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Within the framework of nonrelativistic potential models, we investigate the possibility that bound states of
the type B,B, may exist, where B, is a charmed member of the 20 baryon multiplet of SU(4). By rather
general considerations, we establish the approximate level order of the bound-state spectrum. Specific
potential models are then invoked to qualitatively estimate the binding energies and rms radii of B,B, bound
states. For reasonably small binding energies (~1/2 GeV), for which a potential description is sensible, such
configurations are found to be "quasimolecular" in nature, i.e., having rms radii considerably larger (&0.7
fm) than the corresponding cc quark-model states. We show that most of the low-lying states are isospin
I = 0 as in the ec model. However, because of the coherent effect of tensor forces, certain I = 1

configurations of the Ci C, system experience a downward energy shift, and hence could appear in the same
energy region as I = 0 states (e.g., "+" + 'L~ = '

Po state near "Po, , states). The states we describe can
mix with and modify the properties of cc quark states of the same quantum numbers in the J/Q, y,Q'

region from 3.1 to 3.7 GeV. Some of them could appear independently as narrow states in the mass region
of 4 GeV. "Exotic" C, C, states with I = 2 are shown to always lie above I = 0, 1 configurations of the
same L; however, for a wide class of potential models, the P-wave Ci Cl states ("PD l g Pl) are still bound
close to threshold (-4.8 GeV). We exhibit qualitative arguments that some of these B,B, bound states may
be narrow. We discuss possible experimental means for finding the I = 1 and 2 states, i.e., those not
predicted by the cc quark model.

I. INTRODUCTION AND MOTIVATION

The experimental discovery of the 7/P, X, and
g' mesons' pointed to the existence of the charm
quantum number, and led to model calculations of
these states' as bound states of a charmed-quark-
antiguark (cc) pair (the "charmonium" picture).
The subsequent discoveries of charmed baryons'
and charmed mesons~ lend credence to these cal-
culations and to the idea of an approximate under-
lying SU(4) symmetry. The existence of these
charmed baryons B, and mesons M, invites one to
consider the possibility of additional mesons
formed as bound states of Bg, or M, M, systems.
These states could share the quantum numbers of
a cc system, but would be quite different in struc-
ture: We envisage here relatively loosely bound

B,B, systems of a "quasimolecular" character,
whose spatial extent is generally large compared to
that of cc sjstems. Such a possibility was consid-
ered by Feinberg and Lee,' who studied states of
the type FF, bound by a sum of two phenomeno-
logically adjusted square-well potentials. Here F
is a new heavy fermion, not necessarily contained
in an SU(4) structure. More recently, states of
the type DD have been considered by several auth-
ors, ' where D is a particular charmed meson. In
the present article, we consider the possibility of
bound and/or resonant states B,B, of a charmed
baryon B, and its antiparticle. Here B, is speci-
fically a charmed member of the 20 baryon multi-
plet of SU(4).

The framework for our discussion iinonrelativ-
istic potential theory. We argue that potential
theory should be a good approximation for weakly
bound B,B, systems because of the large mass mB

C

of the charmed baryons. As we show explicitly
later, the potential V(r) operating in a B,B, sys-
tem is close to the static limit of spin-independent
central forces. The central forces alone are al-
ready sufficient to support the existence of a con-
siderable number of 8-, P-, and D-wave bound
states The t.ensor (S») and spin-orbit (1.~ S)
f~~ces, of orde~ (p, /2ms )' =0.01-0.03 for p = 'f50

MeV, in most cases produce only rather small
energy splittings of states of different spin 8 and
total angular momentum J.

Several authors' have considered similar treat-
ments of the nucleon-antinucleon (NN) system
based on potentials obtained from the NN problem
via the 0-parity transformation. The NN potential
is taken as the sum of pseudoscalar-, scalar-,
and vector-meson exchanges, with coupling con-
stants adjusted to give a best fit to NN scattering
data and the properties of the deuteron. gee en-
visage a parallel treatment of B,B, systems. How-
ever, it is important to remark at the outset that
such an approach is only well justified for low-
energy, near-mass-shell processes. Thus our
emphasis is on systems whose binding energy is
small compared to their rest mass 2m~. Our hope
is that such systems close to threshold will re-
main as relatively pure BB states when we allow
mixing with other configurations. "Bootstrap"
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calculations have been attempted, using a set of
relativistic Blankenbecler-Sugar equations, ' in

which the low-lying mesons themselves (v, p, &u, . . .}
appear as deePly bound states corresponding to
some appropriate superposition of NN, AA, ZZ,
etc. configurations. Our approach is more modest
and not in conflict with the underlying quark struc-
ture of the baryons; we restrict our attention to
the possibility of B,B, quasimolecular states close
to the threshold, where a potential description
should be valid. For the NN system, there are
several likely candidates for both bound and reso-
nant quasimolecular states near threshold. ' Sever-
al of these have been interpreted in terms of eigen-
states of nonrelativistic potential model. "

To extend the NN calculations"' to B,B, sys-
tems we employ an SU(4) framework. An interme-
diate step, using SU(3) to estimate binding ener-
gies for NN, AA, Z~, and ":" systems, has al-
ready received some attention. " Our justification
for ultimately considering the charmed baryons in
isolation is their large mass. The large mass dif-
ferences between the N, A, Z, and " masses and

the charmed-baryon masses implies a large SU(4)
breaking. One result of this is that B,B, threshold
states lie very high in mass compared to other BB
configurations, and would be expected to mix only
with other B,B, states In ou. r calculations, SU(4)
symmetry is invoked only as a means of relating
unknown charmed-baryon-meson coupling con-
stants to couplings phenomenologically determined
from uncharmed-baryon-baryon scattering data
(mostly NN, some &N, ZN). One may of course
Question Qny retention of SU(4) symmetry; how-

ever, we intend to show that certain features of
the level spectrum are independent of detailed as-
sumptions about coupling constants. It is these
general features of the potential and its spectrum
which we wish to emphasize.

The B,B, states considered here and the cc
states of the quark model are of course not dis-
tinct in general. Our calculations suggest that
these classes of states may interweave somewhat
in energy. Hence, if B,B, and cc systems possess
the same quantum numbers, they will mix. Such
mixing is probably largest for S states, in which
case B,B, states may not possess a separate exis-
tence. The quasimolecular picture we propose is
more sensible for P, D, etc. states, for which the
centrifugal barrier acts to keep the baryon and
antibaryon well separated, and to retard somewhat
the mixing with the corresponding cc state.

This paper is organized as follows: In See. II,
we define the general form of potential model
which we consider for the configurations

B,B, =( COCO) C, C~, SS, AA, TT, XX, X,X,};

the notation is defined in the Appendix. We isolate
the dominant terms corresponding to the static
limit. This enables us to establish that in general
isospin I= 0 states lie lowest, followed by I= 1
states, and at still higher energies, I=2 states
(C,C, only}. The presence of tensor (S») and
spin-orbit (L S) forces induces energy splittings
among states of given I. We show that for all I=0
states, the tensor forces due to various meson
exchanges act coherently, so that in a given chan-
nel they are either all repulsive or all attractive.
The dominance of S» over L S forces for B,B,
systems in I=O states enables us to establish the
level order for spin S =1 states, independent of
detailed assumptions about coupling constants. For
I= 1 states, there is no coherence of S» or L ~ S
forces, except for CyCy and hence energy split
tings are smaller. We show that the C, C, system
is of special interest, since both I= 0 and I = 1
states exhibit coherence of tensor forces. One I=1
level for each I. is pushed down by this coherent
effect (e.g. , 33Po) and mingles with I=0 states.
Estimates indicate that "exotic" I=2 states of the

C,C, system may also be bound, although much
less than I=0, 1 states. The possibility of I=1 or
I=2 bound states is a distinctive feature of the

B,B, model; these states cannot be produced in the
cc model.

