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New resonances in the linear chiral SU(4) x SU(4) model
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In the context of the linear chiral SU(4) X SU(4) model, we study a Lagrangian of 16 pseudoscalar and 16
scalar fields interacting by means of the most general nonderivative chiral-SU(4) x SU(4)-invariant interaction
and any particular symmetry-breaking term. The three-point and four-point couphng constants in the model
can simply be related to masses in the system. As an application, partial decay rates of q" (0 meson

analog of 4) such as q"—l K+ K+ m, q"~q+ m + n, etc., are computed with a choice of the symmetry-
breaking term of (4,4~) + (4~,4) type. Numerical analyses of the pseudoscalar-meson mass spectrum and the
partial decay rates of q" are carried out.

I. INTRODUCTION

The charm model' has been the simplest model
to explain the narrow resonances". In particular,
after the experimental discovery of charmed me-
sons was announced, ' the model stood on a much
firmer ground. Taking this picture seriously, we
must investigate a whole particle spectrum based
on its underlying group SU(4). In fa,ct there have
been many investigations in this direction' '.

As an extension of the linear chiral SU(3) x SU(3)
model"-" investigated some time ago, in this pa-
per we are going to investigate the chiral SU(4)
x SU(4) symmetry applied to the pseudoscalar and
scalar meson system. Our linear chiral SU(3)
&&SU(3) model is a Lagrangian formulation of the
Glashow-%'einberg approach" and has some ad-
vantage over the Gell-Mann-Oakes-Renner mod-
el" in the sense that it allows the possibility of
having a nondegenerate vacuum based on the spon-
taneous breakdown of symmetry and, in another,
that the mixing problem has been handled proper-
ly. The model was particularly suited to select a
possible symmetry-breaking term. The symme-
try-breaking term of (3, 3 }+(3*,3) type" could
yield a mass formula" ""which is well satisfied
experimentally. In the tree approximation, results
obtained from the I.agrangian are known to be con-
sistent with the standard current-algebraic ones in
the soft-pion limit'o'" ". (Here, of course, we do
not have to take the unphysical and often ambiguous
soft-pion limit. ) Recently the model has been ex-
tended to SU(4) x SU(4) by Schechter and Singer"
and the mass formula has been derived. The pre-
sent work is a further study of the SU(4) && SU(4)
version of the model. Although the formal. ism of
Refs. 11, 12, and 1V is quite general from the
group-theoretical point of view, it has been criti-
cized as "nonrenormalizable, " since the chiral-in-
variant part of the interaction contains polynomials
higher than fourth order, explicitly. This fact has

led people to construct a model of less general na-
ture. " In order to improve the situation, we con-
struct a formalism without referring to the group
invariants at all. Although the discussion of the
renormalization'9 is beyond the scope of the pre-
sent paper, our effective Lagrangian, (2.6), re-
stricted up to fourth-order polynomials, satisfies
the power-counting rule for renormalizability and
is expected to be renormalizable.

We shall investigate the linear chiral SU(4)
x SU(4) model with the most general nonderivative
chiral-SU(4) & SU(4) invariant interaction and some
particular symmetry-breaking interaction. As a
result of the invariance alone, the chiral-invariant
part of the interaction must satisfy two basic equa-
tions. Because of the existence of the additional
symmetry-breaking interaction, the ground state
of the system can be determined by the extremum
condition. Together with the extremum condition,
differentiated expressions of the basic equations
are powerful enough to supply us with information
not only on masses but also on coupling constants
involved in the system. "

With a simple choice of (4, 4*}+(4*,4) type of
symmetry breaking we derive mass formulas
agreeing with those of Ref. 17. In order to investi-
gate the model further, we next derive various re-
lations among three-point and four-point coupling
constants in the system. Then as an application of
the formalism we shall here mainly concentrate
on the decay processes" such as

q"-K'+K +go,

'g /+K +K ) etc.

Since these are strong decay modes, they are ex-
pected to dominate over weak or electromagnetic
decay modes.

The mystery of the P and g' has been why its had-
ronic width is so narrow. Under the circumstances
it is a pertinent question to ask if a similar situa-
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tion holds for g", which is an expected 0 meson
counterpart of g. An order-of-magnitude estimate
has been given by the charmonium model. " Ac-
cording to this model the hadronie width should be
an order of 100 times larger than that of P, be-
cause the g" decay is the two-gluon emission pro-
cess, contrary to the corresponding three for the

g decay. (Of course the coupling constant is sup-
posed to be small in this energy range. ) As was
mentioned earlier, our Lagrangian contains de-
tailed information not only on masses but also on
interactions; we ean quantitatively discuss the
above decay widths without much ambiguity, in

spite of the lack of experimental information. Be-
cause of the fact that g" is predominantly in the
charm-antieharm pair s tate, the above hadronic
width of q" is narrow, but not so much as g or g',
agreeing with the qualitative feature of the charm-
onium picture.

