
PHYSICAL RKVIK% 9 VOLUME 16, N UMBER 1 1 JU LY 1977

Dynamical fit to low-energy m-N phase shifts and determination of the threshold parameterse

Robert C. Brunet
Departement de Mathematiques, Universite de Montreal, Montreal, Quebec, Canada

(Received 9 March 1977)

For the description of low-energy mN scattering, [1/1] Pade approximants have had limited success

starting from Lagrangian-induced power series. %'e have shown elsewhere that, from a formal power series

whose generating kernel can in principle be approximated by a kernel of finite rank N, we can construct a
democratic approximant A" with N perturbative terms which provides as good an approximation to the true

solution as a Pade approximant [N/N) with 2N perturbative terms. Here we use the two available orders of
perturbative terms g

' and g
' of the Lagrangian gpy, p$ to construct a democratic approximant A" = '. %e

apply it to the low-energy mN phase-shift analysis of Carter, Bugg, and Carter and show empirically that a

reasonably good fit can be obtained in the low-energy region with the two available orders of perturbative

terms. Extrapolating this fit to threshold we determine scattering lengths and effective ranges for S and P
waves which are in reasonably good agreement with more conventional dispersion-relation determinations.

The method indicates how the concept of Lagrangian can be made dynamically relevant in a strong-

interaction context.

I. INTRODUCTION

Since the early work of Hamilton, ' determinations
of threshold parameters for pion-nucleon scatter-
ing have usually shunned extrapolation to threshold
from energy regions where reliable data are avail-
able. This has been largely due to doubts regard-
ing the validity of parametric expansions in powers
of q' so far away from threshold; one exception
perhaps is the analysis of Rittenberg et al. ' Basic-
ally three different approaches have coexisted to
describe the low-energy behavior of mN scattering,
and all have an experimental input to some extent.

The first and most extensively used is based on

dispersion relations, this approach claims to be
model-independent and integrates a large amount
of experimental data. Considerable sophistication
has been achieved in this direction originally vrith

fixed-t dispersion relations (see Pilkuhn et at
for a review of pre-1973 work on the subject) and

still recently. " Then were developed forward
dispersion relations, "' interior dispersion rela-
tions, ' and also weighted-disper sion-relation
techniques. " These analyses usually predict scat-
tering lengths, or at least constraints upon their
values, and also, of late, parameters at the
crossing-symmetry point in the unphysical region
according to a parametrization due to Hohler,
Jakob, and Strauss. "

In spite of these considerable refinements in
the determination of low-energy parameters many
practical problems remain in analysis through
dispersion relations, due in part to the use of
data from different experiments spanning vast
energy ranges, and the need for hypotheses about
behavior at high energies. " (In order to avoid
model input at high energies, Nielsen and Oades"

have used finite-contour fixed-t dispersion rela-
tions. ) Although a fair consensus has been
achieved about the general area where values
should lie for scattering lengths, instabilities are
still being felt (see for example the values of
a, + 2a, predicted by Samaranayake and Woolcock').
Further, dispersion-relation methods being free
from dynamical content, it is very difficult to
calculate electromagnetic corrections since dis-
persion relations are notably difficult to apply to
problems involving photons (see in this respect
the work of Hamilton, Tromborg, and co-work-
ers"). Electromagnetic effects become very im-
portant at very low energies (below 40 MeV pion
kinetic energy) and are needed for comparison of
data with theoretical predictions.

The other two approaches for predicting low-
energy behavior of mN scattering have a large
dynamical content with more or less of an experi-
mental input: the current-algebra approach and the
Lagrangian-based predictions. Typical of the cur
rent algebra with various particle-exchange terms
is the large number of adjustable parameters,
seven in the model of Olsson and Qsypowski. "
The motivation there is phenomenological, in the
sense that it makes no reference to a Lagrangian,
the aim being to cover a large energy range ac-
counting for resonances, etc. Again it is difficult
to see how electromagnetic effects could be calcu-
lated in that context for the very-low-energy
region.