In Sec. III, we present the results of some repre-
sentative potential- model calculations. Absolute
binding energies are found to be very sensitive to
details of the short-range cutoff of the potential.
This emphasizes that such models are unreliable
for deeply bound states, e.g. those involving small
separations of B, and B,. However, level order
is preserved for a wide range of cutoff prescrip-
tions. Most of the low-lying B,B, states are pre-
dicted to lie in the energy region from 4 to 5 GeV,
although the possibility exists that B,B, states
may mix with cc states in the 2/P region from 3
to 4 GeV.

II. POTENTIAL MODELS FOR 8,8 —GENERAL FEATURES

In this section, we briefly sketch the procedure
used to generate a potential for any BB system.
We represent the overall potential, except for
annihilation processes, as a sum of one-boson-
exehange potentials, represented schematically
in Fig. 1. We include the exchange of al1. non-
strange mesons with masses ~1 GeV; these are
the pseudoscalar, scalar, and vector mesons
indicated in Fig. 1. These exchanges are respon-
sible for the longer-range part of the BB and BB
potentials. %e omit the effects of coupled channels
and obtain a local, energy-independent approxi-
mation to the potential by starting with the relat-
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exchange, we have

Vg'e(r) = P,[-V,'(r) + L ~ KV ~e(r}],
where

V,' = p,.(g,'/4v)P(x, ),
V,' (r)=~;(g /4v)P 3(x;),

1 1
$(x,}=2 —+ —2 Q(x,),

(2 6)

(2.7)

FIG. l. A schematic representation of the one-boson-
exchange (OBE) model for the antibaryon-baryon BB)
potential Vz~(r). We include the exchange of the pseudo-
scalar, scalar, and vector mesons indicated in the fig-
ure. These exchanges are iterated to all orders by
solving the nonrelativistic Schrodinger equation with the
potential Vg~(r) as input.

V'(r) =-P,[V,'(r-) + 5, ~ 5 V,'(r)

—S„Ve „(r)—L ~ 5V~ e (r}], (2.8)

and L ~ 0= (L+ 1-), -1, L for S =1 and J=I. —1,
L, L+1, respectively. Finally, for vector-meson
exchange, we obtain

Hp = &gA'544, (2.1)

ivistic Hamiltonians Hp, H~, H~ and performing a
nonrelativistic reduction in the usual way. " Here
Hp couples baryons to the pseudoscalar mesons
(v, q, q') and is given by

where

V.'(r) = u [(g;+ P 'f;)'/4v]4(x ),
V.'(r) = p;[(g;+f;)'/'4v]2P 0(x;)/3,

V,'„(r)= ~;[(g;+f;)'/4v]P X(x;),
V' e(r) = p,[(g,'+ 4g,f, /3+ P,.'f,'. ) ./4 v] 3P,.'$(x,.).

(2.9)

where P and P are Dirac spinors for the baryons,
Q is the meson field, and g is a dimensionless
coupling constant. For the scalar mesons (6, e, S~)
we have

(2.2)

and for baryon couplings to vector mesons (p, ~, y)
we have

Hv =igA'. l0'+
4M Po,.P(S"0" 6"0') -(2 3)

V-' (r) =P,(5, 5,V,'(r)+S„V$ (r)),

where 5, ~ , =-3 or +1 for spin S =0 or 1, respec-
tively, and S» =3(5, r)(i5, r) —(5, ~ i5, ) is the ten-
sor-force operator. Further, we have

(2.4}

V,'(r) = p, (g,.'/4v)P, .'P(x, )/3,

V,'„(r)= V;(g,'/4v)p X(x;),

P(x, ) =e "~/x„

1 1 1
X(x,) = —+ —+ —,P(x,},

S

(2 .5}

where x, = p,r and P,. = p, /2ms. For scalar-meson

In Eq. (2.3), y„ is the usual Dirac matrix, v„„
=[y„y„]/2i, f and g are dimensionless coupling
constants, and M is a scale mass.

In the nonrelativistic limit, we obtain the follow-
ing contributions" to the real part of the BB poten-
tial to order (p,./2ms)', where p,. =meson mass
and ma =baryon mass: For pseudoscalar exchange
between spin- —,

' fermions, we have

Equation (2.9) follows if we assume that the scale
mass M in Eq. (2.3) is replaced by me. If we in-
stead assume that M is the same for each BB sys-
tem (chosen equal to proton mass in Ref. 12), then
we must replace f,P, by f,P,mz/M. in Eq. (2.9). In
Eqs. (2.4), (2.6}, and (2.8), the isospin factor P;
is defined by

1 (q, q', u, y, &, S+),

-T, ~ T, (v, p, 5),
(2.10)

(2.11}

where G, is the G parity of the ith meson (G =-1
for v, u&, y, 5; G =+1 for q, q', p, e, S*}.Note that
the systems we consider do not involve kaon ex-

where T, ~ T, =-3 or +1 for total isospin I=0 or 1
states, respectively, of two isospin--, ' particles.
For isospin-1 particles (ZZ or C, C,), we have

T, T~ =-2, -1, or +1 fear I=O, 1, or 2, respec-
tively. In this paper, we only consider systems
composed of a baryon B and its own antibaryon
B. One could also consider more general config-
urations B,.B,, where iw j; such configurations
could produce bound states with the quantum num-
bers of strange or charmed mesons. In particular
the coupled C,C, and C,C, systems for I=1 should
be considered together; this would lead to some
additional levels.

Because of the G-parity invariance of the strong
interactions, the diagonal potentials Vss(r) are
related to the corresponding baryon-baryon poten-
tials V'- (r) by
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change. Equation (2.11) relates the nonannihila-
tion part of the BB potential to the corresponding
BB potential. We are thus able to take advantage
of the extensive phenomenological analyses of
baryon-baryon scattering (particularly NN, and

to a lesser extent, AN and ZN) to obtain values
for the various coupling constants g, For instance
numerous analyses" of NN scattering have been
performed within the context of the one-boson-ex-
change potential (OBEP). A more extended analy-
sis of NN, AN, and ZN data has been carried out

by de Swart and collaborators, " using SU(3)
to relate various coupling constants. From the
analysis of Ref. 12 and Eq. (2.11), one is able
to construct potentials for NN, AA, EZ, and -:-
systems. " The extension to Bg, systems with
charmed baryons involves additional assumptions.
In the Appendix, we show how SU(4) invariance
applied to coupling constants enables us to relate
the unknown constants g,-~& to known couplingsaic
strengths g;» of mesons to nucleons. In addition
to the real potentials V-' (r} generated by meson
exchange, the BB potential contains an annihila-
tion piece which has no analog for BB systems.
The annihilation processes into multimeson inter-
mediate states determine the hadronic width of
the BP, configurations we consider, and to some
extent shift the binding energies. %'e treat this
question qualitatively in Sec. IV.

