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Five exact spectral-function sum rules for vector currents are presented. A discrepancy between the
%'einberg sum rules and the leptonic decays of the J/Q vector meson is resolved. This provides a concrete
example illustrating the usefulness of the asymptotically-free-field-theory approach to formulate spectral-
function sum rules.

I. INTRODUCTION

Weinberg's spectral-function sum rules' have
been successfully applied in analyzing the leptonic
decays of p, &, and Q mesons' assuming the valid-
ity of an asymptotic SU(3) symmetry. Thus it is
not surprising that a large amount of work has
been dedicated to the analysis of the leptonic de-
cays of the new particle 8/i()(3. 1) by applying either
the first spectral-function sum rule for U(4) sym-
metry' or the first spectral function sum rule for
SU(4) symmetry togethere with the modified sec-
ond sum rule. ' What is surprising is the outcome
of such an analysis: If one assumes the electric
charge of the charm quark (c) to be —,', and the
Z/g to be a cc bound state, then the leptonic decay
width of 8/g predicted by the sum rules is only
-1.5 keV, which is three to four times smaller
than the experimental value 4.7 + 1.1 keV. To
avoid this discrepancy it was then proposed that
the electric charge of the c quark be —'- instead

2 3
of 3. However, the recent discovery' of a neutral
charmed meson and the negatively charged charmed
antibaryon makes it impossible to retain the -3
charge assignment. And so one is forced to con-
sider other possible causes of the discrepancy.
While the validity of Weinberg's spectral-function
sum rules was questioned by theorists' soon after
the discovery of the sum rules, the leptonic decays
of 8/()) provide new experimental evidence to sup-
port a reexamination.

Recently Bernard, Duncan, Lo Secco, and

Weinberg' (BDI.W) have studied the spectral-func-
tion sum rules within the context of asymptotically
free field theories. They formulated a general
procedure for extracting exact spectral-function
sum rules. The main feature which distinguishes
the BDLW procedure from the previous work is
that instead of restricting attention ab initio to
specific combinations of current products, such
combinations usually resulting from symmetry-
group- theoretical considerations, they employed
the operator-product expansion analysis to de-
termine those linear combinations for which the
leading short-distance singularities are sufficiently
soft and the corresponding sum rules valid. The
coefficients of the linear combinations thus de-
termined are functions of ratios of quark masses.
This transition in the form of spectral-function
sum rules is an instance where the quark-gluon
model supersedes the symmetry- group- theoretical
approach.

In Sec. II of this paper we shall apply the BDI.W
procedure to derive a new sum rule relating the
leptonic decay widths of p, ~, P, and 8/g vector
mesons. Using the well-known ratios of quark
masses we find in Sec. III a remarkable agreement
between the sum rule and the experimental value
of the g/g leptonic decay width. In Sec. IV' we
present four more sum rules for vector currents.
We also clarify in this section the relation be-
tween the sum rules presented here and those ob-
tained in Ref. 7. We have restricted ourselves to
the first spectral. -function sum rules for vector
currents.

II. DERIVATION OF THE SUM RULE RELATING l (V~ II)

vector or axial-vector currents is

(2.1)s)) s)' g 4 )(x. +2)

is the positive- frequency Green's function.

The Kalldn-Lehman spectral representationfor the product of
(I ) 2

(0)z"„(*le"(0))0)= drPI);"')t'„",(rP) — P "(v)"
where P'~s)(i(, ') are the spin-j spectral functions, and () "(x;p')
The short-distance expansion of & '(x; p') is'

& '(x, V ) ~, —4», (, + 3, [In 2@(p,' ~x'j)"' ——,'+ive(x')e(-x')]+0(x'), (2.2)
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where g-0 and y is the Euler constant. Knowledge of the leading singularities in the operator-product
expansion of 8„"(x)gs(0) on the left hand side of Eq. (2.1) places constraints on various spectral integrals
on the right-hand side of Eq. (2.1). For the combinations

g c„,&oIz„"(x)d,"(0) Io) (2 2)
Ag B

with a leading singularity in the operator-product expansion stronger than x ' but weaker than x ', the first
spectral-function sum rule holds:

t (x&
'

p (0)(+2)+ P AB P d+2 0
Ay B

(2.4)