Models based on a fundamental Lagrangian for
the nuclear forces would have the definite advan-
tage of being amenable to electromagnetic correc-
tions through the minimal-coupling rule on the
charged hadrons. They may also Qe deemed by
many as more satisfying as dynamical models go.
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The Lagrangian yiejds Feynman diagrams and a
power series which is purely formal in view of
the strong-coupling constants. This important
difficulty has been tackled since Pads-approxi-
mant (PA} techniques have gained popularity. "
The Pade approximant recuperates the information
contained in the first few perturbative terms and

aims at reconstructing the "true" solution. It
should be pointed out that its use is in general
purely heuristic since convergence cannot be
proven Th.e difficulty is compounded by the fact
that usuaDy only the first two perturbative terms
are available via very tedious Feynman-diagram
calculations

Using the traditional interaction Lagrangian

and a [1/1] Pads approximant, Mignaco et al."
find that they are unable to arrive at a satisfactory
model w'hen checked against experimental data.
However, with the addition of a &P' term and using
~ as an adjustable parameter they achieved rea-
sonable agreement with experiment for the T = —,

'
partial waves but unfortunately not for the T = —,

'

waves. Other Pade calculations starting from
different Lagrangians have been carried out lately
with the nomdinear cr model. """ The latest of
these calculations" by Lin and Willey arrives at
encouraging results; however, their answers are
different from either of the previous two calcula-
tions. There is an adjustable parameter and the
differences seem to lie in the nonunique regulari-
zation procedure necessary with that L~~rangian.

The efforts so far to construct [1/1] Padh ap-
yroximants with only two orders of perturbative
terms are probably too ambitious when attempting
to fit all the data with one adjustable parameter.
It seems to us that the PA puts undue emphasis
on the coupling constant, since for large coupling
constants the power series is purely formal. The
working hypothesis in this article will be that the
traditional Lagrangian 2 =g py, gp has been aban-
doned too soon and that an approximant which
makes more economical use of the scarce "per-
turbative terms" may show more promise than
the PA. From the two available orders of pertur-
bative terms of the above Lagrangian we construct
the "democratic approximant" to the K-matrix
elements corresponding to the 8 and P waves.
The democratic approximant" stresses the energy
dependence of the perturbative terms instead of
the dependence on the coupling constant as the
PA does. %e have shown elsewhere" that, to the
extent that the generating kernel of the formal
power series can be approximated by a kernel of
finite rank, the democratic ayproximant describes
as mell the energy dependence with N perturbative

terms as does the Pade apyroximant with 2K per-
turbative terms. The reason for this is that the
PA uses up precious perturbative terms in its
attempt at reconstructing the dependence on the
coupling constant. This seems to us bad manage-
ment of the few available perturbative terms when
considering that, in the finite-rank kernel approxi-
mation, the solution tends to become independent
of the coupling constant as it gets large. Never-
theless it was shown also that the error is for-
mally of order ~~" for the democratic approxi-
mant as for the PA when N perturbative texms
are available (see Ref. 21 for a detailed discus-
sion}.

Thus, in that context, the democratic approxi-
mant using two perturbative terms should do as
well in predicting the energy dependence as a
[2/2] PA using four perturbative terms. The price
we have to pay for this is to supply additional
empirical information to make up for our lack of
predictions regarding coupling-constant depen-
dence. This takes the form of knowledge of the
true solution and its derivatives at a single point
or, equivalently, knowledge of the true solution
over some finite region. The democratic approxi-
mant then effectively uses the perturbative terms
as best-fit functions whose weights have to be
determined empirically. Since it is a linear com-
bination of perturbative terms, the analytical
properties of the power series are preserved;
however, unitarity is not. Hence we shall use the
power-series expansion of the E matrix or its
inverse instead of that of the S matrix.