Let us consider some of the qualitative features
of the meson-exchange potentials, with an eye
toward establishing some general properties
which are independent of detailed assumptions
about the coupling constants g;. First compare
BP, to NN in the same state. If the potential
V(r) were the same for the two systems, the

BP, configuration would be more deeply bound,
since the kinetic energy term in the Schrodinger
equation (-I/ms) is smaller for Bg, than for
N¹ Calculations on the NN system based on real-
istic NN potentials suggest a rich spectrum of
bound states for several models. ' One should also
then expect a variety of 3+, bound states.

For the NN system, the recoil. corrections to the
static limit (d, ~ 5„L~ S, and S» forces) are not
negligible, since (p, ,/2m„)'= —', for a typical mass
p, =750 MeV (~p, ~, e exchange). For Bj3, sys-
tems, on the other hand, we are much closer to the
static limit, since (p, /2ms )' =0.01 to 0.03 for
me =2-4 GeV. Thus the terms Vo in Eqs. (2.7)
and (2.9) provide the most important parts of
the Bg, potential. The weaker spin-orbit and
tensor forces produce splittings of levels of dif-
ferent J' and S, but in most cases are not able to
produce binding by themselves. For any BP,
system, the dominant static limit assumes the
form [see Eqs. (2.6) and (2.8)]

u x Vo x + 't/'0 r (2.14)

in perturbation theory. From Eq. (2.13), we
would then predict that I=2 states of C,C, would
lie at an energy 34 above that for I=0 states.

It should also be noted that Eq. (2.13}also holds
if we include 0, ~ 5„L~ 0, and S„forces, as long

as we compare potentials corresponding to the

V; „(r)= v—,"(r) v—;(r) v—;(r) v—,'*(r)

+ T, ~ T,[V,'(r) + V,'(r)]. (2.12)

Two important points are evident from Eq. (2.12):
(1) In the static limit, a/I isoscalar-meson ex-

changes generate attraction for any BB system.
As we show explicitly later, this part of the poten-
tial is already sufficient to produce bound states.
Note that this coA, e~ence of isoscalar exchanges is
absent in the BB system, since the terms V,"(r) and

V,"(r) become repulsive, so in general there is
much less attraction than for the corresponding
BB system.

(2) For T, T, &0, the isovector-exchange terms
(p, 5) are also attractive. For isospin--, ' fermions,
this means that I= 0 states correspond to maxi-
mum attraction (aff isoscalar and isovector terms
are individually attractive}. For I=1 states, iso-
vector-meson exchange is repulsive, tending to
cancel out some of the attraction from isoscalar
exchange. For isospin-1 fermions, i.e., Z and

~ T ~O for ~ot@ I 0 1 ThussomeI 1
states of ZZ and ClCl are also expected to be
bound because of the coherent attractive effect
of all terms V,'(r).

In the static limit, where V(r) depends on iso-
spin I but not 8 or 4', the following picture thus
emerges: In general, independent of the choice
of coupling constants, I=O states of any BB sys-
tem will lie lower in energy than I=1 states. For
ZZ and C, C, systems, I= 2 states occur at still
higher energies, since the coherent central at-
traction characteristic of I=O and some I=1 states
is absent. The partial cancellation which always
occurs between isoscalar- and isovector-meson
exchange terms provides a mechanism for shift-
ing the exotic I=2 states to higher energies (they
can still be weakly bound, however, as shown in
Sec. III). Using Eq. (2.12), we obtain for C, C, or
ZZ systems the result

V'=~ (r) Vi~ (r) =3[V' '(r) - V='=~ (r)]ClCl ClCl
—

VlCl
—

ClCl

(2.13)

Now 1st u(r) be the radial wave function for a. C,C,
bound state generated by isoscalar exchange only.
The splitting between I=0 and 1 states induced by
isovector exchange is then
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same L, S, and J. Thus, for instance, Eq. (2.13)
enables us to predict that the "P,-"P, splitting
for ZZ or V, C, is three times that for "P,-"P,.
Here we use the notation 2I+x, 2s~iL& to denote a
B,B, configuration. These predictions are a good
check on the numerical results presented in See.
III.

An estimate of 4 ea.n be obtained by assuming
that u(r) is sharply localized at some radius R.
%e then obtain roughly

d = V,'(It)+ V,'(It). (2.15)

Using the coupling constants for the two models
discussed in Sec. III, and 8= 0.7 fm, we obtain
values of 4 in the range 100-200 MeV. This is a
crude estimate of the isospin splitting between
I=O and I=1 states of the C,C, system induced by
central forces alone.

In addition to the isospin splittings coming from
the central forces, energy splittings of states of
the same I and L but different 8 and J are induced
by the tensor (S») and spin-orbit (L 5) forces.
An inspection of E@s. (2.4)-(2.9) reveals the fol-
lowing coherence property of the tensor forces
for any BB system:

For T, T, &0 and 8 =1, the diagonal tensor
forces arising from each meson exchange are
of the same sign. For S» &0 (O=L +1), all 'tensor
forces are attractive, while for S») 0 (J=L},
they are all repulsive.

For L=1, for example, 5»=-4, +2, --', for J=L-1,
I., L+ 1, respectively. Hence the coherent attrac-
tion in J=I.—1 states from tensor forces is 10
times stronger than for J=L+1 states, For
T, ~ T, &0, on the other hand, there is a tendency
for tensor forces to cancel (v, q of opposite sign,
p, &u of opposite sign). Also, for BB systems,
there is no coherence property of L S or o, 0,
forces for any I, i.e., there are always as many
attractive as repulsive contributions. Another
type of coherence is also evident from Egs. (2.4)-
(2.S} for states with S =1, T, ~ T, & 0:

%'ithin a given nonet, all components of the force
(central, I K, S») are of one sign in certain states
We find all vector-meson exchanges (p, &u, y) at-
tractive for J=L —1, all pseudoscalar exchanges
(v, q, q') repulsive for J=L, and all scalar ex-
changes (&,e, S*) attractive for J= L+ 1.
These coherence properties enable us to predict
which states of a B,B, system must lie lowest in
energy, independent of the choice of coupling con-
stants and masses. The general features of B,B,
spectra which hold for any potential model of the
one-boson-exchange type are the following:

(1) I=0 states (with certain exceptions detailed
below) lie lower in energy than I=1 or I=2 states.

(2) The state with I=0,S =1,J=L —1 always lies
lowest for any B,B, syste~ of a given L. The con-
figurations of maximum diagonal attraction are
thus ' """I. ="P "D "F "G etc TheJ' 0& 1& 2& 3&

off diagonal tensor coupling of "D, to "S„"F,
to "P„etc., provides additional attraction.

(3) The coherence of tensor forces implies a
level structure J=L —1 (lowest), J=I.+1, J= I.
(highest) for I=0, S=l states For. I. =1, this
means an ordering "Pp& Ppp Pz The ordering"P„"P„"P,characteristic of a strong spin-
orbit force is not normally attained for B,B, sys-
tems because of the absence of any overall coher-
ence in K

enforces.