Finally, we would like to mention that the present
model yields a sum rule for the leptonic decay con-
stants:

three-point and four-point coupling constants are
derived and then partial decay rates such as g"
-K+ K+@0 are computed. In Sec. V numerical re-
sults are discussed.

II. FORMALISM

0 SB (2.2)

The system in which we are interested consists
of 16 pseudoscalar mesons P, (a, h =1-4) and 16
scalar fields S, (a, b = 1—4). The Lagrangian densi-
ty for this system is then

Z = --.' Tr(s, ys„y) - -.' Tr{s,Ss,S) —V, —V„.
(2.1)

Here Vo is the most general (nonderivative) chiral-
SU'(4) x SU(4)-invariant interaction and V~s is the
symmetry-breaking term to be specified later.

The ground state of the system will be deter-
mined f lorn

0 SB (2.3)

(see Sec. V for details). This sum rule will easily
be testable by future experiments.

In Sec. II a brief discussion of our formalism
is given. In See. III mass formulas axe de-
rived and the mixing angles for pseudoscalar me-
sons are determined. In Sec. pf formulas for

where the notation ( ), means that the enclosed ex-
pression is evaluated at the ground state. Next we
introduce the physical fields (denoted by a tilde}

0 =4 -(0&., (2.4}

S =S —(S), , (2.5)

and expand the Lagrangian density as

Q2p

1 9 P - - - 1 b d f h

~~be~d~~f a4c4. —
4 ) ~ e~b~~d~~f ~~. &a4 c4e4g

/ASSSs-d-x 1 m sV phd~~
-S~ ~ sSsSsSd "'-4 ~ sysysSsS"

ad ~ d ~ yf a c 8 0 O. .., ll d C 8 d 0

1 $bgdgf gh
SSbSSdSSfSSd a c d d+(

a%co ~ $h a c 8 g 0
(2.6)

with V= V, + V8s. The sets of coefficients (O'V/
SP',Sgd)„ for example, represent the matrix of
pseudosealar-meson squared masses. The set of
coefficients {O'V/ss', Beds/~), represents the cou-
pling constants of S-Q-Q vertices. Similarly,
(O'V/8$8$8$8@), represent the effective four-point
coupling constants. In this paper we are not in-
terested in the remaining terms. The last (dotted)
term in (2.6) represents possible contributions
coming from the interactions higher than fourth
order. As mentioned in the Introduction, however,

when we wish the model to be renormalizable, we
should disregard these (dotted) contributions en-
tirely. (The main advantage of this approach over
the so-called xenormalizable model" is that we do
not allow any approximation in the stage of de-
termining the ground state of the system. )

Since our treatment is similar to the SU(3) o

model, " the discussion will be brief. Assuming
parity invariance of the model, one finds

(2 'f)
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Thus Q = Q and (2.4) is identically satisfied. For
the scalar mesons we may choose

where I is a 4x 4 unit matx'ix and the Lagrange
multiplier X is determined to be

(S,'),=5',o., {no sum), (2.8) ~ =-.' Tr( fe V,/eS, y], - [eV,/e4, S].)
where |), is the Kroneckex' 5, and e„are the foux"

real constants characterizing the gxound state of
the model.

We Ilow collsideI' InfilllteslnlRl cllil'Rl SU(4)
&SU(4} transformations. Under a vector trans-
formation, the change in the fields is given by

5$ =[E,P],
~s=[z„,s],

(2.9a)

Then' since Vo ls lnvax'lant, under the vector trans
fOrma tlOny

where E~ is an arbitrary 4 x 4 infinitesimal matrix
satisfying

Equations (2.11), (2.14a), and (2.14b) are our basic
equations. Differentiating with respect to fields
and evaluating the xesultant expression at the
ground state„we can derive various relations be-
bveen particle masses and the three- and foux-
point interaction vertices. In this paper the sym-
metry-breaking term is chosen to be

vtIR = -2(A, s', + A, s', + A, s', + A, S4), (2.15)

which transforms according to the (4, 4*)+{4*,4)
representation of SU(4) && SU(4}.

The scalar-meson mass (squared) matrix which
ls to be compared %'ith expex'1IQent ls

This immediately leads to

[y, ev, /e4]+[s, ev, /es] =o. (2.11) 88y &8y o 88y~8y 0 ~8ye8y o
(3.1)

Similarly, the change in the fields under an axial-
vector transformation is given by

Because of the basic equation (2.11) and the ex-
tremum condition (2.3), (e'V, /eS;eSI)0 must satis-
fy

54 =- [E„,s].,
es=I'[E~ &].