We cannot strictly demonstrate the applicability
of the democratic approximant to the present prob-
lem; but this remark is equally applicable to users
of the PA. However, we do suggest in Sec. 0 a
heuristic way of testing whether the number of
perturbative terms is adequate using the energy
dependence of the given perturbative terms and

knowledge of the "solution" through some region.
%e then apply this method, in Sec. III, to the
phase-shift analysis of Cartez, Bugg, and Carter
(88 MeV to 310 MeV}; it stems from a coherent
set of data of good accuracy and has been correc-
ted for Coulomb and mass-difference effects in a
model-dependent way. Electromagnetic effects in
those regions are relatively small and apparently
not very dependent on the particular model. ' '
A best-fit criterion is used to determine the weight
of each perturbative term after we have established
that the two available orders of perturbative terms
satisfy reasonably well the heuristic test developed
in Sec. II. Extrapolating this fit to threshold,
scattering lengths and effective ranges can be pre-
dicted through the theoretically calculated energy
dependence of the yerturbative terms at threshold.
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Section IV examines the results and compares
them with determinations of scattering lengths ob-
tained through other methods.

It should be remembered that the purpose of this
article is not to give a full dynamical account of
low-energy mN scattering starting from the two
available perturbative terms as was tried in the
past with PA. its aims are more modest: (i) to
show heuristically that the first two orders of
perturbative terms of the traditional Lagrangian
can reasonably be used as best-fit functions to
the low-energy sl1f data and (ii) to use this fit in
the democratic-approximant context to extrapolate
data to threshold and make semiempirical predic-
tions for the threshold parameters.

II. THE APPROXIMATION

In a previous article" we developed an approxi-
mant, starting from a formal Born series, which
we have called "democratic" because all available
perturbative terms are a Priori on an equalfooting,
in contrast to having weights and roles dependent
on their order of appearance in the formal power
series, as is the case with Pade approximants.
Briefly the argument goes as follows: The power
series generated from an integral equation

(I -vc)f=g
can be written

(2 l)

(2 2)

%e noted that as ~ becomes large, the coefficients
C~~(&) tend asymptotically towards constants in-
dependent of &. Thus for series obtained from
finite-rank kernels at any rate, and those from
operators that may be approximated by finite-rank
kernels (e.g. , completely continuous operators},
it makes sense for large ~ to build an approximant
which treats all "perturbative" terms on an equal
footing. Thus we proposed

AN(x) —=A"(x) -g(x) = Q a,"f,(x),

where AN(x) aims at reconstructing the true solu-
tion f(X, x). This approximant has no use for the
large coupling constant &; it regards ~ as a mere
formal device in the process of obtaining a Born
series. The democratic approximant uses the x
dependence of perturbative terms as the only sig-
nificant ingredients. The coefficients a," contain

(2.4)

f(») -g(x) =&f (x)+~'f (x)+". (2.2)

where iteration gives f& E~g Fo——r a f.inite-rank
kernel of arbitrary rank L, the Fredholm solution
can be written as

the ~ dependence in some complicated way which
we need not unravel if we have sufficient empirical
information on the true solution in some region or
at some point xp. In our article" we studied a,"
determined through knowledge of f(x) and (N —l)
derivatives at one point x„ then

First divide by f,(x) on both sides:

f/f, = A, + X'f,/f, + A.f,/f, + ~ ~ ~ . (2 7)

If the kernel were of finite rank =1, all the ratios
on the right-hand side (rhs) would be constant,
and

f=C, ='f, . (2.8)

Thus if the ratios at hand are nearly constant,
the following ansatz may be made for an approxi-
mant to f:

(2.9)

If these ratios of perturbative terms are not con-
stant we first differentiate everywhere and divide

by one of the new coefficients of X~, say (f,/f, )':

(f/f, ) /(f. /f, ) '

