t') Iz.},ﬂmz(t:’ H)=GY2 oAt getl2 ,

(5.3)

[_t+ dt'{[??i ITn(t"t”é]ro

1
T 167s

[aBa(;s, 1)

(5.7)

where G, A, and ¢ will all be determined even-
tually by our bootstrap conditions. Equations (5.2)
and (5.6) can now be evaluated to give

LOUIS A. P. BALAZS
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FIG. 6. Coupling of cluster to pions and Reggeons.
in the limit of small m,2, and

TR, 8) = Yrgo®(t', DX (') (0 5)°¢ (5.4)
with

X(t)=e" ™ /sinna(t). (5.5)
Figure 1(b) also gives

(¢ =t —t_) | 8T4(¢',0) |?
— . e 6(s ~4s,) . (5.6)

r

E, ~(1-4s,/s)¥?%, (5.16)
which are exact for large s and have the correct
type of threshold behavior as s—~4s,. They are
still rather unwieldy, however, and so we will
instead make the cruder approximations

E,~6(s -s.,), (5.17)

E,~6(s-s;,), (5.18)

B(s,0)= 161173 % (a’s)?%E, (5.8) where s;,=5.333s, and s;,=10.81s, are the values
of s where Eqs. (5.15) and (5.16) attain their maxi-
and mum values. At the same time we will “exponen-
tiate” A and J
aB(S, t)] _ 1 1 o)2¢ ’ ~
[ at t=0 =cB(s, 0)+16"S GI(a's) °B, . AQALO(S/SLO)ZQ,/AI‘O (5.19)
(5.9) J=d g (s/sy,)7 L, (5.20)
where so that the value and s derivative is exact at s
A=2[A+a'In(a’s)], (5.10) = suiand s~= sy, respectively. Thus
e (am/A)R, (5.11) Ari=@omopy (5-21)
E0=2e“{tlsinhAt2, (5.12) Jle(J)s=sL1’ (5.22)
E, = éle‘.i‘l(,titzcoshfit2 - sinhﬁtz)/(ji s), and
4 - -
(5.13) Hyy=—(a'm/AL ), (5.23)
and .
If we now make the partial-wave projection (3.4),
bo=3(t,£8). (5.14) we obtain
To simplify our expressions further we could B,(0)= Ga'*% Sy 207! (5.24)
make the approximations WT1enA,L, 1+1~2a,+2a' /A, ’
E,~(1-4s,/s)V?, (5.15) and
) 20’ \ [ ~ (sp,/sp0)%0 17} 21+ 1)s, 7t ]
2 = - = - = . 5.2
[Bt mB'(t)],=o c+(l+1 2a°+ALO>[A"°JL’ 1+1-2a,+Hp, 1+2=-2a,+2a'/A;, (5.25)
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VI. BOOTSTRAP RESULTS AND
COMPARISON WITH THE DUAL TREE
Eq. (4.7) has an output pole at I= «(t) if
Da(t)=0' (61)
The corresponding residue is then

b(8) =W o o(O)[8D,(£)/081); 2 iy ™" - (6.2)

We will only consider the value and ¢ derivative
at =0 and require that this output pole be consis-
tent with the input as given by Egs. (4.5), (3.14),
and (2.2). ¥ ¥pq,°=a’ b we then obtain

@,=0.49, GY2=34.67,,,(0),
A=1.99, ¢=0.12. (6.3)

Our value of «, is in good agreement with experi-
ment.

There is no direct unambiguous way of compar-
ing G, A, and ¢ with experiment. To relate v,, .
to the aaa triple-Regge coupling g we will use
the usual finite-mass sum rule for the inclusive
process TT—-17X,

No? [ddo do >
2 — =
[ AV Granr <dt’dM2 J 0, 6.4)

with

do 1 , ,
(dt'dM2> = 16752 ‘)’m,az(t )LX(tl) Izg(t ,t',0)
R

X Vo ,,a(O)(s/Mz)z“(") (a’ ﬁzyx(o) ,
(6.5)
where N2=N2-m 2 =t', M>=M?-m,%—t', and M
is the missing mass (see Fig. 7). We will assume
that the low-M? region is dominated by the pro-

duction of the cluster a so that in the narrow-

resonance approximation
do <_d_<z
dat’