If the leading singularity of the combination (2.3) at short distance is weaker than x we obtain two addit-
ional spectral-function sum rules:

Ay B

,",(v')de'= 0,

'p"'(v')du'= 0

(2.5)

(2 6)

Now in the quark-gluon model the short-distance singularity structure of current products is summarized
in the following two equations':

z„',&"(x) -=&o
I C(x)r "(I+r,)AP(x)7(0)r" (I+ r, ) Bg( 0)

f;(x)Tr([A, Bjm")+gg', (x)[Tr(Am")TrB+ Tr(Bm ')TrA]
X~P l~p

+ h; (x)Tr(Am')Tr(Bm') + h; (x)Tr(Am'Bm')

+ h~ (x) [Tr(ZmA)TrB+ Tr(Zm B)TrA]+ h~ (x)Tr(Zm[A, BJ),
E"""(x)= &0 Iq(x)r'{'+»»&(x)&(0»"(1—r.)Be(0) Io)

f,{x)Tr(AmBm""+BmAm"')+ Q g, (x)[Tr(Am")TrB+ Tr(Bm")TrA]
=o 4~0

+ h, (x)Tr(Am') Tr(Bm') + h, (x)[Tr{ZmA)TrB+ Tr(ZmB)TrA J

(2.7)

+ h.(x)Tr(ZAmB+ ZBmA), (2.8)

where g is a quark multiplet, 4 and B are square matrices acting on the flavors, m is the quark mass
matrons, and the matrLx Z„=(OI&/r„(0)4„(0)Io). In perturbation theory, modulo logarithms, f;(x), g,'(x), and

g, (x) behave like x ' for small x, f;(x), g', (x), f, (x), andy, (x) behave like x ', and all other coefficients
behave like x '.

%'e shall restrict ourselves to the four-quark model:

l(t=(u, d, s, c) with electric charges 3 3 3 and 3, respectively,

The basic vector currents are

gy Q, dy~d ~ sy s
~ cynic,

d, dy ~ Qy 8, Sy Q) dy 8, Sy d, (2.9)

Qy~c q cy~Q ~ dy c q cy~d q Sy c, cy s.
The above ehoiee of quark mass matrix leads to six conserved currents uy„u, dy„d, sy„8, cy„c, uy„d,
and dr„u which generate exact SU(2) x U(1) x U(l) symmetry plus quark conservation. The rest are partially
conserved currents. We shall not consider axial-vector currercs. The currents listed in (2.9) can be
classified into flavor-conserving currents and flavor-changing currents. Only the flavor-conserving vector
currents are relevant to the leptonic decays of vector mesons. Also, the sum rule we shaB present is a
first spectral-function sum rule; henceforth, we shaD ignore those functions of x in Eqs. (2.7) and (2.8)
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Which behave like x '.
By a straightforward calculation we can derive from Eqs. (2.7) and (2.8)

Z(('""(x) =-
& o

I q((x) y'q((x) e((0)e ~((0)
~
o)

,= [f;(x) +g,' (x) +g, (x)]+m, ' [f; (x) +g,' (x) +g, (x) +f, (x)] + 0 (x '), (2.10)

where q& =u, d, s, c and m, =m„m„m„m, for i= 1,2, 3, 4. Thus the first spectral-function sum rule holds
for the combination

C Z '"'""(x)««
~1

provided the C«satisfy the following constraints:
4

P c„=o,
$~1
4

C], m]2—- 0.
f~l

It can be verified at once that the following combination satisfies Eqs. (2.12) and (2.13):

(m ' —m )[Z'" ""(x)+Z'"'""(x)]—2(m ' —m ')Z ' "(x)+2(m ' —m ')Z ' "(x).