(2.12a)

(2.12b)

whel'8 Ep RgRIII sRtlsf les (2.10). SIIIce we Rre 111-

terested in SU{4)& SU{4) transformations, we must
in addition have a unimodular property so that

(3 2)

Therefore, scalar-meson (squared) masses are
given by

Tr(E) =0. (2.13)

(2.13) does not have any effect on a, vector trans-
formation. In order to take into account {2.13), we
use the Lagrange-multiplier method fox' an axial-
vector transformation.

The invarlance of Vo umIer the axial-vector
transformation yieMs

0 = ev, = Trfz„([ev /es, y], [ev /e4, s], x)].

Thus we must have

88eq&8y~ 0 88~88y~ o

88 g5 SQ

Similarly, the pseudoscalar-meson mass (squared)
matrix ls

(3 4)

[eV,/eS, y], -[eV,/ey, S].=~1, (2.14a}

x'elation

-""(.:;;).--::~"(.:;.";:).=-'(.;.).- (.:;:).—::(.:;).
WIth a choice of Eq. (2.15)& the scalar and pseudoscalar mass matrix js given by

Q2p'
(I,—IM,),—,e 5 g8088/ 6 g @

(3.6)
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(3 7)

Nondiagonal components of Eq. (3.7) yield the following pseudoscalar-meson masses:

(,), 2(A, + A, )
Q3+Q,

(,), 2(A, + A, )
Q3+ Q2

(
.), 2(A, +A, ) (,), 2(A, +A, )

Q4+ Q2 Q4+ QI

(,), 2(A, +A,), „, 2(A, +A, )
0

Q4+ Q3 Q2+ Q1

(3 3)

Diagonal components of Eq. (3.'I) a,re more involved. All together we have 16 relations:

~6A, for i= j=1, . . . , 4
4Q; M;; — Q~M;c=

c=1 -2A~

forint

j; i =1, . . . , 4; j=1, . . . , 4,

M, , =(e'v/ay, '. ey','), .

Or, equivalently, we can write the mass matrix in the form

(3.9)

2—+—MA,
Q1 Q1

—MQ2
12

—MQ1
12

A, Q,Q,
2 12

3 3

—MQ2
12

—MQ1
12

(3.10)

Scalar-meson masses can be similarly discussed. For instance,

(y)g2(A3Ag)(o)22(AJAR)(ay)$2(A@ A 2)(Do)g2(A@A/)
Q3 —Q1 Q3 —Q2 Q~ —Q2 Q4 —Q1

(,), 2(A, —A,), 2(A, -A, )
Q4 —Q3 Q2 —Q1

(3.11)

where D» E~, and z are the scalar-meson analogs of D, I", and n, respectively.
Since we are interested in the limit of isospin invariance only, in this paper, we haveA, = A2 and Q, = Q2.

Then setting Q, =Q, =Q, Q, =QR', and Q, =QW' we can express pseudoscalar-meson masses as

E' = 2 (A, + A, )/a(W+ 1),

v' = 2A, /n,

r'=2(A, + A,)/n(W + W),

D'=2(A, +A,)/a(W'+ 1),

(3.12a)

(3.121)

(3.12c)

(3.1M)
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and

2—+MA,
12 M,2

M, 2

W
M, 2
W'

M 5=
M, 2

M, 2

W

A,
2 —'+M 12

M,2

W

M, 2

W

A3 M, 2

QW W2

M, 2
W'

M,2
WW'

(3.13)

M, 2
W'

M, 2
w'

M, 2

WW'
A4 M, 2

QW' W"

Physical masses are found as a solution of the secular equation det~M„-A5„~=0 (a=1-4). Since w, '=2A, /n
does not mix with the rest, we only have to solve a cubic equation to get q', g", and g"'.

2M, +m' 12

W
12

W'

M, 2

W
M, 2

WW'
=0. (3.14)

M,2
W'

M, 2

WW'
A4 M„
QW' W"

Or, explicitly,

(3.15a)

2 q&2+ gI2 grf2+ @2~If2 +2 2 3 + 2 4 + 2
A A A A
QW QW' QW QW'

A, A, 1 2A, 1 2A4, 1 1
W QW' W" W W2 W' W2 W"

2 t2 i/2 22A, 2A, , 1 2A, 1 2A, 2A, 2A4

(3.15b)

(3.15c)

We choose pseudoscalar-meson masses 7)', t)", K', and v' as inputs. Then, after eliminating A, /a and M»
in (3.15), we can express rt"' in terms of W and W' only. Of course, A, /n is not a new parameter, but is
related to W by

A, /n = g [(1+W)K' —w' j .