However, for T, T, &0, the
vector-meson L 0 forces are coherent and attrac-
tive, while the scalar-meson L.5 forces are also
coherent but of the opposite sign. The ordering
"Po, "P„"P,can be produced if vector L
forces are sufficiently dominant over scalar ones.
This is the case for some one-boson-exchange
models. "

I et us now look at tensor and spin-orbit split-
tings. Con~ider the ~t~tes

~

ISJ) and ~LSJ') of
any BB system. If we compare states of the same
isospin (T, T,), the energy difference due to S»
forces in perturbation theory is

I&LSJ )S„~LSJ') &I SJ~S„)LSJ)}t, ,

u r -T, ~ T2Vs r —T, ~ T2Vs r +Vs r +Vs' r +Vs, r +Vs r dr. (2.16)

ln Eq. (2.6), u(r} is the radial wave function generated by the central potential alone, as in Eq. (2.14). Note
the coherent effect in Eq. (2.16) for T, ~ T, &0, according to the above discussion. The spin-orbit splitting
between the same two states is (&LSJ' ~X 5(LSJ') —&LSJ(L 5(LSJ)}&~z, where

s = u' r -T '* V', s r +Vgs r +Vgs r + T, T.Vgs r —Vgs r —Vsgs (2.1V)
0

Note the tendency of the L 8 forces to cancel (no
overall coherence) for any value of T, T2. Thus
we expect, in most cases, that the largest splitting
of I=O states is due to tensor forces. However,

~~s is quite model-dependent, since it involves
cancellations among sizable contributions. For
most models, "the dominant contribution to hzs
is from (p, ur) exchange. For strong vector cou-
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plings, 4~~ can be comparable to 4~ even in the»
absence of coherence. If T, ~ T, &0, there are no
coherent effects and hence tensor and spin-orbit
splittings are comparable and rather small.

States with S = 0 are of course not shifted by
g or 8» forces. Hence they should lie close to

the unperturbed position of the S = 1 configurations.
In particular, since the 8=1, O'=I, I.+l configura-
tions are shifted in opposite directions by 9» and

L S forces, we expect the 'iI'» '3P» and'3&,
states to appear at comparable energies. As we
see later, only the "Po state is shifted downward

by both I..S and 8» forces.
For C,C, or ZZ systems (I=1 baryons), coher-

ence of tensor forces occurs for both I=0 and I=1,
although the I=O state still lies lowest. As is
clear from Eqs. (2.16) and (2.17), only the configu-
r'ation of minimum rJ ls shifted downwar'd by both

S» and (vector-dominated) L S forces. For J=I.
and J = I, + 1, 8» and L ~ S forces produce shifts of
opposite sign. Thus for I= 1, 8 = 1, the J =2 —1
state must always lie lowest. Thus for C,C„or
ZZ» the ~3Poy 33aiy etc. , states are the lowest-ly-
ing I=1 states for each I . Basing our estimates
on Eqs. (2.16) and (2.17), we find that S» and L ~ S
splittings are comparable to the isospin splittings
produced by central forces alone [see Eqs. (2.14)
and (2.15)]. One would expect the "L, configura-
tions of CiCi or' ~Z to lie at energies comparable
to or lower than "I.~ or "I,~, states. The lowest-
lying states of the BB model are thus not neces-
sarily all I=0 states, as in the charmonium pic-
ture. Qur considerations provide a unique set of
quantum numbers (33PO) for the lightest of such
heavy I=1 mesons (with I.w0). The prediction of
such relatively low-lying states not encompassed
by the cc model is perhaps the most interesting
feature of the BB model.

III. MODEL CALCULATIONS OF THE SPECTRUM

OF 8,8, BOUND STATES

In this section, we present the results of some
preliminary model calculations of the B,B, bound-
state spectrum. We remark at the outset that the
absolute binding energies which one obtains are
quite sensitive to detailed assumptions eoneerning
the choice of coupling constants and the short-
range cutoff (or regularization) used for the poten-
tial. However, the level orderings of the lowest-
lying states and their quantum numbers are less
model-dependent, and are predictable from the
general arguments of See. II.

We restrict our attention here to bound states of
the type B,B„where B, is charmed baryon be-
longing to the 20 representation of SU(4) and 8,

is the antiparticle of B,. In the notation of the
Appendix, B, includes the I=0 members Co T,
and X„ the I= ~ members 4, 9, and X, and the
I=1 member C, . Again, we note that systems of
the type S,B,-„where B,. and B,, are distinct bary-
ons, are omitted. Such systems would also be in-
teresting to study, since bound states with the
quantum numbers of strange or charmed mesons
could be formed. Qne would also expect additional
"nondiagonal" bound states such as C, C„which
have no net strangeness or charm, but which cor-
respond to quantum numbers not attainable in the
charmonium model (here I= 1).

For the specific systems we consider, the diag-
onal potential B,B,-B,B, is mediated only by the
exchange of the usual nonstrange and noncharmed
mesons (v, 0, g', p, ro, cp, 6, c, S*, etc.) . Strange-
and charmed-meson exchange contribute only to
channel couplings (e.g. , C, C, - fS via. Z exchange),
which we ignore. We also do not include channel
couplings induced by the exchange of the usual
mesons (e.g. , C,C, —COCO via v exchange}. Such
couplings could have a sizable effect on absolute
binding energies. However, since the uncertain-
ties due to the choice of coupling constants and

short-range behavior are large, it seems unneces-
sary to include channel couplings in this first
stage of investigation.

In this article, we consider tw'o specific models
for generating the potentials V(r) for various B,B,
configurations. In the modified Bryan-Phillips
(BP}model, '~ we start from the phenomenological
static nucleon-nucleon (NN) potential of Bryan and
Scott" and perform the G-parity transformation of
Eq. (2.11) to construct the corresponding NN po-
tential. ' This potential is then of the one-boson-
exchange form of Eqs. (2.4) to (2.10) for r&r„
where ro ~s a cutoff radius. For r ~ro ~n the BP
model, the potential V(r) is set equal to zero. We
now note that any other diagonal BB-BB potential
in such a model will be of the same radial form
and involve exchanges of the same mesons, ex-
cept that the recoil corrections -(p/2M)' are eval-
uated with a mass M = m rather than M = m„and
different coupling constatns are used. We now re-
quire that the coupling constants satisfy the parti-
cular form of SU(4) symmetry discussed in the Ap-
pendix. The coupling of each meson in the 15 rep-
resentation of SU(4} to the baryons in the 20 rep-
resentation is described by three parameters
g/~4m, n, and 8 as in SU(3). ln addition, the cou-
pling g, /v'4v to the meson in 1 is required. ln the
BP model, we are given only the couplings of the
pseudoscalar (P}, vector (V), and scalar (8) nonets
to the nucleon. We now pick the [F/(D+F)) ratio
a and the mixing angle 8 for each nonet in order
to be consistent with SU(4). This requires
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np ~~( p+NNn pawn ')/~iowa &

r ~( r8»y rgNw~)/~wwo &

(3.1)
3 —4n =v 3(cos8 f„„,+sin8 f„„„)/f„„,,

4ns ~~(cos s+wws + sg»s)/+ifN5 '

For the BP model, we have the nucleon coupling
constant:s g», /~4w = 3.42, g„„„/v 4w = 2 64.6, g», /
v Ww=0. 625, g„„ /v 4w =4.637, f„„„/v4w = 3.628,
g„„,/v4n =2.47, g», /An =3.066; other couplings
are taken to be zero. If we use the usual pseudo-
scalar mixing angle 8~ =-10.4',""Eq. (3.1)
gives n~ =0.421. For vector couplings, we use the
ideal mixing angle 8» =tan '(I/~2; Eq. (3.1) then
yields a~=-0.656 and n~= —', . For scalar cou-
plings, ""we use 0~ =0 and hence n~= —', . The
scale mass M in Eq. (2.3) is taken to be Ma for