W= >,, 6(M2—sa), (6.6)

where (do/dt’), is the usual differential cross sec-
tion for nm - ma, which is given by

ﬂ = _1_ 204 ry|2
<dtl>a~ 161732 ‘yﬂﬂa (t )Ix(t )l

XY paa () (! s)2¢7) (6.7)
From Eqgs. (6.4)-(6.7) we obtain

, Yoo () a@(0)+1=2a()
.y”a(o) (Noza;)a(o) +1-2at’) -

(6.8)

g(tly t',O)‘-‘ a

20'\[&;& (SLI/SLO)zaO—x-t

This quantity is still difficult to compare with ex-
periment. If we relate it to the fff coupling g,
normalized as in Ref. 2 we obtain g_~ 11 at ¢'=0.
This should be compared with the “experimental”
estimate g, =~ 6.3 obtained in Ref. 2. However,
our calculated value will be lower if we include
pion exchange as in Ref. 9. Moreover, the esti-
mate of Ref. 2 relies heavily on a version of two-
component duality which may not be valid. In the
next section we will consider a less ambiguous
confrontation with experiment.

We can also compare our results with the dual-
tree approximation, which gives

s (1 - aft
xkgl 0 -3 T ey

(6.9)

where N =3 if we assume that SU(3) is the under-
lying group. We then obtain Ng?/167=3.53, which
is again somewhat larger than the usual value. If
we use the dual tree to calculate A and ¢ by ex-
panding Eqs. (6.9), (6.8), and (5.7) in ¢’ and ¢
around ¢{'=0 and t=0, we obtain A=1.51 and ¢
=-1.61. This should be compared with the boot-
strap values obtained in Eq. (6.3). We see that

the value of A is relatively close but that ¢ is quite
different.

VII. POMERON PARAMETERS AND
COMPARISON WITH EXPERIMENT

As discussed in Sec. II, the Pomeron can be
calculated by adding in the cylinder loops of Fig.
3. Thus, we must make the replacement

Bl(l)-B,(t)=Bl(t)+B:;(t), (71)

in Eq. (4.8), where Bj has the same form as B,
except that we must make the replacement

X(t) - X*(t)=1/sinma(t) (7.2)
in Eq. (5.5). This leads to
Bj;(0)=B,(0). (7.3)
On the other hand, Eq. (5.9) must be replaced by
3aB*(s, t)il ooy 1 ) \2a
[—-——at ‘=0—cB (s,0)+—64nSG(a S)?%E .

(7.4)

If we use the approximations of Sec. V we then
obtain

[—a- lnB’,‘(t):l =c+ (l+1—2a0+
ot t=0

A, /L4

1+1-2a,

rlloe 1. (1.5)

T1+2-20,+2a' /4.,
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FMSR
-

FIG. 7. Finite-mass sum rule for mr—nX relating
the cluster-production and triple-Regge regions.

(A) From Egs. (6.1) and (6.2) we now obtain,
for small ¢,

ap=0.75+0.97¢, (7.6)
b3/b;=1.31(1 - 0.34¢) . .1

The f itself becomes extinct in this calculation.
Our “Pomeron” P, of course, is only an effective
pole which describes the cross section for s<50.
To obtain the correct (bare) Pomeron which de-
scribes scattering at higher energies, we would
have to include higher-mass clusters.®''* Our in-
tercept is somewhat lower'®'**° and our trajectory
slope is larger?®'® than in other calculations, but
should not be inconsistent with the data for s<50
GeV2. (See Fig. 4 of Ref. 16.)

The ratio of Eq. (7.7) is the one for 7 scattering.

For pp scattering we must make a correction to
take into account the fact that the mass of the end
cluster m,# Vs,. From Ref. 6 or Appendix C we
have

B3p/,),p=(m 2/ 5)2* P (b5/b;) rr - (7.8)

If we assume that the end cluster is the nucleon,
we have m y=~1 GeV. The resulting bz is similar
to the one obtained in Refs. 6 and 9 and is con-
sistent with the data within the usual large diffrac-
tive-correction uncertainties. If we assume P
and w exchange, with w exchange-degenerate with
the f, Eqgs. (7.6), (7.7), and (7.8) give an essen-
tially constant total pp cross section in the range
10< s <50 GeV2