Explicitly, g"' satisfies the following quadratic equation:

2A, 1 2
(t)"')'d, 1 — 2W'+1+ „ 6 +rt"'&v' 4 ', +1 — 1+ ', — 2+ , + „ 0W" Qw'

42A3 14A3110'

(3.16)

where the dimensionless parameters, 4 and 0, are defined by and are dependent upon W only as
2

2 2A.,/n —v'W ' Q Q

Q Q Q

(3.18)

(3.19)

Essentially the same mass formula, was obtained
earlier" in a slightly different way.

We first observe that in the limit W'-~ (3.17)
yields a trivial solution h(W) = 0, which is indepen-

dent of g"2. This corresponds to the case of chiral
SU(3) &&SU(3). In fact the mass formula

(3.20)
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was derived earlier in Refs. 11, 12, and 15.
Treating 8' as a free parameter, the sum rule

(3.20) can be well satisfied with a choice of W

= 1.73. According to the formula

W'= 2I'~//E, —1, (3.21)

W= 1.V3 corresponds to Fz/F, =1.37, which is ra-
ther close to an experimental value Fr/F, = 1.28."

In this paper we are interested in a situation
where g"2 depends explicitly upon TV and 5".
Therefore, excluding the above singular case
we assume 400 hereafter. For a given 8' and W"

we can determine q"' from Eq. (3.17). Then we

can determine M» and A.,/o. from

(3.22)

~ 2@2+1+

~ 4W", 1 ~ (3.23)

To complete the discussion of masses, let us
briefly mention our choice of mixing angles and
their determination. The basis vectors for our
mass matrix are Q,', Q'„Q', , and Q,. After identi-
fication of m, '=M„-M„, we can express the char-

acterlstlc equation in the form

M„+M,2
—A. ; M,2

2 8'

M, 2 M,2

mv
(3.24)

M,
O'8"

where A.
~

='g
q g q

and g and

A3 M,2 A4 M,2
33 Oi gf Qf 2 & 44 ~gf I +l2

Then normalized basis vectors are given by

33 i 44 I »[w'w"(M„- x,.)(M„-x, ) —M„']

—M„w[M„- w"(M„- &;)] (3.25)

—M,,w'[M„- w'(M„- ~,.)]

where N,. are normalization constants and the ex-
plicit forms will be given shortly.

Physical fields v„rl, q', and r)" and fields Q', (i
=1-4) are related, via a 4 x 4 orthogonal matrix,
as

gf gf 2 q2 3

'oo
~2 M2

8 5 c

a' b' e'
(3.26)

3 —q2 +M2

& S"' 4, -q' +M„M„'
~1I +n ye fI y4

Inverting (3.26) and identifying it with (3.25) we de-
termine the mixing parameter

~0

g Qf 2 3 g2

X g '2 4, —q +M~2 —M~2

+ (M„ww" 1' (tp — ';)

Similarly, a set of mixing parameters a', b', and
c' (or a", 5", and c") can be obtained from a set
of parameters u, 5, and c by changing q into q'
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(or q into r)"). An exactly analogous situation holds
for the scalar-meson system. Scalar mesons e„
o, o', and v" are mixed through

1 1

M2 M2

1V. SPP COUPLING AND Q4 COUPLING

%'e are going to calculate decay processes such
as q"-K+I7+m. In order to do this we need in-
formation on 8$$ coupling constants. Because of
our choice of symmetry breaking (2.15), the cou-
pling constants

5 c

b~. c~.

Q& sr g&re Q& gr Q n

82

$3
3

S4

(
83V

sg;sg;sg;),
introduced in (2.6) are exactly equal to

83+

Contrary to the pseudoscalar mesons, however,
the mixing angles for scalar mesons remain un-
determined.

Differentiating (2.14a) once with respect to the
pseudoscalar meson and once with respect to the
scalar meson and evaluating at the ground state,

we get the basic formula for (8'V/SSSPSP), :

" '( 'sg'sg'sg= ' sg'sg' ' ' sg'sg' ' sg'sj ' sg'sj' ' sg'sa

where X was already introduced in (2.14b). Or, more explicitly, (8'X/BSgBQ&), could be written as

88'8y' 2 8S~8S,' 8y'„8j' 2 ' 8S'8y'8y'

From (2.11) we can similarly derive

8'Vo 85 8'Vo
Bh

8'VC
5f 8'Vo 55 8'Vo

' (ag sg sg ''eg''ag'' ' sg eg ' s'g s'g
' eg''s'g'

Next, four-point coupling constants (8 V/8$9$8$8$), introduced in (2.6) are exactly equal to (9 V /
8$8$8$8$)0 for our choice (2.15) and are expressible in terms of S&f&$ constants as

(4.1)

(4 2)

(4 2)

As an application we first calculate the strongly interacting decay process

r)"(P) -K'(q, ) +K (q ) + v'(q, ) .