C

each B,B, configuration.
The other QBEP model we consider is due to

Nagels, Rijken, and de Swart"; we refer to it as
the NRD model. These authors have performed a
simultaneous fit to NN, AN, and ZN scattering,
using the physical masses for N, A, and Z, but
constraining the coupling constants by SU(3}. The
potentials are of the form of Eqs. (2.4)-(2.9), with
an additional quadratic spin-orbit potential of or-
der (p/2M)~; this term is very small for the sys-
tems considered here. For r~ r„ the BB poten-
tial is taken to be infinitely repulsive, i.e., a hard
core of radius r, . For BB systems, this model
does not provide us with a prescription for con-
structing V(r} for r~ r, In thi. s paper, we retain
the condition that the wave function vanish at r =r,
for B,B, systems. This assumption is rather ar-
bitrary. For S states, the results are particularly
sensitive to the choice of cutoff and are hence only
schematic. It is clear that a properly regularized
potential should be used. The values of u, 8 and
the meson couplings to the nucleon are taken from
Ref. 12. They are g», /v4w=3. 66, g»„/&4m=2. 73,
g„„„,/&4' =3.69, 8 =-10.4', n =0.515, g„„,/v4w

=0.594, g„w„/v4w = 3.37, g» /~4w= —1.12, f„„/
v4m=4. 82, f„„„/~4n=2 34, f„„„/v4.m=-0.51, 8
=tan '(I/~2, n~r =0, nr= —', , g„„,/@4m=5.03, 8w

=0; other scalar couplings are zero. In this mod-
el," the effects of the large widths of the p and E

are taken into account; the scale mass M in Eq.
(2.3) is taken to be the proton mass for all B,B,
conf igurations.

The coupling constants of the four lightest
charmed baryons (C„C„A,S) are displayed in
Tables I and II for the extended versions of the
Bryan-Phillips (BP) and Nagels-Rijken-de Swart
(NRD) models, respectively. The most striking
difference between the two models lies in the cou-
pling to scalar mesons. In the NRD model, the E

is universally coupled to all the baryons, and the 6

TABLE I. Coupling constants of mesons to Cp, C&,&,8
in extended Bryan-Phillips model (g, =gzz, /@4~, etc.).

Cp C(

gqi

gp

fp

f&
gy
fy
A
g6
gs*

0
0.86

—1.72
0
0
3.45
1.81
0
0
0
2.06

-0.71

3.96
2.26

—0.38
2.73
1.81
2.73
1.81
0
0
1.23
4.07
0.71

1.02
—0.86
—1.40

1.73
0.91
1.73

—0.91
-2.44

1.28
-0.62

2.06
0.36

1.98
1.12
0.24
1.37
0.91
1.37
0.91

—1.93
-1.28

0.62
4.07

-0.36

TABLE II. Coupling constants of mesons to Cp, C„Q, S
in extended model of Nagels, Rijken, and de Swart.

Cp C,

gr

gg

gp

fp
gto

f&
gy
f,
ge

0
1.01
2.19
0
0
2.78

—0.35
-1.12
-0.51

5.03

3.55
2.81
3.95
1.19
3.21
2.78
3.93
1.12

—0.51
5.03

0.52
0.13
2.35
0.59

—0.54
2.18
0.19

—1.96
0.25
5.03

1.78
—0 ~ 22

4.50
0.59
1.61
2.18
2.33

—1.96
—2.78

5.03

and S* couplings are zero. In the BP model, on the
other hand, the a couplings are smaller than for
the NRD model, but the & and S* have nonzero cou-
pling s.

We take the following masses for the charmed
baryons: mc =2.26 GeV, ' mc =2.42 GeV, ' m„
=2.4V GeV, m~ =2.5V GeV, m~=2. 73 GeV." The
lowest B,B, thresholds that we consider are at
4.52 GeV (C,C,) and 4.84 GeV (C,C,). Note that the
Cy Cp threshold at 4 .68 GeV would lead to additional
I=1 bound states in this region. Quasimolecular
B,B, mesons are a Priori expected to occur in the
mass region above 4 GeV; structures between 3
and 4 GeV would be strongly bound and thus would
mix with the corresponding cc states of the char-
monium model. We also note from Tables I and II
that only C, and S couple strongly to the pion. Al-
though the dominant mechanism for binding is the
coherent central attraction from ~ and & exchange
and the pion exchange potential by itself is not
usually sufficient to bind a B,B, state with L ~ 1,
it does serve to increase the number of bound
states. The long range of the pion term also en-
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ables the B,B, wave function to be localized at
larger distances, and hence is largely responsible
for the sizable rms radius of these states. Thus
we expect the C,c, and SS systems to support the
greatest number of. bound states with the largest
amount of binding.

We now discuss the general features of the nu-

merical results. We first note that there is no

reason to take the cutoff parameters xo and x, of
the BP and NRD models to be equal for the cor-
responding BB and BB systems. For BB, we have
more attraction at short distances than for BB.
For the BP potential, for instance, we would ex-
pect that the appropriate value of r, [V(r}=0 for
x~ r,] would be smaffer for BB than for BB, to ac-
count for this increased attraction. We have in
general calculated binding energies as a function.
of ro or x„here we present results for choices of
these parameters.

As noted in Sec. II, the dominant (d- and &-ex-
change central forces are always coherent and at-
tractive for any BB system. In the NRD model,
the e coupling is universa. l (same for all B) and

very strong. In Fig. 2, we show the spectrum of

B,B, I.=1 and 2 bound states in the BI' model pro-
duced by including only the centra/ forces gener-
ated by isosceles-meson exchange. The spin-de-
pendent part of the central force (-o, ~ o,) typically
produces only (30-40)-Mev splittings, so all
(S,Z, T) combinations for a given I. are essentially
degenerate in this approximation. The main point
of Fig. 2 is that the eoIIexenee of spin- and isospin-
independent Wigner forces (ru, y, e) is already suf-
ficient to produce binding of I =1 or 2 states of
almost all IJ,B, configurations (and also some
states of higher Q. The large mass of the
charmed baryons makes it easier to produce bind-
ing with a given potential, and also leads to a
smaller splitting between I.= 1 and I.=2 states,
compared to the corresponding ÃN states, ' for in-
stance. Thus in such nonrelativistic potential
models, we expect bound states near any B,B,
threshold.

The size of the energy splitting b,&„„,of I' and D
states in Fig. 2 can be simply understood in terms
of the difference in centrifugal potentials I,(I, + 1)/
m~x2, evaluated at the localization radius x =R of
the wave function. We find

(3.2}

Inserting m~ = 2,26 GeV and R = 0.7 fm, we find
Me& for ~oCo, in good accord with the

exact results in Fig. 2. Since 6 1e/m tshe cen-
trifugal splittings become very small for weakly
bound (large R) systems with large rest mass
(large ms).

In Fig. 2, we give only the energies of bound

2 fflT

SS
cp cp

t.'pep
0) c)

e, c,

FIG. 2. Spectrum of BQ~ bound states for L = 1 p')
and L =2 (D) with isoscalar central forces orgy. %'e

used the Bryan-Phillips potential with a cutoff yo ——0.456
fm. The 0& 0.