(B) We can calculate the average cluster multi-
plicity from the general formula

1 oby Odop
) e =957 32 + 222 1ns) 1.9

where ¢ is the same parameter as in Sec. IV (see
Appendix C). If we use Eqgs. (6.1), (6.2), and (7.8),
we obtain

() duser = 0.85+0.39 Ins (7.10)

for pp scattering. The coefficient of Ins is much
smaller than the usual experimental value. On
the other hand, it must be remembered that our

result is valid only for s< 50 GeV2 For higher s
additional clusters are produced and we may have
a more rapid overall energy dependence. At
s=20 GeV?, Eq. (7.10) gives () user =~ 2. If we
assume 2-3 particles/cluster, i.e., 1.3-2 charged
particles/cluster, we obtain a charged-particle
multiplicity (#),, = 2.7-4.0. Experimentally, (n)q
~3.2,

(C) If we use Eq. (7.7) we can use the bootstrap
results of Sec. VI to predict the K~p - K°X inclu-
sive cross section, which is dominated by the
Reggeon-Reggeon-Pomeron graph of Fig. 8. This
is given by

do 1 ,
T ~Ters Yere WX EIF

1
X ﬁgw;(t't'O)y”};(O)

s \zet)
x(H—> (r2at)ep® (7.11)
where now M?=M?—m,? ~t', and Ygxo® = 2¥xx; With
our normalization. If we again make an end-
cluster correction (see Ref. 6 or Appendix C)

m .2 >a(o) -apl0) Vor b
a

gcxaﬁ:< s 71r1rj gtxm/ ’ (712)

which can be calculated using Eqs. (7.7), (6.3),
and (5.7). The remaining parameters can be ex-
tracted from two-body processes. Taking YnrsY,,s
=~ 20 (mb-GeV units) and the quark-duality results
Yops = 2¥nrs = 3¥gxs» We obtain

do/dt'dM*®=0.29 mb/GeV* (7.13)

at t'=0. This should be compared with the experi-
mental value

do/dt'd M?=0.33 mb/GeV* (7.14)

at ¢'=-0.1 GeV?3.

VII. CONCLUSION

We have considered a dual multiperipheral
model and have imposed the Adler PCAC condition

K-
p Az
° A P
K P
Eo
p-As P
K-

FIG. 8. The dominant graph which contributes to the
cross section for K p —K "X in the triple-Regge region.
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and crossing near s={=0. We then obtained the
following results:

(i) Our Reggeon intercept is a(0)=0.5.

(ii) The Regge coupling we obtained only has a
partial resemblance to the one given by the dual-
tree approximation.

(iii) Our Regge couplings and multiplicities are
in reasonable accord with experiment.

Further work might involve the following:

(a) Doing a more accurate calculation which
does not make the crude approximations used in
Sec. V.

(b) Doing a calculation over a wider range of ¢,
positive as well as negative.

(c) Adding in higher clusters,®'!* including per-
haps p. The latter would also involve baryon ex-
change.

(d) Imposing alternative or additional crossing
conditions.

(e) Imposing crossing directly on the multi-
peripheral-model absorptive part, using, e.g.,
Eqgs. (3.5) and (3.8).

(f) Applying the Pade approach in an improved
way, either by going to higher orders or by sum-
ming a different series (see Appendix A).

In the present paper we used a rather simple
multiperipheral model with simple resonance clus-
ters. In a more systematic framework,

(A) the multiperipheral cluster-production ampli-

tude could be systematically improved upon, per-
haps using Reggeon-calculus techniques,'”

(B) the clusters could be replaced by entire low-
energy (low-J) Regge-Regge “scattering” ampli-
tudes, which would themselves be calculated from
multiperipheral ladders plus corrections. Energy
thresholds in the Regge exchanges of the multi-
peripheral chain may have to be put in to avoid
double-counting (for low J).
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APPENDIX A: A GENERAL MULTI-REGGE MODEL WITH
REGGE-CLUSTER DUALITY

We will give a justification for our use of the
[1,1] Padé approximant (4.7) by considering a
general model with Regge-cluster duality. This
will also suggest ways of improving our approxi-
mation.