In the tree approximation relevant diagrams are shown in Fig. 1. Here the respective particle momentum
is designated inside the brackets. %'e introduce appropriate isospin-invariant SPP coupling constants and
a four-point vertex by

-g=g, ,(g )a" a g, -1/( ) ~ ggg (le/g~ . Kg( g)e H. e)

" ' (sa ag sj sg
=" 'sg 'sg''sg '' sg sg'ss ')' ' sg'ag''as' ' ' sg ag'sg)'

8'V, „O'V, „8'~' ' sg g' 's' s'gsg'sg'ss ' sg"sg'sg') '

(8'A. /8$„"Spg~sp&)o can be written explicitly in the form

8X 1 8 p'O 83+ 8 p 1 84+0
sg sg sg =s sg'sg'ag "' sg' s'g"s'gsg sg'sg e&"*ag'sg's'g sg )'"''

84@
%+K

tl8 +08@38' 1

then the scattering amplitude is
' sg(a//e)g g 0//e„)-,g....„,g. -,, (a//e)g. ..g..-,

)Brl"SwoBEC'SK o &2+(p —q, )' K +(p —q ) & +(p —q )

(4.4)

(4.5)
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e must now express these coupling constants in terms of masses. %e already know that"

1 8 Vo K —m' K —r K2-K
ay', ewoeS,', ~2n(1 iw) ~2n(W-1) (4.6)

I 8 Vo & -K2
8$,'e&f&', eS,', ~2n(1+W)

'

From (4.1) we can derive

e3y (&e+ be)(&2 rle2)
Rsrl E ey3e~eegl n(1 W)

(4.7)

(4.8)

83 Pf~0
8 877 84 Q

(4.9)

The four-point vertex is

(
84+ ~ 8~+0 9$~ 8$~

I8~08P38gi
—~ 8gm8gg8P38gi g~ 8~re

a(1+w) Ital" 8 'ls,', Sq"8w'ls' ~ 9q"94'ls' 1 '80'8s')

1
n(1+W)

1

n(1+W)

K'D"E+ (glt + pe) g

(
@II(g r)II2) (~If + / II)

+ 2lc —1I —Yf )~gn v 2 n(1+W) (4.10)

~ (q„) K'(q, ) Klq )

fn (q, .)]

I

..t
G,G, G

I

t

I
I

x ~

I

FIG. 1. Diagrams for q" E +E +m decay. FIG. 2. Diagrams for q" K +K +g (or q') decay.
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Substituting everything, we get

where 2»2=8, and &(I+W) =F» were used. '» These
PCAC (partial conservation of axial-vector cur-
rent} constants together with others will be dis-
cussed later.

Equation (4.11) is our final result U.nfortunate-
ly, experimental information on scalar mesons is
rather scarce at present. In order to avoid am-
biguities coming from scalar mesons, we first let
all the scalar mesons be infinitely heavy. For all
the known cases this procedure for the model
yields the current-algebraic results. " Here we
do not intend to claim the correctness of pro-
cedure, but merely regard it reasonable as a first
try.

We next discuss another two strong-decay modes:

0

IP

(a+ 5)(»2 —2)2)

n(I+ W)

(s t + ht)(2»2}t2)
n(I+ W)

(»2(i + f(tt)(»2 2}tt2)

n(I+ W)

(4.15)

(4.16)

and

(q) (11.)
/+&'+&

(~)

Coupling constants g,.„„.( j =o, o', and o ") are not
related to masses, Four-point vertices are rela-
ted to three-point vertices by

111

i+»'+w
q' Illa'

Diagrams corresponding to processes (IIa) and (Ilb)
are shown in Fig. 2, while those of (IIIa} and (IIIb}
are shown in Fig. 3.