2 component of the central potential pro-
duces splittings of only 30-40 Me7, so states of different
spin 5 and isospin I but the same L are essentially de-
generate. The L = 2 states of AA are unbound. The vari-
ous thresholds are shown as dashed lines. We have
omitted the bound states of XX and XBX .

states. Because of the large mass of the charmed
baryons, and the consequent reduction of the cen-
trifugal barrier (relative to ÃN, for instance), the
elastic width for B,B, resonant states becomes
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FIG. 3. radial excitations (n =1) for the 3$& states of the COCO and C&C& systems compared to nodeless states (g =0).
%e show the trajectories of such states as a function of the core radius y in the NHD model (Ref. 12). The thresholds
are indicate". by solid horizontal lines. Note that the mass of the Co has been taken to be 2 Geg in this figure; in the
remainder of the figures, we use m~0=2. 26 GeV.

very large rather close to threshold. Narrow
8,8, resonant states axe therefore much less like-
ly than for the ZN system, where they are in fact
observed. '

The states in Pig. 2 correspond to nodeless wave
functions (n =0). In Fig. 3, we display the energy
of some n =1 radial I.=0 excitations of the C,C,
systems as a function of r, in the NHD model. Qne
sees that the spacing between n =0 and n =1 states
depends fairly stx'ongly on the absolute binding en-
ergy, and is of the order of 1 QeV. One can un-

derstand this in a simple way by recalling that
the spacing between I =0 states with n=0, 1 in a
deep square well is given by'

= 3m'

g2 0

Ply

where R is the radius of the well. Taking R = O.V

fm, we find 4&„of order 1 GeV fox' COCO and C,C,
systems ln qualitative agleement with Fig. 3.
Thus we expect that only channels with rather
deeply bound (~l GeV) n =0 states will also pos-
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sess a bound n =1 state. Radial excitations of a
quasimolecular nature thus seem rather unlikely
fox' L ~1. Note also that the m=0, 1 splitting for
B,B, states is somewhat larger than that implied
by the charmonium model {600 MeV); the size of
the splitting clearly depends on the details of the
radial shape of the potential, and will generally
be smaller for more properly regularized potential
models.

In our model, the energies of I.=0 states are
exh emely sensitive to the details of the short-
range cutoff. Because of the presence of the cen-
trifugal barrier for configurations with I —1, this
sensitivity is reduced (although still considerable).
Also, the barrier effect might be expected to lead
to smaller widths for I ~ 1 states than for L, =0
states {see Sec. IV). For these reasons, we place
greater emphasis on predictions for I.~ 1 states
in the remainder of this paper.

For I, =0 states, there are no spin-orbit (X 5)
or diagonal tensor (8») forces. The binding is
thus only due to the coherence of signer forces.
For I.~ l states, X.% and S» forces come into

play, and produce large energy shifts for some
B,B, states. In Sec. II, we discussed the general
features of the X 5 and S„splittings, in particular
the role of the cokexenee of tensor forces. The
influence of r, 0 and S» forces on a typical B,B,
spectrum is illustrated by the "tree diagram" of
Fig. 4 for the I =1 and 2 states of the C,CO sys-
tem. The left-hand column shows that these states
are bound by central forces alone (see also Fig. 2).
The middle column shows the result of adding

5 terms to the C,C, potential; the effect is to
depxess the energy of 8=1, J =I.—1,I. states
and raise the energy of J'=I +1 states. This pat-
tern of K 5 shifts is due to the dominance of vec-
tor-meson I, ~ S forces (mostly ~ exchange) over
scalar-meson f 5 forces; this is true in all B,B,
systems within the class of models we have con-
sidered. In the right-hand column in Fig. 4, we
have further added the effects of the diagonal part
of the S~& force. Owing to its coherence properties
for T, ~ T, & 0, the 8» force alavays shafts the 9 = 1„
V =I.—1, I.+1 states down and the J=L state up in
energy.

Since the L ~ 5 and S» forces operate in opposite
directions for 8=1, J =I, I.+ 1 states, the net ef-
fect ls to position these states near the 8 =0, J =I
state, which is of course unshifted by L 0 or 8»
terms. Qnly the I=0, 9 =1, J =I.—1 configura-
tion is shifted downward by both spin-orbit and
tensor forces. This is a general feature of ".l
I=0 B,B, systems.

For systems such as COCO and 7.'T, for which
only I=0 mesons can be exchanged, L ~ 0 and S„
energy splittings are comparable in size. For

D2~
4.2 .130

1,2,3

I30

CENTRAL
ONlY

CENTRAL
+I S

CENTRAL
+LS+ S(2

l Ip

0,(,2
l3p

(3p

~l I p

FIG. 4. Tree diagxarn for the I.=1,2 states of the

COCO system. %'e used the BP potential with ro ——0.33
fm. The first column shows the binding energies ob-
tained with only the central part of the potential. Yhe
second column shows the result of adding the spin-orbit
potential, while the third column displays the spectrum
obtained including both spin-orbit and tensor forces.

systems such as C, C„whexe I=1 mesons can also
be exchanged, 8» splittings are generally some-
what larger than those from T, 5 forces, because
of the coherence of tensor foxces.

In Fig. 5, we illustrate the dependence of the

CoC, spectrum on the cutoff radius x, of the BP
model. A value r, =0.6 fm was used fox the NN

problem; the choice ro =0.456 fm was taken for
the ÃN system in Ref. 10, in connection with a sug-
gestion that the S(1930) meson' might correspond
to a "B„"D,doublet of ÃN xesonances. %e use
this same value xo =0.456 fm for most of the cal-
culations reported here. As seen in Fig. 5, this
choice implies that the I.~ 1 states of the COCO

system most likely lie above 4.2 GeV. Only by
using a considerably smaller x, can one expect
any CoCO structure to appear in the vicinity of the

g particle at 3.V GeV. Note, however, that the
coupling to the C,C, system via pion exchange
could considerably lower the energy of these
states.

In Fig. 6, we give some indication of the cutoff
and model dependence of the CxCx spectrum. For
sizable variations of the cutoff parameters r, and
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y'„all states with L =1 remain bound. Thus, al-
though absolute binding energies vary by several
hundred MeV for reasonable variations of z, and
r„such nonrelativistic potential models support
copious numbers of bound states.

Although the lowest threshold corresponds to
C,C, at 4.52 GeV, some of the C,C, states with

FIG. 5. Cutoff dependence of the COCO spectrum (L
=1,2 states). We used the BP potential with two choices
for the cutoff radius ro. Central, L S, and 5'

&2
forces

are included. The COCO threshold is indicated by a
dashed line. The value xo —-0.456 fm was also used in
Ref. 10 in eonneetion with the NX problem.

I=0 are much more strongly bound than C,C,
states. This is due to strong, attractive I=1 ex-
change forces (v, Io) for the C, C, system which are
absent for C,CO. Thus for a fixed value of ro or
x„we expect C, C, states to constitute the lowest-
lying part of the spectrum. However, these states
may be strongly mixed with CoCO via r and p ex-
change. For x, =0.456 fm, C,C, states occur in
the (3-4)-GeV region. These could mix with cc
states of the same quantum numbers. For larger
r, or r, (columns 2 and 4 of Fig. 6), these states
could be physically distinct objects lying in the
(4-4.5)-GeV region.