Since

Z~'""(x) + Z (",)""(x)= (0
~
u(x) y "u(x)u(0) yu(0)

~
0) + (0

~
d(x) y"d(x)d(0)yd(0)

~
0)

(2.11)

(2.12)

(2. 13)

(2.14)

1 „—„10 [u(x)y "u(x) + d(x)y d(x) ] [u(0)y"u(0) + d(0)y" d(0)] 0
2 2

+ 0 ( ( )8 (*)—&(*)P&(&)l ( (o)r" (0) —d(o)/d(a)] o),1 1

2 2
(2.15)

we see that the currents involved in (2.14) have the same quark structures as (d, p, P, and d/(C) vector
mesons. There is no spin-0 spectral function for a conserved current. Thus Eq. (2.14) implies the follow-
ing spectral-function sum rule:

p
(I ) ( 2) p (1)( 2)

(m' m ') " '" dl('+(m'-m') ' ' ' dg'c s g2

(1) ( 2y

where p„" p g J/Q are spin-1 spectral functions for the currents

1 1
[u(x)y u(x)+d(x)y d(x)], [u(x)y u(x) —d(x)y"d(x)],

M2 2

sy"s, and c(x)y"c(x),

respectively. Saturating"' the spectral functions with ((), p, Q, and J/(l) vector mesons we transform
Eq. (2.16) to an experimentally verifiable sum rule,

„m„i'((d-ll), , m, I'(p-ll)
(m.' —m, ') 1

+ (m, '- m, ')

m I'(~ ll), m I I'(
c 0 S ™0 8

where I'(V-ll) is the leptonic decay width of the vector meson V. Electron-muon universality requires
I'(V- ee) = I'(V- i(g). Note that sum rules (2.16) and (2.17) remain true even if m„v m, . In that case m, '

a"d mu . Sum rules (2.16) and (2.17) can be easily generalized to include the
lowest-lying neutral vector mesons made up of new quarks, if there are any.
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III. LEPTONIC DECAYS OF J/it(

We shall now apply Eq. (2.17} to analyze the lep-
tonic decay of the J/(( vector meson. First using
quark mass ratios appropriate to current-algebra
calculations, we have'

m + m mg
2

2mo m, '

or

ture. They are not identical nor very different.
We try two alternatives" to show that our result
does not depend sensitively on a particular choice.

(i) m, =0.34 GeV, m, =0.48 GeV. The relation
between I'(J/((- Il) (in keV) and m, (in GeV) is

I'(J /g- fl) = 2.01m,'+ 1.26 (3 4)

(ii) m, =0.336 GeV, m, =0.540 GeV. The rela-
tion between I'(J/((-fig (in keV) and m, (in GeV) is

I'(J/P- ll) = 1.29m, + 1.35 . (3.5)
s =25

mp
(3.1)

Therefore, we can ignore m, ' in Eq. (2.17). After
substituting in the experimental values of m„Q ~ J/g
and I'(p, &u, P —ee) we get from Eq. (2.17) the fol-
lowing relation between I"(J/g- II) (in keV) and

m, /m, :

I'(J/P-If) = 0.23(m, /m, )'+ 1.49. (3.2)

This is illustrated in Fig. 1. The experimental
value 4.7 keV of I'(J/((t-Il) corresponds to the ratio

m, /m, = 3.75. (3.3)

This is in good agreement with the value m, /m,
= —"=3.9 obtained by Georgi and Politzer" using the

20
renormalization- group technique. Note that a sim-
ple calculation based on partial conservation of
axial-vector current (PCAC) and the mass of the
charmed meson ( 2 GeV) gives m, /m, = ms'/ms'
=16. Thus we expect PCAC to be badly violated
in the charmed sector owing to the heaviness of
charmed particles.

Alternatively, we can insert quark masses ap-
propriate to the constituent model of hadrons.
Here m, is not small enough to be ignored in con-
trast to the current-algebra limit. Several sets
of constituent-quark masses are used in the litera-

Equations (3.4) and (3.5) are illustrated in Fig. 2.
The experimental value of I'(J/g-Il) corresponds
to (i) m, = 1.3 GeV, (ii) m, = 1.6 GeV, in remark-
able agreement with the generally accepted value

m, =1.5 GeV.
Thus we have shown that the sum rule (2.17)

can successfully explain the leptonic decay width
of the J/t/r vector meson. The value"' of
I'(J/g-II) predicted by the Weinberg sum rules
can be reproduced by putting m, = mo or m, in

(2.17), and so the factor of three to four discre-
pancy mentioned in the Introduction is revealed
here as a consequen e of the large mass difference
between the charmed quark and noncharmed
quar ks.