Xp

(2.5)
where 8'„are Wronskians, and a detai$ed error
analysis is given for this choice of a,"-. In this
article we shaQ use information over a finite range
of values of x (i.e., the energy) to determine the
coefficients. It is well to emphasize the contrast
with Pade approximants. %hereas the PA stresses
the & dependence and considers the f, (x} as coef-
ficients in the power expansion in &, the demo-
cratic approximant stresses the x dependence of
the f,(x). Thus these two approximants are meant
for use on very different objects. The diagonal
PA satisfies unitarity and can be used to approxi-
mate the amplitudes f, [where lmf, = (f,)'], but it
introduces x dependence in the denominator thus
upsetting the analytical properties in x of the
formal power series and presumably of the true
solution. The democratic approximant preserves
analyticity but, being a linear combination, it is
not suitable for approximating unitary functions;
it is best used on functions with smooth dependence
on the x variable such as q" "cot 5, or its inverse
a,s we shall see later on.

In practive, whatever may be the operator gen-
erating the Born series, it may be possible to de-
fine heuristically a democratic approximant by
consideration of the following algorithm. Take

f(x) =- f(~; x) -g(x) = ~f (») + ~'f (x) + (2 6)
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Thus if the kernel were of rank = 2, all the terms
on the rhs would be constant, and

f CJv—=2f +CN=2f (2.11)

Again, if the ratios of derivatives are nearly con-
stant, an approximant may be defined using this
near constancy as the dominant feature:

gN=2 nN=2f +oN=2f (2.12)

This repeated process of division and differen-
tiation can be carried on in theory until practical
constancy for the ratios of Wronskians on the rhs
is achieved, thus heuristically justifying an ap-
proximant with a finite linear combination of Born
terms. In practice this will be limited by the num-
ber of perturbative terms available; however,
we shall be encouraged in the use of the approxi-
mant if successive division and differentiation
show a trend towards constancy.

We can also consider the case where the true
solution f is known over a given range of the inde-
pendent x variable. If, for example, we should
find that

(f/f, )'/(f, /f, )
' = constant, (2.13)

we can say that at least over this range (and hope-
fully beyond) f can be approximated as

gN=2 nN=2f +&N=2f (2.14)

Note that in this case the coefficients are deter-
mined by a best fit, not as in Eq. (2.5).

We have therefore sought for the problem at
hand a function f(W}:

(1) with smooth dependence in W in the region
of interest, threshold to low energies,

(2) for which reasonably accurate data were
available in a portion of the range of interest, and

(3) which satisfied, approximately, criterion
(2.13).

If this last criterion is reasonably satisfied then
the coefficients a";=' can be determined empirically
through the known region, and a prediction for the
values of f and f ' at threshold can be made since
f,(W) and f,(W) can be evaluated theoretically at
threshold. Thus the compromise between data ex-
trapolation and a mild theoretical input is realized
to estimate values for the scattering length and

effective range.
The search for a function which satisfied the

three conditions mentioned above led us to the
obvious candidates: q" "cot 5, and its inverse.
Both have been studied in detail by Rasche and
Woolcock" in a Schrodinger-equation square-well
model and found to have a Priori approximately
equal energy regions for a valid expansion in terms
of scattering length and effective range (or, alter-

natively, curvature). We have chosen q""cot 5,
in all instances except P(1, 1), where we took
q
" 'tan 6, because of the change in the sign of

the 5 in the vicinity of S'= 1205 MeV. We give the
leading power expansions for these two functions
in terms of the first two perturbative terms of
the partial-wave amplitude

f, =-e' ' sin6,

=g'Re f ' +g'(Re f," +ilm f" )+ ~ (2.15)

Writing &=-~', f, =Re f~~'~(W), and f, =Re f,'4'(W) we
have

q
2l ltan5 —g(q 2t 1f )+ g2(q 2l-1f ) + 0(y3)

(2.16a)

$2q l+2Icot5 $(q21+ 1/f ) )P(q2l+ lf /f 2) 0(pp)

(2.16b)

After division by the first Born term in each case
this reads, in a democratic-approximant context
using two perturbative terms,

tan5/f, =A, +A,f,/f, , (2.1Va)

f,cot6 —Bo+8, f2/f, .