The lowest C, C, state with I.+0 is always "P„
as already predicted by general coherence argu-
ments. For CgCy the coherence of tensor forces
also holds for I=1 states, of which the lowest
member must be the J =I.—1 configuration, i.e.,
3»P, . Since the vector-meson f ~ S forces (p, &o, y)
are also coherently attractive for this state, we
expect on general grounds that the "Po state will
always be the second lowest I =1 state of the C,C,
system, and of course the lowest I= 1 state of any
B,B, configuration. Figure 6 supports this claim.
Note, however, that m and p exchange could strong-
ly mix this configuration with C, C„which has a
lower threshold.

The low-lying C,C, bound state in the "P, chan-
nel is an interesting object; since it has I=1, it
cannot be produced as a cc system. Its quantum
numbers J c (Ic) =0"(1 ) correspond to those of
the 6 meson, i.e., an isovector scalar meson.
Another interesting aspect of the C,C, spectra of
Fig. 6 is the persistence of I=2 bound states near
threshold. These states remain bound under very
sizable variations of xo or x, . Since they are gen-
erally weakly bound, their binding energies are
not strongly dependent on cutoff. Such "exotic"
I=2 configurations of C,C, may be ideal candidates
for quasimolecular states; they are weakly bound,
they have large rms radii, and many two-body de-
cay channels are forbidden. The energies of I=2
mesons of C, C, type would lie between 4.5 and 4.8
GeV.

Some typical trajectories of binding energy vs
x, fox the BP model are shown in Fig. V. The tra-
jectories are rather flat for weakly bound states
(~100-MeV binding) but are very steep for strong
binding. Clearly any predictions for the binding
energies of states below 4 GeV can change by
several hundred MeV with rather modest changes
ln f'O.

A typical overall spectrum of CoCo, CxC„and
SS states below 4.5 GeV is shown in Fig. 8 for ro
=0.456 fm. As x, increases, the spectrum be-
comes more compressed; the lower states move
up in energy most rapidly. Note that the only low-
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FIG. 6. The bound-state 1.=1 spectrum of the C&C& system for various potential models. Central, L S, and $&2

forces have been included. The coupling constants used are those in Tables I and II for the BP and NHD models, re-
spectively. The four columns correspond to different choices for the cutoff radii yo and w

lying I=I state is the "Po configuration of C,C, .
The 8S, AA, and XX systems can generate high-
lying I=1 states, but there is no coherence of
either tensor- or vector-meson spin-orbit forces
to bring these states down to low energy.

%'e now discuss the quasimolecular nature of

B,B, states in more detail. In Fig. 9, we display
the square of the radial wave function u'(x) for a
typical n =0, I.=1 state of a B,B, system. The
wave functions are localized in r; the degree of
localization is greater for more deeply bound
states or for larger I . The bottom half of Fig. 9
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FIG. 7. Trajectories of typical I.=1 bound states of the

the CpCp and C&C& systems as a function of the cutoff
radius rp for the BP potential [V(y)=0 for x«rp].

shows the rms radius (x')' ' of the state as a func-
tion of binding energy es. For weak binding, (r )
varies as es '~'. For large binding (»-,' GeV), further
increases in binding produce only a very minor de-
crease of (r ')' ~ ', this result may be an artifact of our
particular form of cutoff. For &~ &0.5 GeV, however,
we generally have (r')'~'»0. 75 fm. Since typical
cc states have (r ')'~' =0.3-0.5 fm,"we have

(r')+s '~'&(r');, '~'. Thus our B,B, tluasimole-
cules are localized at larger distances than char-
monium states. If such Bg, states exist, they
should thus be physically distinguishable from cc
states, Note that for the vreakly bound I=2 sys-
tems of C,C„we have (r')'~') I fm.

IV, EXPERIMENTAL CONSEQUENCES

The calculations described in the preceding sec-
tions strongly indicate the existence of a large
number of quasimolecular B,B, bound states in the
region belovr 4.8 GeV. Some of these states are
predicted to have I= 1, 2 in clear contrast vrith
charmonium. (I= I states are also predicted for
quasimolecular DB systems, ' but I=2 states are
not. ) Without more knowledge about the produc-
tion and decay properties of charmed baryons
themselves, it is not possible to make detailed

ss

CICI
I3p0

FIG. 8. Spectrum of all L =1 bound states below 4.5
GeV of the CpCp C ~C ~

and SS system. Central, spin-
orbit, and diagonal tensor forces are included. +le
used the BP potential with a common cutoff. rp ——0,456 fm.

predictions about similar properties for B,B,
bound states. %e are further handicapped in dis-
cussing the dynamics of quasimolecular states
since nothing is known experimentally about the
analogous AA and ZZ systems to guide us. Never-
theless, are will make some qualitative remarks
which may be useful.

%e have not emphasized the possibility of S
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1.5 2.0 2.5 but it is hard to be definitive about this.
A most interesting question, which we have not

addressed, is the degree of mixing with charmo-
nium states. This has many important experimen-
tal consequences and any data regarding these
would be very useful in sorting out the dynamics.
For one thing, it would control the rate at which
the cascade terminates with J/tcI. An obvious de-
cay to look for is

"P, J—/tJr+ v .

A similar decay, probably somewhat less probable
because P-state mixing with cc states should be
less than S-state mixing, is

0. 1

C3

0.2

~l

tlj

g 0.&
C)

foal

0.5 I

0.5 1.0
J J

1.5 2.0

states mainly because the quasimolecular approxi-
mations used are most questionable for them. In
particular„mixing with charmonium states and
DB states is likely to play a significant role in the
dynamics of S states. Nevertheless, we must ex-
pect some partly B,B,. S states to exist and lie be-
low the P states we have calculated. The most
likely result of the production of the various B,B„
P and D states is a cascade by ~ emission to the
low-lying S states. The rate for these decays is
mainly dependent on the energy separation, and
since for the higher-lying states there are many
possible paths for cascading, it is not possibl to
give a reliable estimate for the widths. Rough es-
timates using perturbation theory following, for
example, Van Royen and Weisskopf" leads us to
expect widths of at least 10 MeV and probably much
more for these decays. -" lt is possible that for the
lowest-lying P states other decays, of the sort to
be discussed below, may be competitive with these

( 2)l/2 (f~)

FIG. 9. Wave functions and rms radii for a typical L,

=1 bound state of IF,B, type. We used the BP potential
with central, L 8, and $» forces included. The cutoff
radius ro was varied in order to change the binding en-
ergy. The top half of the figure shows the square of
the radial wave function u2(x) as a function of y for three
different binding energies. The bottom half exhibits the
rms radius (r )' as a function of binding energy for
two typical $5 states.

The mixing could also have a significant effect on
the properties of the charmonium states. The B,B,
states are expected to be more than twice as large as
charmonium states. " Calculations for the charmon-
ium states suggest that the J/g has a root-mean-
square radius R(J/g) = 0.28 fm. This more or less is
conf irmed by the known P'- yy and y- Py electromag-
netic decays. ""' Describing these states, for ex-
ample, by harmonic-oscillator wave functions with
a common size parameter yields R(J/i(t) ~ 0.38
+ 0.08 fm. This combined with B, carrying unit
charge on the average, as opposed to -', for c, leads
to E1 transitions approximately an order of mag-
nitude larger than for charmonium. Thus a small
admixture of B,B, into cc could profoundly affect
the observed y-ray widths and branching ratios
for charmonium.