We assume that the absorptive part A is given
by Fig. 9, where I and II are the initial and final

FIG. 9. Absorptive part for a general multi-Regge
model.

two-body systems in the f channel. At {=0 we
then have

A=W,+B;+Cy, (A1)

where W, B, and C correspond to Figs. 9(a), 9(b),
and 9(c); W is given by Eq. (4.5), whereas

B,= [ pdr Vi (rky () VI () (a2)
and

ClszpdTlpdTZV}(Tl)kl(Tl)Al(TUTz)

X kl (Tz)V:l (TZ) ’ (A3)

where p is a number given by phase space and &,
is a two-Regge propagator. In a simple Chew-
Goldberger-Low-type model'® with thresholds, we
would have

_____H_T)__ -1 -1+20(7)
BT aam * ’ (A9)

where x is a threshold factor.”®
The “reduced” amplitude A is given by the inte-
gral equation of Fig. 10,
Al(TU 72) = 1.‘/1(7—17 Tz)

+f pdT' Vo (1,, Tk (T)A (', T,) .

(A5)

FIG. 10. Integral equation for the absorptive part A
for Regge-Regge “scattering.”
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Our cluster coupling functions are given by Eq.
(3.9) and

Vi(s, 7)=Ty(1)6(s =s,), i=LII (A8)
V(s, 1, 7)=F(r,, 7)8(s - s,), (A7)

assuming that all our clusters have the same
mass. Cluster-Regge duality, as in Fig. 4 and
Eq. (2.4), now gives

=%Yufy, (A8)
Ty(7) =7, 8(T)Fy (1), (A9)
(1, 1) =g(1)g(T,)F,(1,7,) . (A10)

Prescription A. K we assume a Regge behavior
s* for s> N,, a simple finite-energy sum rule

N, —
f ods[A(s,O) -y Yu(a’s)*]=0, (A11)
0
when combined with Eqgs. (3.9) and (3.10), gives
a'Fy = (a'N)*/(@+1). (A12)
Similarly, finite-mass sum rules applied to

Regge-particle and Regge-Regge “scattering”
give

2al?) (@'N,)et 1=20{7)

a'Fy (1) =(a’'s,) a+1-_2a(r)

(A13)

and
Fy(ry,m,)=Fy (7). (A14)
Suppose now that we have a factorizable projec-
tion formula

Ay(r,1)= [ dsPy(s, 1)P(s, 7)A(s,7,,7,)

(A15)

and similarly for A. For example, a simple
Mellin transform would correspond to

Py(s, T)Py(s, 1) =511, (A16)

If we assume that the external particles have
negligible mass (as would be the case if they were
pions), Eqgs. (3.9), (A6)—(A10) would then give

W,=TP,(s,,0), (A17)
Vi(r)=T,(1)P,(s,, T)P,(s,, 0), (A18)
Vi1, 7,) =L (1), T)P,(s,, T)P;(s,, 7o) . (A19)

If we assume that ¥ v factorizes

Fy(1,,7,) = [T )f,(1,) (A20)

as in Eq. (A14) (example A), Egs. (A10) and (A19)
give

‘71(71’ 7o) =uy(7)vy(15) , (A21)

where

uy(1) =g (1) [ (T)Py(s,, ), (A22)
v,(1) =g (T) fL(T)P(S,, T) . (A23)
If we iterate Eq. (A5) using Eq. (A21) we obtain
A (1, 1) =uy (1), (7,) + 4, (1)K, 0, (T,) + o+,
(A24)

where
K= | pd ro,(0)ky (). (A25)

If we sum the series (A24) we obtain
AI(TU Tz) =u1(T1)Ux(Tg)/(1 -K;) . (A26)

Exactly the same result is obtained if we form
the [1,1] Padé approximant from Eq. (A24).