IV. FOUR ADDITIONAL SUM RULES IN THE V SECTOR

We have shown that the new sum rule (2.17) can
explain nicely the leptonic decays of the J/(t vector
meson. The derivation of the spectral-function
sum rule (2.16), from which we get Eq. (2.17},
provides a concrete example illustrating the use-
fulness of the BDLW procedure. Moreover, the
sum rule (2.16) was not obtained in Ref. 7. In

~ ~ ~ ~ I0
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I

I . l I . ~

I.O I.5 2.0
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0

mc /ms

FIG. 1. The relation between the leptonic decay width
I'(J/P ll) and the quark mass ratio mmmm~. I'(J/r/i

ll) =4.7 keV implies m~/en~ =3.75.

FIG. 2. The relation between the leptonic decay width
I'(J/p ll) and the quark mass m, . Curve I corresponds
to mp =0.34 GeV, m~ =0.48 GeV; F(J/P ll) =4.7 keV
implies m, =1.3 GeV. Curve II corresponds to tflp

=0.336 GeV, m, =0.540 GeV; I'(J/g ll) =4.7 keV im-
plies m~ =1.6 GeV.
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Ref. 7 sum rules are formulated in V+A and V-A
sectors separately. The expressions for the sum
rules in the V- A sector are much simpler than
those in the V+A sector. This disparity in the
degree of simplicity in form together with the non-

uniqueness of writing down a set of linearly in-
dependent spectral-function sum rules (a linear
combination of spectral-function sum rules is agai~

a spectral-function sum rule) makes it very dif-
ficult to tell from the V+A and V-A expressions
how many sum rules can exist in, the V sector.
In this section we shaQ show that in addition to the
sum rule (2.16), there exist four (and only four)
additional linearly independent first spectral- func-
tion sum rules for vector currents.

I.et us introduce the two kinds of current pro-
ducts

Z &v&uu(x) Z &u&uu(x)li 2f for z &2.
Z'""(x)= Z'"""(x)

(4.4)

Z,', ""(x), Z,', ""(x)Z,', ""(x),
Z &v &uu{x) Z &u&uu&x) Z,', ~"(x), Z,',"'""(x)

Z &u&uu(x)Z &v&uu(x) Z &u&uu(x)

(4.5)

The short-distance behavior of Z ~«&u" (x) is given
by Eq. (2.10). Similarly we find that

Z«~&u" (x) f;(x)+ ,'(m,-'+m. ~')[f;(x)+f,(x)]

With the aid of the above properties of Z's a sim-
ple combinatorial counting shows that there are
only 10 linearly independent Z's; we choose the
following ten:

Z,",""{}=- (o Iq, ( )y"q, ( )q, (0V'q, (0}I0) i «.1)

Z'&&"&"( x)=- (0 (q &(
x)y" q&( x)q

&(
0)gq (&0) (0}, {4.2)

--,'(m, —m,.)'f, (x)+ O(x ')

Z&&q'"'{x) [g,'(x)+g, (x)]

(4.6)

with i 0j. They are symmetric with respect to the
interchange of the subscripts i and j. Our specific
choice of quark mass matrix and Z matrix aBows
the existence of the following identities concerning
Z8& "{x) Z~&""(x) ~d Z."""(x).