The terms Re fP~(W} and Re f,"'(W) have been
obtained in a numerical evaluation" of all contri-
buting diagrams to the rN scattering of order g'
and g' starting from the traditional Lagrangian,
ggy, gQ. In that calculation we noted an interesting
fact: Whereas the terms f, =- Re f,"~ and f, =- Re f,"'
have individually a fairly pronounced dependence
on W (c.m. energy), it is remarkable that the
ratios X(W) =f,/f, are much le-ss strongly charac-
terized in the variable 9'. In fact, for S waves
(T =1, 3}, the ratios X(W) are practically straight
lines over the whole range of W calculated (1100
to 2000 MeV). This straight-line trend is main-
tained for the P waves also, albeit over a shorter
energy range, with the exception of P(3, 1), which
tapers off near threshold. Unfortunately we do
not have the terms in A' =- g' at hand to verify if
constancy of the rhs is achieved as described in
Etl. (2.10), thus justifying a two-term approxi-
mant. However, we can test for the criterion
(2.13) by actually using the known values of the
function f in the range (W = 1152 to 1320 MeV)
provided by the detailed data of Carter, Bugg, and
Carter (CBC)."

Since the ratiosf, /f, are practically straight
lines in S" for the low-energy regions, it is suf-
ficient for Etls. (2.17a), (2.17b) to be good ap-
proximations that f,cot6 or [f, 'tan5 for P(1, 1)]
be also approximately straight lines as a function
of W. Examination of these functions (Figs. 1 to 6),
as computed from CBC22 data, show that they are
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FIG. 1. For partial wave ${1,1) we show the experi-
mental quantities f&cot6 using CBC phase shifts (Ref. 16)
and a fit using a linear regression in the ratio fPf&.
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FIG. 3. For partial wave P{1,1) we show the experi-
mental quantities (f&cot~} 'using CBC phase shifts (Ref. 16}
and a fit using a linear regression in the ratio fgf, .

compatible to a satisfactory degree with a straight
line at the low-energy end of the range made avail-
able.

P ttin emphasis on the data at this low-energy
Bend, we will determine the coefficients Bo and

[orA, andA, for P(1, 1)] as accurately as possible,
and estimate the errors in the extrapolation to
threshold of the function f,cotd (or f, 'tan5).

III. FITTING WITH A LINEAR REGRESSION

%e proceed to find the best possible fit to the
available data points of each partial wave for the
function Y =-Refi"cotd, [or its inverse tan5, /Ref, '
for P(l, 1)]with an approximant linear in X(W}

Re f,"'/Re f,"-'

Y(W) = B0+B,X(W) . (3 1)

This is a linear regression for Y(W} in the inde-
pendent variable X(W) whose values have been cal-
culated at the energy points 8'= S', of the CBC
data. "

Now it is unlikely that the "true" Y'(W) will be
fully described by (3.1) over a range of energies

s = Y]- Y) N-P, (3 2)

we have allowed into the regression the first
n «N points which made s' a minimum since in
our model p=2 is fixed. %e have found s' to be a
smoothly varying function of n. Relative minima

which extends we11 into the inelastic region where
more dynamical input should be necessary. En

fact the true Y(W) in our model should include ex-
tra. terms in Re fP /Re fI'i, etc We. must there-
fore guard against forcing the linearity in X(W;)
beyond its range of validity thereby introducing
a bias in the estimated values 1'(W) due to lack of
fit.

ln practice this region of validity for (3.1) is not
easy to define; we have used a method which keeps
as wide a range as possible on the low-energy end
of the data while minimizing model bias. Consider-
ing that the criterion usually retained for fitting
N points with p parameters is to choose the num-
ber of degrees of freedom (N —P) so as to mini-
mize the residual mean square
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Flo. 2. For partial wave $(3,1) we show the experi-
mental quantities f&cot5 using CBC phase shifts (Ref. 16)
and a fit using a linear regression in the ratio f2/f, .
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FIG. 4. For partial wave P{1,3) we show the experi-
mental quantities f&cot5 using CBC phase shifts {Ref. 16)
and a fit using a linear regression in the ratio f2rtf &.
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and their relations with the scattering length and

effective range see the Appendix.
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FIG. 5. For partial wave P(3, 1}we show the experi-
mental quantities f&cot6 using CBC phase shifts (Ref. 16}
and a fit using a linear regression in the ratio f2/f &