Let us now set aside the mixing question and ask:
%'hat else can happen to the lowest-lying B,B, S
states? As always, we expect that getting rid of
the charmed quarks will be the most inhibited
stage in any decay. It is probably not as difficult
as for J/P decay because there is the possibility
of ec annihilating through one gluon here. This is
partially compensated for by the larger size of the
B,B, state and the recoupling required to put cc
in the state with the quantum numbers of one gluon.
The recoupling coefficients can be calculated and
are not very much smaller than 1 so we estimate
for this process very roughly

3 1 4

I 7/0J /tti R~ g aq

= 80I'~/q .

Although this is considerably larger than the
J/tt width, it is still rather small and we expect
that quark rearrangement into charmonium states
or charmed mesons (if the Tf, B, state lies above
3.7 GeV) to be favored. Thus, one should look for

33S, -J/g+ v



So eTj$+ 'll + 7I' Qr YJ + 'lT .
If me assume that the effective force between the
cc is stronger than that holding the baryons to-
gether then, once the B,B, system ha, s dropped
into the 8 state, the propagation of cc should be
governed by the gluon exchange potential and so
they should form 8/P or g' states at a, rate com-
parable with the widths of the high-lying charmo-
nium states„ i.e., 30 MeV or so.'4

Since me are starting with a state containing a
baryon and an antibaryon, it is tempting to think
that the decays mill lead to a fairly large per-
centage of final states containing pp, AA, etc.
However, if our last assumption above is correct,
this mill probably not be the case because the
large momentum transfer involved in annihilating
the cc quarks will tend to destroy any remnant of
baryonlike wave functions of the remaining light
quarks.

These states a,re l.ikely to be difficult to pro-
duce. In principle, the triplet S and D states
couM be produced directly in e'e a,nnihilation.
%e estimate the rate for D states to be very
small, with widths of order a fem eV. The rate
for 9 states is again very dependent on the mixing
with cc. The wave function at the origin is smaller
than for pure cf." states and this, along with the
form factors of the B„should reduce the rate by
an order of magnitude from eharmonium states.
Alternatively, they could be produced in e'e by
first producing a hi.gh-lying charmonium state
which decays into a. B,B, state. This is probably
rare, but it mould be interesting to look for.

On the grounds that a B,B, state is more likely
to be found in a process where charmed baryons
have already been seen, photoproduction or neu-
trino production seem likely processes to investi-
gate. Finally, in spite of Regge estimates to the
contrary, "me cannot avoid the feeling that d. good
may to look for B,B, states is to start with pp
stRtes.
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APPENDIX

Here me outline the calculations of the Yukawa
coupling constants a,s determined by SU(4) invari-
Rnee. The eRleulRtlon ls straightforward, but me
include this outline so the interested reader ca,n
see hom me obtained the coupling constants used in
the potentials.

For our purposes, me need the couplings only to
the neutral, nonstrange, noncharmed mesons.

Since all the exchanged mesons are supposed to
lie in SU(4) 15-plets or singlets, we need consider
only the case of pseudoscalars explicitly. The
scalar and vector couplings ean be obtained by sub-
stitution of the corresponding mesons. There are
then four mesons to consider, the I=1 m' and three
I =0 7)'s, an SU(4) singlet, an SU(3)-singlet member
of the 15-piet, and a member of the SU(3) octet.
So me mill calculate the couplings to

(ur7+ dd + s s + cc),1

1— (uu+dd+ ss —3cc) .
v12

TABLE III. Baryon wavt; functions.

P ~T

TQdjd1
We

ydSyd1

ryQ d &8

C) =~1
C+ Q ygCtd 7Qd sC)

T dCsd

«T

C+ TQdyC
1

f)

A = T=2

g 0 l. ydSpC
2

g+ |'2 + ftCs 8 T tlSsC)
1

&12

gO (2 ydCyS Td SyC)
1

g+ TdC~C
We

~+ T SCARC

T C ySCpS1
«t6
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T ' = g Q&gz+ Q'Btg gz —g„g~g —g&g„g (A2)

A calculation of these couplings has already been
published by Campbell, "but me disagree mith the
signs of many of the couplings he lists. Our signs
agree with those given by Gell-Mann" for the non-
chaxmed baryons, while Campbell's disagree with
some of those as mell. Mixing of the q's mill be
considered later.

The baryons are supposed to lie in the 20 repre-
selltR'tlolls of SU(4). Tile baryons Rl'e glveI1 lly

tensors which are constructed from quark fields
according to

Qu+ dd+ sF ~374+ ~x

v3
(A I)

couplings, there is also the 16th meson, the SU(4)
scalar q„which couples with a universal strength
g, to all baryons.

%e will assume that the putative g, is nearly
pure cV and that the observed g and q' contain very
small amounts of cV. For our calculations me

mill, in fact, treat them as totally unmixed in
charm. The g„since it is so heavy, will not be
included in our potential, so me need only the
q and q' couplings. Nom

Ma =tg Q'~ ) (A3)

These are tabulated in Table III. The meson ten-
sors are the standard ones:

so

~3@,+ g„g=-sin& ' " +cos9q„
{Aa)

these are tabulated in Table ~ ss

Because 15820 contains the baryon 20 twice,
there are tmo independent couplings, just as in
SU(S). Thus there are no new unknowns; the
couplings are determined by the mNN coupling
and the D/Ii ratio. We will use invariant products
of tensors in order to construct the possible coup-
lings. The baryon tensors satisfy

TetS 8 — TtOS 8

M3q, +g„q' = cos8 ' " + sin8 qs.2

Here the mixing angle is the usual SU(3) mixing

TABLE V. Yukama coup1ings.

/$5

g&'YSB+ ggOS'f+ ~QS Q 0 (A5)
1—(3 —4n)g

W6

EquRtio11 (AS) plays the role of the traceless condi
tion on the meson 15-piet tensor M~ and reduces
the number of independent components from 24 to 20.

The tmo invariant couplings are written so as to
reduce to the standard D and E form for the non-
charm particles:

g +(O[L(Z aSI 5)tTOSIIM B (TPSIY)tTnSII'M Pj
~2

int 3 y I CoCo

(1 2e)g —~ (3 —2n)g
W3

(3 —4o. )g
1
6

+(1—n)[-'(T' ") T '"M

+ {T's' )'Z"s:"M.']). {A6)

It is now just a matter of substituting into (A6)
from Tables III and IV to get the couplings. These
are presented in Table V. In addition to these

SS

XX (S 2~)g (X 2o)g
&3

1
(5 4o)g

V6

TABLE IV. Meson &eave functions.
(5 -4o. )g6

Cj&o



BOUWD STATES OF CHARMElj BARYONS AND ANTIBARYOXS 815

angle. Hence for any baryon 8 we have

M3
gBB = — sln8 gl —P slD& gBB + cos~ gBBBBq 15 8

~3
g ~ — cosg g + 2 co&0 gBB + slnH gBBBBq

8

where g»„and g»„may be read from Table V.
Thus to cafculate the exchange force for these me-
son multiplet we need four quantities, typically
taken to be g,g„o., 8. These have been obtained in
a number of ways and the values used in our cal-
culations are given in the text.
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