Z &u&uu (x) Z &u&uu (x) Z &u&uu (x) y, &v&uv (x) (4 8)

+ —,'(m, '+ m,.') [g', (x) +g, (x)]+O(x ')

(4 p)

for i tj.
Using Eq. (2.10}, Eq. (4.6), and Eq. (4.7), we

get, in addition to Eq. (2.14), the foliowing four
linearly independent combinations of the Z's for
which the first spectral-function sum rule holds:

(m, —m, )(m, + m, + m, )Z,',"""(x)—(m, '+ m,m, —m,m, —m, ')Z,',"'""(x)

+ (m, '+ m,mu- m, m, —mu2)Zu&4&u" (x) + mu(m, —m, )Z„&u"(x), (4.8)

(m, ' —m u)Z'"'""(x) —(m, —mo )Z'"'""(x)+(m, ' —m, )Z, '""(x) (4.9)

(m, ' —m, )Z,+& "(x)—(m, ' —m )Z,+& "(x)+(m,' m)Z,+ ""(x-)—(m, ' —m, ')Z,~&""(x), (4.10)

(m, —m, )(m,'+ m,m, —m, m, —m, ')Z,', &""(x)+m, (m, —m, )(m, —m, )Z &", '""(x)—(m, —m, )'(m, + m, )Z,",&""(x)

+(m, +m )(m, —m, )'Z+&""(x)—(m, +m )(m, —m )'Z,',"'""(x)+(m,+m, )(m, —m )~Z&"&""(x). (4.11)

One can show that the combinations (2.14) and
(4.8)-(4.11) are consistent with the corresponding
combinations for V+A sectors obtained in Ref. 7.
The proof of the consistency involves tedious lin-
ear combinations owing to the fact that we have
used a different set of Z's [given by (4.5)].

For the time being there are not enough experi-
mental data for evaluating most of the spectral
functions involved in the spectral-function sum
I ules associated with the combinations (4.8)-(4.11),
even in the pole-dominance approximation. The
spectral functions for Z&~&""(x} (i &&j) generaHy in-
volve the spin-1 pieces as wel1 as the spin-0
pieces. We do not have the relevant data for
charmed vector mesons; our knowledge concern-
ing scalar mesons is also poor in general. The
spectral functions for Z&~~&u" (x) (i u-"j) are even

I

more formidable because they are associated
with the graphs in which the quark lines originated
at the point x = 0 are not connected to the quark
lines en, ded at x cD, i.e. , the Iizuka-Qkubo-Zweig-
rule" forbidden graphs, and so are related to the
mechanism responsible for the breaking of the
rule. The pole- dominance approximation applied
to the spectral functions of Zt~&u"(x) (i cj) would
require some new vector meson(s) purely made
out of gluons; one possible candidate would be the
0 meson, '3 proposed by Freund and Nambu.

V. CONCLUSIONS

In this paper we set out to find a way to remove
the discxepancy between the Weinberg spectral-
function sum rules and the leptonic decays of Zjg



vector meson. To this end we specialized the
BDL% procedure to the derivation of the first
spectral. -function sum rules for vector currents.
%'e find five sum rules consequently. Among
them, one [Eq. (2.16)]appears to relate the lep-
tonic decays of p, v, Q, and J/r/r vector mesons.

In contrast to the traditional %einberg sum
rules, the sum rules resulting from the 9DI.%
procedure generally involve the ratios of quark
masses explicitly. Thus the values of these ratios
are needed when one applies the sum rules. We
have shown in Sec. IH that the discrepancy be-
tween the Weinberg sum x'ules and the leptonic
decays of 8/t/r is resolved by applying the sum
rule (2.17), which results from Eq. (2.16) by local
saturation of the spectral functions, and the usual
estimates of quark mass ratios. The discrepancy
is thus revealed as a consequence of the large
mass difference between the charmed quark and
noncharmed quarks.

%e are not able to apply the other four first
spectral-function sum rules because of insufficient
experimental data. More detailed discussion is

presented in Sec. IV.
%'e emphasize that it is by the involvement of

the ratios of quark masses that the sum rule (2.17)
is able to take into account the effect of the sym-
metry breaking appropriately. To our surprise,
howevex, both the current-quark mass ratios and
the constituent-quark masses (effectively only
their ratios are involved) work equally welL The
derivation of the spectral-function sum rules from
a consideration of short-distance behavior of cur-
rent products makes it clear that one is concerned
with the effective quark mass ratios in the deep
Euclidean region —i.e. , with current-algebra (or
bare) quark masses. Thus the fact that the con-
stituent-quark masses also fit the sum rule (2.17)
is most likely a numerical accident.
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