~

were found for n =6, 6, 8 in the case S(1,1}, P(1, 1),
S(3, 1), which were associated with strong corre-
lation coefficients between X and F. Minima were
obtained for n =N for P(1, 3) and P(3, 1)correspond-
ing to situations of weak correlation coefficients.
P(3, 3) has a striking fit with just the first three
energy points having a correlation coefficient
practically equal to one due to the effective lin-
earity in W of both X and Y in that low-energy
region.

We have systematically used the first n points
of lowest energies as being most likely to be corn-
patible with the linear approximation (free of in-
elastic effects), as well as being closer to the
threshold where we wish to extrapolate. We have
not otherwise discriminated between data points;
the errors quoted do vary from point to point in
the CBC' data but not substantially in general.
The quoted errors were used to define an estimate
o' of the variance o' due to "pure error" in the
data for each partial wave; ~o is the average of
the quoted variance over the number of points
used.

This rough estimate of the variance due to
pure error in the data enables us to check our
approximant for bias. The residual mean square
s' achieved through regression should be such
that s' ~o', otherwise we may regard the regres-
sion as model-biased. 27

A glance at Table I shows that in all cases
s', & o', an encouraging sign. Had we insisted on
the use of all N available points, the bias induced
by linearity in X(W) would have swelled s' to
values much larger than c' in some cases, par-
ticularly for P(3, 3}, where very accurate data
are available. In all subsequent estimates of
standard errors we have therefore used the resi-
dual mean square s' as the basis of computing
estimates. " For the various formulas relevant
to computations of estimates of standard errors

IV. RESULTS AND COMMENTS

2XIO 3 —1.5X lo

I XIO-3 I X IO 3

f2/f I

—O.5 XIO-3

-lxlo 3, 1 I I I I I I I

1080 1120 1160 1200

W (MeV)

I I I I ~ 0
1240 1280 1320

FIG. 6. For partial wave P(3, 3}we show the experi-
mental quantities f&cot6 using CBC phase shifts (Ref. 16}
and a fit using a linear regression in the ratio f2/ft.

Table I gives the parameters obtained in our
analysis. We see that in all instances we have
found a minimum residual mean square s
smaller than the average variance due to pure
error g' as calculated from the CBC data, "thus
removing any a Prior rejections on the grounds
of model bias.

The first n data points (on the low-energy end)
used to achieve this determination turned out to
be the maximum number of available points in the
case of P(1, 3) and P(3, 1) due to the bad scattering
of data points (see Figs. 4 and 5). This is also
reflected in the low correlation coefficients 8»
for these two partial waves. Weak correlation
can also be expected in cases where the data
points f,cot6(W) and the linear variable X(W)
=f,/f, of the regression are both nearly constant
as functions of the energy [see Fig. 1 for S(1, 1)j.

The standard deviations given in Table I are
calculated according to the usual linear-regression
criterion, using s' as a yardstick, and they there-
fore give a measure of deviations for estimated
values on the basis of a two-term approximant.
One should remember that the calculated deviations
for the constant term j3, and the slope coefficient
B, of the regression are in general greater than
those obtained for the scattering length and the
effective range (-,'r, ) because the linear variable
X(W} =f,/f, at thresho—ld is not substantially dif-
ferent from its values in the data range. Since it
is in terms of the variable X(W) that the regres-
sion is carried out, estimates at threshold for
f,cot6 do not constitute a distant extrapolation in
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the variable X(W) (see the ratio f,/f, in Figs. 1
to 5). The only exception is for P(3, 3), where
the variable ratio X(W) = f,/f, is almost zero at
threshold. It is interesting to spectulate in this
case on the relation between this fact and the near-
ness of the resonance.