Here we list the results for three-point and four-
point vertices. Relevant Sf') p coupling constants
defined by

I
I

a,a', c"l

-g= Q [-,'g„,j(f w)+g, ,„„j2}2}"

+ g)»» j(KE)+g~„,.j2}2}']

are related to masses as

$3+
~p2~px

=—~(j' —»2) (j=»2„&r', o"),g (4.13)

l

I

l
l

&'~0
Azrr =

8)apses I

FIG. 3. Diagrams for q" x +x +q (or g') decay.
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(
9~+ 1

( b+) g ;. . (+"+&")g.. + I gg. .(g;+&s))9q"9q9Q39p31 0 e(1+8') J=fyy 0 y fy

( 8——gg„.,+g g„,+ T a~g~„-„j.
'g 'g ~I ~2 0 Q

(4.17)

(4.18)

(O'V/Bg"Bq'B(t)', Bgt) can be obtained from (4.17) by changing q into q' everywhere including mixing angles
(a+&). Similarly, {O'V/Bq"Bq'B(t)')B(t),') can be obtained from (4.18) by substituting g for q' everywhere. Fi-
nally, decay amplitudes are

T {g"(P) q(q„)+K'(q.)+K (q.))=, 2x' —rt' —g
' —(x'-r}')(x'-rl"')

1
+x'-g"'-A' —2(P ~ q, )

(4.19)

4@a"
T(ri"(P)-7)(q, )+v'(q, )+v (q )}=F, 2e'-n' t}"'-

1
i'-g"'-g'-2(g g ) a*-g"*-g*-g(g g.))

(4.20)*
g *-g( -2gg")-)'r g "-O'v e~y fy'

The decay amplitude for (Ilb) [or (IHb)] can be obtained from (4.19) [or (4.20)] by merely substituting q for
q including mixing angles. Again me assume infinitely heavy scalar mesons. Coupling constants such as
g „„are not related to masses and are expected to be independent of mass. Then in the rest frame of q"
%e have

T(rl"-r}+K'+K ) =[(a+I))(a" +I))/ F'r](q"' q+' —2K' —2)I"q„o),

T(r}"-q'+SC'+Z ) = [(e'+5')(s" + 5")/F„2](r}"'+rl" 2Z' 2-q "q„.)-,

T(ri" -@+v'+v )= (4aa "/F„'-){ri"'+rl' —2w' —2)()"q„o),

T(rl" - r}'+v'+v ) = (4a'a "/F, ')(g"'+ g" -2v' —2q'q„g)) .

(4.21)

(4.22)

(4.23)

Since the energy spectrum of the third particle [i.e. , q for the process (IIa)] is directly proportional to

~T ~', our model will be easily testable by comparing it with the experimental energy spectrum determined
from the Dalitz plot. At present we shall be satisfied with estimating the partial decay width of q". Nu-
merical results will be given in the next section after the discussion on masses.

V. NUMERICAL ANALYSIS

For the purpose of discussing masses, there are
six parameters in the model:

M, 2 A, A2 A3 A~ W' and N' .
Q Q Q Q

%ith the choice of inputs of masses~'

p~, A". ~, g2, and q'2,

there remain two parameters free, which we have
chosen to be 8'and 8". Qf course 8'and W mHl
not be completely free, once PCAC constants are
experimentally determined,

(5.1)

{5.2)

Although experimentally Fr/F, is known to be
around 1.28„w'e shall not use this information
here, since there is an ambiguity associated with
it At prese. nt Fn/F, is not known. We shall have
a further discussion on PCAC constants later.

Concerning the pseudoscalar-meson spectrum,
contrary to the vector meson, the experimental
situation is a little more ambiguous. On the possi-
ble assignment of g', we have chosen t}'=X(958)
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(5 3)

was determined from the analysis of the vector-
meson mass spectrum. Numerically, we had"

R =20.59. (5.4}

If the identical interaction is responsible for the
pseudoscalar-meson system, our symmetry-
breaking interaction (2.15) should satisfy the fol-
lowing relation:

A4- A,
A, —A,

(5.5)

Since the present experimental situation is far
from mell established, me make three alternative
assumptions in order to fix parameters TV and 5"':
(i) t}"mass =2.8 GeV and validity of (5.5), (ii) D,
mass = 1.865 GeV and validity of (5.5), (iii) D, mass
= 1.865 GeV and g" mass =2.8 GeV. %hen the uni-
versality relation (5.5) is assumed, one more ex-
pression for A, /o.', besides (3.23}, becomes avail-
able.

(5.6)

where A, /a=~ [(I+W)K' —v'] and 2,/n=~w' must

rather than t}"=E(1420), since the latter assign-
ment could not cope vrith the broad experimental
width within the present scheme. (See our second
paper in Ref. 8.) Experimentally t}" is yet to be ob-
served, although there is a candidate at mass
2.75-2.8 GeV." A Do-like particle is observed at
mass 1.865 GeV,"but its spin-parity property has
yet to be confirmed.

