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baryon spectrum in a linear string model~
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Results are presented on the spectrum of baryon SU6 03 supermultiplets based on a relativistic string

model with linear string-length potentials. Calculations are carried out for a four-constituent baryon model as

well as the normal three-quark model. Deviations from the conventional harmonic-oscillator spectrum, lack

of quark-diquark structure, and the possibility of a low-lying (56, 1 ) supermultiplet are discussed.

I. INTRODUCTION

A recent 7' partial-wave analysis' has shown
evidence for the existence of a D35 resonance at
1925 MeV. This state was tentatively identified as
a member of a previously unseen SU,(SO, super-
multiplet, ' the (56, 1 ). Since a low-lying (56, 1 )
multiplet is not easily accommodated by conven-
tional harmonic -oscillator baryon models, ' a new

model was proposed to account for the (56, 1 )
mult ip let.

This new phenomenological baryon model was
suggested partly by dual resonance and string
models. ' The model depicts ordinary baryons as
three light quarks bound together by "strings"
which represent gluon fields and nonvalence
quarks. The leading term in the potential energy
of the baryon system is proportional to the mini-
mum string length needed to connect the three
quarks in a given configuration. The three quarks
need not lie along a single string; a three-string
vertex is allowed in this string-length potential
(SLP) model. To represent phenomenologically
the kinetic energy and momentum carried by th~
strings we add a fourth constituent to the baryon:
the monad, a colorless, massless, neutral scalar
particle. The monad, being colorless, is con-
nected to the three quarks by at least two strings.
We refer to the baryon composed of three quarks
and a monad bound by SLP interactions as the 4C
model, the more conventional baryon composed of
three quarks with SLP interactions as the 3C mod-
el.

De Rujula, Georgi, and Glashow have used a
variant of the 3C model to calculate splittings of
the s-wave and p-wave baryon multiplets. ' Gunion
and Willey use a linear potential between a quark
and diquark pair to calculate SU, baryon multiplet
levels. ' These calculations assume nonrelativistic
Hamiltonians involving massive quarks. Chodos
and Thorn, Bars and Hansen, and Bardeen et al.
discuss theoretical aspects of relativistic string
models, such as the problem of covariant quanti-
zation. '

The purpose of this paper is to describe cal-
culational techniques used in the phenomenological
SLP models and to discuss the qualitative features
of the resulting baryon spectxum. The formalism
described here will serve as the groundwork for
precise numerical calculations of the SLP baryon
spectrum to be reported later.

Several qualitative features of the SLP model
are common to the 3C and 4C versions. The well-
known Regge result of trajectories rising linearly
with the square of the baryon mass results from
the choice of our Hamiltonian. The degeneracies
of the harmonic-oscillator spectrum' are broken
in the SLP model. Radially excited states are
displaced below orbitally excited states with the
same principal quantum number. Orbitally excited
multiplets degenerate in the harmonic-oscillator
spectrum are themselves split in the SLP model
in a characteristic way.

In addition, the SLP models favor a linear con-
figuration of the constituents, with two quarks
relatively close together. However, the resulting
SLP spectrum does not resemble the minimal
spectrum of SU,03 supermultiplets' resulting
from quark-diquark interaction models. Only with
the addition of explicit exchange forces can the
SLP model shift toward the minimal spectrum.

Finally, we wish to determine whether the mo-
nad, representing the extra degrees of freedom
of the strings, is necessary for agreement with
baryon spectroscopy. It was initially thought that
a low-lying (56, 1 ) required the monad. The mo-
nad could be in an L = 1 state relative to the three
quarks in a symmetric ground state at relatively
low energies, in much the same way that the bag
can be in an L =1 state relative to the symmetric
three-quark state to give a low-lying (56, 1 ) in the
MIT bag model. ' However, our present calcula-
tions show that in the SLP model, at the n= 3 lev-
el, the (56, 1 ) may be sufficiently low to account
for the D»(1925) in a 3C version of the model.
Detailed calculations of the splitting at the n= 3
level wiQ be necessary to determine whether the
additional dynamical degrees of freedom of the



strings are an essential feature of the model.
For numerical calculations of the spectrum in

either the 3C or 4C versions of the model, it is
convenient to use a set of coordinates similar to
those of the harmonic-oscillator model. In addi-
tion, harmonic-oscillator wave functions are used
as a set of basis functions. We review these ele-
ments of the calculations in Sec. II. Hamiltonians
in the 3C and 4C versions of the SLP model, along
with a description of the calculational techniques,
are given in Sec. III. The SLP spectrum as a per-
turbation of the harmonic-oscillator spectrum is
treated in Sec. IV, the effect of exchange
forces is discussed in Sec. V, and a more com-
plete discussion of our results is given in Sec. VI.

II. COORDINATES AND BASIS FUNCTIONS

In the 4C model we introduce, in the center-of-
mass system, three independent (vector} coordi-
nates (q, 0, $) and the respective conjugate moments
(e, o, x). The momentum of the monad is P, =X, and
the momenta of the quarks are

1 1 j
p = -3X —3 v 3 g+ f.

l 1 i
p = -3X -g~ 30' —6

1 2 j
p = -~3+ 3v 30'.