Table II is for comparison with representative
different methods of determining scattering
lengths. Our value for S(l, 1) differs from the dis-
persion-relation values, "but is compatible with
solution II of Langbein. ' At any rate, the near
constancy of f,cot5 is rather compelling in view
of the lack of features of f,/f, (see Fig. 1). The
scattering lengths for S(3, 1), P(1, 3), and P(3, 1)
are all very close to the recommended values of
Pilkuhn et al. ' and those of Samaranayake and
Woolcock, "as well as being compatible with other
less stringent determinations. ' "

Partial wave P(1, 1) represents a special problem
is that the low-lying zero of the phase shift caused
us to use a different function for our approxima-
tion, i.e. , (f,cot5) '. Wehavenonethelessobtained
a good fit, but the result is quite different from
dispersion-relation values" ' though compatible
with solution I of Langbein. '

Our determination of the P(3, 3) scattering
length rests precariously on three data points
at 1157.2, 1173.0, and 1181.5 MeV, but the very
low residual mean square 8' and the striking
correlation coefficient between f,cot5(W) and

f,/f, =- X(W) make it interesting. This value, s,
= 0.202, is in very good agreement with that of
Ref. 8 as mell as being compatible with that of the
statistical approach of Lichard, 28 and the algebraic-
function fit Langbein' (solution I). Note that this
value was obtained using the straightforward m'p

data ', we have also tried using this same I+p data
to include a fourth point at 1195.8 MeV, and the
correlation coefficient was still fairly good but
the value obtained, 0.198„appeared model-biased
because s'&P. Similarly, we have carried out the
analysis on the P(3, 3) from v p data, "this time
using the first three points available at 1152.3,
1177.1, and 1196.8 MeV; again the value obtained,
0.218, seemed unreliable because the residual
s' was much greater than the pure-error variance
O'. It appears that already around 1190 MeV the
effect of the resonance is felt, and that a more
reliable determination which distinguishes between
& P and m'p would require more data points below
that energy or more perturbative terms (i.e. ,
Re a", ) to describe the dynamics.

Our results indicate that the Lagrangian g y, gp
is dynamically relevant to a heuristic description
of the low-energy mN data when used with a demo-
cratic-approximant approach. This is due to the
remarkable straight-line (or near-straight-line)
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TABLE II. Comparative determinations of scattering lengths.

Partial This
wave deter mination

Recommended by Forward dispers ion
Pilkuhn et al. relations

(Ref. 3) (Refs. 7, 8}

Statistical Algebraic-function fit to
analytic approach fixed-& dispersion relations,

(Hef. 28) solutions I and II of Ref. 5

S(1,1) + 0.135 + 0.005

S(3, 1) -0.113+0.005

+ 0.178 ~ 0.078

-0.112 +0.022

P(1, 1) -0.0575 +0.0033 -0.082

P(1, 3) -0.0243 + 0.0049 -0.029

P(3, 1) -0.0400 + 0.0021 -0.043

P(3, 3) + 0.2022 +0.0001 + 0.215

+ 0.1814 +0.0102

-0.0892 +0.0064

-0.0845+0.0102

-0.0266 +0.0063

-0.0429 + 0.0071

+ 0.2041 ~ 0.0045

+ 0.208 + 0.020

-0.091 +0.017

-0.109 + 0.035

-0.045 ~0.035

-0.063 ~0.022

+ 0.186 + 0.022

(I) + 0.178 +0.012
(II} +0.149 +0.019
(I} -0.105 +0.006

(II} -0.092 ~0.010
(I) -0.067 ~0.017

(II} -0.089 +0.020
(I) -0.017 +0.012

(II} -0.038*0.016
(I) -0.061~0.010

(Io -0.043 +0.011
{I) + 0.198 +0.008

{II) +0.214 ~0.009

No error quoted.