In order to augment the scarce information on the
pseudoscalar-meson spectrum @re might rely on the
quark model. According to the quark model, the
quark-mass ratlov

w' ~gW W' 2 nWw' W' W'2

yo(h)
0

~gWW'' (5.7a)

5+1 0 0, (5.'Ib)

(5.'Ic}

The leading term in A, /o. is seen not to depend
upon K'. On the other hand, q" is quite sensitive
to the choice of W'. From the positivity of scalar-
meson masses @re should have a condition

W 8'~ 1. (5.8)

(a) In order to get an idea about W' let us first
assume N" =8', which corresponds to the assump-
tion (1}as we shall see. Numerical results are

be substituted. Equating (3.23) to (5.6) we can re-
late W to W'. lt just happens that A, /n in (3.23) is
not sensitive to the choice of 8" within the range of
8' of interest to us, and the identity should hold
%hen lV is close 'to 8 = 1.727 for any choice of W.

In order to clarify this situation, listing of the
approximate expressions might be helpful. Ac-
cording to the charm scheme, q" as well as
charmed mesons are expected to be much heaviex
than the rest of the pseudoscalar-meson 16-piet.
After a little inspection of (3.IV), (3.12d), and
(3.23), it will be observed that large ti" and D mas-
ses are possible only for an extremely small 4,
(3.18). In other words, the reason why ri" or
charmed mesons get heavy is due to an approxi-
mate validity of the SU(3) x SU(3) mass formula.

Some of the approximate expressions valid for
small 4 are

TABLE I. Numerical results for pseudoscalar- and scalar-meson masses v&1th three differ-
ent choices of 5" and 8", corresponding to (5.9), (5.11), and (5.12) in the text.

g = LV' = 1.7273 5'=1.72696, 5" =2.79348 5'= 1.7204, W' = 1

q" =2.793 GeV
a=2.205 GeV
E = 2.006 GeV

s =4.259 Gev
oo

~
——18.045

6 = 2.779 53 x 10
Q = 19.25
M» -- 19.605

4-.; = 362.7

q" =2.185 GeV
D = 1.865 GeV
I' =1.75 GeV
D g ——2.709 GeV
Eg

——3.427 GeV

p
——18.043

A&

g = 3.1469 x 10
9 = 19.246
M» = 19.492

=set.ss
Q'&

q" = 2.714 GeV
D ——1.866 GeV
I' =1.672 GeV

E~ ——(arbitrary, see text)

p
= 17,998

CY&

6 = 1.031 25 x 10~
0 = 19.1751
M» = 20.41

~2 =190.77
Qg
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listed in Table I. With a choice

W' = 8'= 1.7273 (5.9)

5"'~ 8'.~'" However, if we are allowed to consid-
er 8"~ W, such a possibility can be realized. A
choice, for instance,

we get 8"=1 and W'=1.7204 (5.12)
q" = 2.793 QeV

D=2.21 QeV, E=2.01 QeV.

These values agree with other theoretical predic-
tions. " The above g" mass is also close to the
experimental candidate for q" at 2.8 QeV. 2' If the
experimentally observed resonance with mass"
1.865 QeV should be identified with a D meson,
then this choice of parameters should be discarded.
At present the spin-parity property of this particle
is unknown.

(b) Alternatively, corresponding to assumption
(ii) we can identify the meson with mass 1.865 GeV
t:o be a D meson. Then in addition to the two ex-
pressions for A, /o. , (3.23) and (5.6), we now have
one more expression for A,/o,

A, /o. =-.' [(1+W')D'- v') . (5.10)

Three expressions for A, /o. determine W and W'

as

W'= 1.V270 and W'=2. 7S35.

This choice yields a rather low value for q,
g" =2.19 QeV.

Here the E-meson mass is predicted to be

E =1.755 GeV.

(5.11)

(c}Corresponding to the assumption (iii), we next
consider the problem whether the D' mass with
1.865 QeV is compatible with the q" mass with 2.8
QeV. This turned out to be impossible as long as

5V's =g C„S,'Sf (C„a constant)
a, b

(5.ia)

might solve the problem.
If we want to keep the pseudomeson sector un-

disturbed, however, the simplest modification
might be to add a term to (2.15),

6V =CS', S,' (C a constant) . (5.14)

[According to (3.3) and (3.4), only the S', mass will
be increased by an amount of C.] With this under-
standing we accept a choice (5.12). Partial decay
rates for three different choices of parameters,
(5.9), (5.11), and (5.12), are tabulated in Table II.