In practice, it may be more convenient to deal
with particle-particle rather than Reggeon-Regge-
on scattering. Inserting, therefore, Eq. (A24) into
Eq. (A3) we obtain

Ci=v17uPi(s, 0K, (1 + K+ K2 +++), (A27)

where
Ji= [ pdro @), (A28)
If we sum Eq. (A27) we obtain

Ci=7YuP*s,, 0K, J,/(1-K,). (A29)

Exactly the same result is obtained if we form

the [1, 1] Padé approximant from the series (A27).
One problem with forming Padé approximants for

C, rather than A, is that it involves the evaluation

of diagrams which are of higher order than the

box. We can obtain a certain degree of simplifica-

tion if

So(m) = Fy (1), (A30)

as would be true, for example, with Eq. (A14)
(example A). Then, from Eq. (A2),

By =yvy Pi%(s,, 0)J; . (A31)
Combining this with Eq. (A27) we obtain
B, +C;=B,(1+K; +K2++++). (A32)

If we sum this series we obtain
B,+C,)=B,/(1-K,). (A33)

Once again, exactly the same result would be ob-
tained if we formed the [1,1] Padé approximant of
the series (A32).

The simpler procedure followed in Sec. IV is
somewhat harder to justify. Thus, from Egs.
(A1) and (A33),

Al_ 1 -L—K' <1_Kl+ W‘> . (A34)
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We see that this agrees with the [1, 1] approximant
of Eqs. (4.7) and (4.8) only if
K,~B,/W,. (A35)

To see whether this may be satisfied, we note
from Egs. (A31), (A17), (A8), and (A25) that we
can write

ByW,=F," [ pdr o0k, (A36)
and

K=F, [ pdro 0k mR@), (a37)
where

R(T)=F,F (1, 7)/F 1) . (A38)

We then have two options:

(i) We could first write down an expression for
B,/W,. By comparing Egs. (A36) and (A37) we
then see that we can obtain an expression for K,
simply by inserting the factor R(7) into the inte-
gral. We can then calculate A, from Eq. (A34).
It is straightforward to generalize this prescrip-
tion to ¢+ 0.

(ii) We could actually check whether R(7)~1,
since this leads immediately to Eq. (A35).

Prescription B. Instead of prescription A, we
will assume the Regge behavior v® (for s>N,)
which is normally used in finite-energy sum
rules; v is the same sort of crossing-symmetric
variable which we encountered in Sec. III. We
then have

a'Fy = (a'Ny)* /(@+1), (A39)
a+1-20(7)
~ '3 pyan BNg=T)*" 7T

F (r)>a'%(s,-7) 3132 (A40)

F (r,,1,)=a'%s, =T, - 1,)%2%™

o+ 1=20(Tp)
Wo—1, —T,)%" 172"

a+1-2a(r,)

(A41)

The last expression is not exactly factorizable.
For small 7, and 7,, however, we can write
Fylry, 1) =f,(1)Fy (1)), (A42)

where

a+1-2a(0) +2a(0)]+. ..

fl(fl)zl'“[ N, s

a

(A43)

Since this is the dominant region within our inte-
grals the above formalism continues to apply.

In Secs. II and III we argued that a formula such
as Eq. (3.15) is more appropriate than Eq. (A39)
for relating T to 77, If we therefore make the
substitution

Fy~F (A44)

in Eq. (A39) and plot R(7) with @=a(0)=0.5 and
N,=1, we do in fact find that R(7)~1 (see Fig. 11).
From Eqs. (A36) and (A37), this in turn means
that Eq. (A35) is satisfied and that the [1,1] ap-
proximant of Eqs. (4.7) and (4.8) is a good approxi-
mation.

APPENDIX B: EXPLICIT PION-EXCHANGE MODEL

All of the formulas listed in Appendix A are
valid in the case of the Amati-Bertocchi-Fubini-
Stanghellini-Tonin model.’® In particular we ob-
tain Eq. (A5) with

p = -l% 1'[3 N (Bl)

kN 1) =(m? = 1)2(1+ 1), (B2)
provided we make an O(1, 3) partial-wave projec-
tion of the off-shell absorption part?°

A,(Tl, 7,)= f dse~+ 1)6(3.1’1.1'2)‘;1'(3’ AN

(B3)
where
e~0(s:m )
=21, ) {(s =T, - 1))
+[(s =7, =1)2 =41, 1,]V2}. (B4)
In this model, of course,
A=A, (ms2m2). (B5)

The projection (B3) does not have the factoriz-
able form of (A15). It is a good approximation,
however, to replace Eq. (B4) by

e 06T o (1, 7,)Y s = 7) (s =T7,)"t.  (B6)
Equation (B3) then has the form of (A15) with
P(s,7)=[(-sT)V2 /(s =7)]' *!. (B7)
T T L I T
R(z)
'-Of_\ i
OS5 -
00 1 1 1 1 1 L
0.0 0.5
-7 (GeV?)