behavior in W of ratio Ref ~'~/RefI'~ coupled to a,

similar trend for the semiempirical Refg~cot5,
at low energies. This fact resulted in a ratio of
the slopes of these two quantities that is nearly
constant for many of the partial waves studied over
a good range of energies, thus warranting an ap-
proximation with the two perturbative terms avail-
able. That such fits were possible without undue
model bias was empirically justified by the fact
that the residual mean square was in all
cases less than the average variance due
to pure error quoted in the experimental analysis.
This is not trivial in spite of the restriction to
lowest-energy points that we had to impose in
order to minimize the residual mean square.
These fits, when extrapolated to threshold using
the theoretical behavior of the perturbative terms,
gave semiempirical determinations for scattering
lengths and effective ranges. Those determinations
have calculated errors which cannot be taken at
face value for the moment in view of the fitting pro-
cedure. Nonetheless the values predicted for the
scattering lengths are remarkably. close to those
obtained by dispersion-relation calculations in
several cases. Considering the limited data
available and that only two orders of perturbative
terms were used, this is encouraging, and with
more refinements the method might prove an inter-
esting alternative to dispersion-relation methods
over the long run.

%e stress the concept of dynamical relevance
of the Lagrangian gy, gf when used in a demo-
cratic-approximant approach instead of the notion
of complete dynamical explanation, which is tradi-
tionally sought when starting from a Lagrangian.
It may not be as satisfying as a Lagrangian theory

in QED, say, but in a strong-interaction context
with rapidly diverging power series, we contend
that it is a way to give meaning to a Lagrangian
and put it to use as a predictive device. A question
remains with this serniempirical use of a Lagran-
gian and its formal perturbative series: how to
choose one Lagrangian as more "dynamically
relevant" than another. One way to decide would
be to repeat the analysis described here with
different Lagrangians; obviously the Lagrangian
which needs less perturbative terms to achieve
the same goodness of fit to the given data may be
judged more relevant to the description of the
phenomena at hand. This is akin to choosing one
model over another in that one has less free
parameters than the other.
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APPENDIX

Here is a summary of formulas used for the
linear-regression analysis and their relation to
scattering-length and effective-range parameters.

Assuming normal distribution of errors through-
out, and o, '=o' vi, the mean is

(Al)

(A2)

the variance about the mean is



DYNAMICAL FIT TO LO%-ENERGY x-N PHASE SHIFTS AND. . .

n

Q (Yi —Y)'i8~j

s„'= g (x,. -x)',

and the linear regression is

Y=Bo+B,X= Y+B,(x —X)

with coefficients

(AS)

(A4}

(A5)

, 1 X'
V(Bo)ew =s +

( )
o ~

At threshold we have

Y= (Clp) &Ot6i = iii + a &i(C/)i)

X=-Ref,"'/Ref, "~ = x, + x, (q/p, )',

f, = Ref-, '= (e/) )""[4+P,(e/u)'] .

(All)

(A12)

(A13)

(A14)

8 = F-B,X,

B,= (X, -X)(Y, —Y
1

SPx Y/Sx &

g (x, -x)'
4=a

(A6)

a, '=[Y+B,(xo-X)]/yo (A15)

where the estimated standard error of a, ' is

Thus the ayproximation gives for the scattering
length

where 8» is the correlation coefficient.
The residual mean square is

fl

S
1

(Y, —1',)2
8~2

'

1 (x, —X)' &"'
n (n —1)S '

and for the effective range

(A16)

= (n —1)S~'(1 —Rx „')/(n —2),

and the estimates of variance are

V(B,),„=s'/[(n —1)Sx'],
(x-x)'
(n-l)S '

(A8}

(AQ)

(A10)
' (x,y./y, -x.+x)'
l. (n —1)Sx' n

(A18)

'o&i = (ei/eo')[(xi''0/ei xo+—X}Bi Y] — (A17)

and, since 8, and F can be shown to be uncorre-
lated random variables, it follows that the esti-
mated standard error of &r, is
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