According to our results, g" comes out pre-
dominantly in a pure charm-anticharm pair state.
This situation holds true for all three choices of
8", since mixing angles happen to be insensitive to
5"' within our range of interest. This is the reason
why the g" particle decaying into ordinary hadronic
channels has narrow (partial) widths in general.
As far as the actual estimate is concerned, though,
two different choices of parameters (a} and (b),

yields

q" =2 714 QeV, D=1.866 QeV, and E=1.672 GeV.

U'nfortunately, this choice of parameters makes
one of the scalar-meson masses in the system, S4„
imaginary. In order to avoid such an awkard situa-
tion, we must modify our symmetry-breaking in-
teraction (2.15)." The addition of the symmetry
breaking of a quadratic form

TABLF. H. Numerical results for mixing angles of the q, q'„and q" and partial decay widths
of the g". Here 1 (a, b, c) represents the width for the decay q" —a+ b+ c.

8'= 5" = 1.7273 8"=1.72696, W =2.79348 8'=1.7204, S"= f

0,399 71
-0.824 85
—8.8887 x 10 3

-0.582 53
-0.565 06

4.49x10 2

2.974 x10 ~

1.8058 x f 0 '
0.998 952
0.232 MeV
0.143 MeV
2.9 MeV
4.61 MeV
0.692 Me V

0.399 75
0.824 82
9.1656 x 10

—0.582 37
—0.565 04

4.9282 x 10
3.2405x10 2

2.0312 x 10 2

0.998 74
0.0061 MeV
0.019 MeV
0.346 MeV
1.03 MeV
0.198 MeV

0.4004
-0.824 06
—1.7042 x10 2

—0.580 Of
—0,56543

8.6418x10 ~

5.7169x 10
3.4955 x 10
0.996 11
0.626 MeV
0.426 MeV
8.33 MeV

14.2 MeV
2.f7 MeV
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TABLE GI. Numerical results for PCAC constants.

W= 8"=1.7273
8 = i.726 96
W' = 2.79348

8'= i.7204
8"=1,0

Available
exper imental

data

I ~/I;
ZJE,
I' I;/E~

i.36

i.72

i.36

i.9
26

i.36

i.0

I- I'+ v

K')

(l=p ore)

provide us with information on PCAC constants de-
fined by

&2q, &oI~„;Is (q)) =E, iq„,
v 2q, &o

I w„I z (q)) =E, q. ,

&2q. &o
I &.'I & (q)) =Eo'q. (5.15)

and

v'2q, &o
I w„,'I E'(q})=E,~q. .

They are related to our parameters 8' and W'

as

E, =2a, E = r(l aW)+,

En = a(l + W'), E~ = a(W+ W').
(5.16)

yield moderately different values for the decay
width. The main reason for this is that the decay
width is sensitive to the q" mass.

Among various decay modes, the largest con-
tribution comes from the decay q"-q+ m'+ m in-
dependent of the choice of parameters. This is
simply due to the largest available phase space.
The decay mode g"-m~+E +E has also a Large
phase space available but, owing to the existence
of the destructive interference, the matrix element
turns out small and the net result is smaller than
the naive expectation. Our calculation of decay
rates became current-algebra-like after the sca-
lar-meson masses mere taken to be infinitely hea-
vy. Comparison with future experiments mill tell
us if further refinement of the calculation or the
model itself is needed.

So far me have not discussed PCAC constants. In
order to distinguish different sets of parameters
we can also rely on PCAC constants.

The leptonic decays of pseudoscalar mesons such
as

or, equivalently, mx'iting these in the form

E~ 1+W
F, 2

Eg 1+W'

(5.17a)

(5.1Vh)

E~ W+ W'

F, 2
(5.11c)

we shall see that the experimental deviation from
1 indicates immediately the existence of a non-
SU(3)- or non-SU(4)-symmetric vacuum. [They
are all equal to 1 in the SU(4) limit. ]

Independent of any choice of W and W', we can
derive the sum rule mentioned in the Introduction,

FJ' FD F———=—-1. (5.18}

Experimentally the right-hand side is 0.28. The
left-hand side is unknown at present. Since this
sum rule is an immediate consequence of our po-
tential with nonderivative type (2.1), it is expected
to hold rather genex"ally. Its experimental con-
firmation is highly desirable. Numerical values of
PCAC constants corresponding to our previous
choices of parameters are given in Table III.

According to our prediction, leptonic decay
modes of charmed mesons mill not differ much
from those of ordinary noncharmed mesons. This
should be contrasted with the prediction of Large
enhancement of charmed-meson modes in the x e-
normalizable model. " Since PCAC constants are
rather sensitive to our choice of W and W', fuh. re
experimental measurements of the leptonic decay
modes such as D'- p, '+ v mill soon settle the issue.
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