FIG. 11. Plot of the factor R(7) given by Egs. (A38)
and (A44).
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Explicit calculations have shown that the resulting
solution of Eq. (A5) is accurate to within about
10% for physically relevant values of the input
parameters.?

As in Appendix A, the [1,1] Padé approximant
is valid provided Egs. (A20) and (A30) apply and
R=~1. We will consider two separate cases:

(i) I we make the traditional assumption of
scalar clusters we do not have duality in the usual
sense. Formally we can still write down Eqgs.
(A8)—-(A10) with

F, =F,(1)=F,(r,, 7,) = constant, (B8)

even though the v, and g do not have their usual
meaning; we have g(7) =constant. From Eq. (B8),
we find that Eqs. (A20) and (A30) apply and that
R=1, so that the [1,1] approximant is justified.
(ii) If we assume cluster-Regge duality we
again have Eqs. (A39)—-(A43) but this time with

@=0.5, a(1)=0, all 7, (B9)

since we are dealing with an elementary pion. We
again find that Eqs. (A20) and (A30) apply, and
that R~ 1, so that the [1,1] approximant is again
justified.

APPENDIX C: END-CLUSTER EFFECTS
IN A SIMPLE MODEL

Suppose the end clusters in Figs. 9(b) and 9(c)
are different from cluster a. Equation (A7) is then
the same, but we must replace Eq. (A6) by

Vi(s, 7)=T;(1)o(s =s;), i=1,1I (c1)

with s;# s,. We will, however, assume that the
7 dependences of the I'; are the same as in 7
scattering, where s;=s,. The expressions for
A, are then the same as before, but now

T OTL(0) /s5p\ 7 e
crrroro (34 © o

if we use the Mellin-transform projection (A16)
and (A15). If we now calculate the residue of the
pole in C; at /= o coming from the vanishing of
the universal denominator (1 - K,), we obtain

_ O 0) /sisp\ ¢t e
b=k () e (c3)

a result which applies to both f and P. 1t we take
the ratio of the two, we obtain a modified version
of f/P universality

bs /85y \% %P BT
G= ()T (c)
f f

This result is also valid for ¢#0.°

It is straightforward to derive an expression for
the average multiplicity in this model. Now for
large s

Gtot = z 0" ¢"= bsa-l ’ (Cs)
n

where 0,¢" is the partial cross section for the
production of n clusters, and ¢ is the same
parameter as in Sec. IV. Then

<7l> cluster = Otot o Z n0"¢" (CG)
— -1 ___a__ (C7)
=0 @ 20 O tot
= 0<% Z—Z)Jrz—z 1ns> . (C8)

If the dominant exchange is the P we have Eq.
(7.9). If we use Eq. (C3) we obtain

1 abY  Bap ss ?
) custer = ¢<gg? —a";:“ + —a'qf In ;;;) . (c9)

APPENDIX D: DIRECT IMPOSITION OF ADLER ZERO

We will now give a simple example of how the
Adler-zero condition (3.5) could be directly im-
posed on a multiperipheral amplitude. A broad
class of multiperipheral models gives the form

A D) =n,(t)/[1-K, )], (D1)
where 7, is nonsingular in / and
K, «<In[l - a,(t)] (D2)

for I in the neighborhood of a,(t)=2a(3¢) —1. Thus,
when I~ a,, K;~« and so A;-0. If we identify
this zero with that of Eq. (3.5) we see that we must
have a,(0)=2a(0)-1=0, so that a(0)=0.5.

The above argument cannot, of course, be
applied to a realistic planar amplitude, for which
n, must also have a branch point at /=«,. Indeed
it has been argued® that this cut must be such as
to cancel the cut in K;. However, suppose we add
a cylinder correction. With the usual factorization
assumptions (see, e.g., Ref. 5), we then have

A =AM+ AKFAY o= AR/(1 - KFAD), (DY)

where A is the planar amplitude and K¥ is the
cylinder “propagator,” which can be expected to
have a singularity similar to (D2). If A} is non-
singular at I=a,, Eq. (D3) then has the same sort
of structure as (D1), and so we again conclude that
a(0)=0.5.
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