The displacements of the quarks from the monad
al e

The relative displacements of quarks are (r, &

=r, -rq)

SU," which is the symmetry group of the 6-dimen-
sional harmonic oscillator. This dynamical SU,
is distinct from the usual SU„which is the cover-
ing group for spin and flavor transformations.
The dynamical SU, group includes 0„ the group
of rotations in three dimensions, and S„ the group
of permutations of three objects, according to the
decomposition SU, ( 0, ( S,0, . Table I gives the
decomposition of the lowest-energy SU, multi-
plets into 0„S„and0, multiplets. The SU, quan-
tum number is n, the 0, quantum number is ~.
In general, A=n, n —2, n —4, ... , etc. The S, quan-
tum number is 1' for singlets, 2 for doublets, the
+ referring to parity under permutations. The
(1', l, 2) S, states give rise, respectively, to the
(56, 20, 10)-dimensional representations of "flavor-
spin" SU,. The N values in the table describe the
degeneracies at each value of n, A, I-, and S,.
For example, the single state at n=~=L=O is the
ground-state (56, 0') supermultiplet. The six
states at n= A =I = 1 correspond to the lowest
(IO, 1 ) supermultiplet, which transforms like a
doublet under S, and a triplet under 0,. States
with A =n —2, n -4, . .. are "radial excitation"
states; wave functions with the same A and differ-
ent n differ only in their dependence on the radial
variable p. In the 4C model, these 6-dimensional
harmonic-oscillator states are combined with
states of the $ oscillator. Excitations of the $ os-
cillator do not affect the symmetry under quark
interchange, but can contribute to the total orbital
angular momentum.

Angular wave functions for the A=2 and A=3
states (with mi maximum) are given in Tables II
and GI. The subscripts on g and g in the I.40
cases refer to the action on the rn~ quantum num-
ber: + raises mi, 0 leaves rnl, unchanged. In
the case of S, doublets two orbital wave functions

L I /y = —
q

— 3f (3) TAB LE I. Three-quark harmonic-oscillator states.

n A L, S, Njs, (3 03) Ã(0, ) N(SU, )

In the 3C model, we omit X from Eqs. (I), and
omit Eqs. (2). We also define

p (~2+ t2)ll2 y (e2+ c2)1/2

which are the magnitudes of conjugate 6-dirnen-
sional vectors.

For ease of calculation, and also to simplify
comparisons with the standard harmonic-oscil-
lator model, we use harmonic-oscillator wave
functions as a basis. The q and f oscillators have
the same radii, the $ oscillator has a different
radius (these radii might be variationally ad-
justed}.

Horgan' has shown how to construct the states
of the conventional model, using a "dynamical

0 0 1
1 1 2
0 0 1
2 0 2

1 1
2 1+

2 2
1 1 2
3 1 1

1 1
1 2
2 2
3 1+

3 1
3 2

1
6
1
2
3
5

10
6
3
3
6

10
7
7

20
6

50 56
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TABLE II. Orbital wave functions for A=2. TABLE III. Orbital ~ave functions for A=3.

"+~0 ~0~+

+ g+
2 2

are given, corresponding to the two eigenstates
of the quark-interchange operator P». The nor-
malization factors have been chosen to give a unit
average over a unit 6-dimensional sphere. The
square of the wave function is to be multiplied by
the factor listed.

III. KINETIC AND POTENTIAL ENERGIES

For simplicity, we take all the constituents to
be massless; the kinetic energy is E~p, ~. With
this assumption, our calculations apply most
directly to N and & states.

The leading term in the potential energy is as-
sumed to be proportional to the minimum total
lengths of "strings" which are needed to join the
constituents. At least one string is attached to
each quark, at least two are attached to the monad,
and a vertex with three intersecting strings is
allowed. In the 3C model, the minimum-length
configuration has three strings meeting at 120',
provided all interior angles of the quark triangle
are less than 120' [Fig. 1(a)]. Otherwise there are
two strings meeting at the obtuse vertex [Fig. 1(b)].
To calculate S, we first define

(1+,3)

(1,3)

K, (n'- &')+ 2n, (n 4)

q+(n 4 ) M'+(5 0)

40+ (O'0)+ &+ (4 —3'9 )

4K, g.n)+~, (n'- R')
&+'&0- &0&+&+

K+ go —405+g+
2

2 3

3q+ 5+ —n+
2 3

f+(/+2+ q+ )

g+(f+ + rI+ )
2

20

The other vectors are obtained by interchange of
the quarks. In analogy with Eqs. !4)-(6)we intro-
duce the quantities

p
2 y

Q 2+ g 2

2 .
g $22(q q g )2

X,'= —,'(p, '+ 2A, ).
(10)

and the other two quarks [Fig. 1(c) or (d)]. This
configuration has a string length S&., the minimum

possible length is

S = min(S„S„S,).
To calculate S„we first define vectors q& and f,.
For i=3, for example, we have

X = g &3 (p'+ 2A)' ~'.

Then S is the largest of the four quantities

s», =x,
I 2

S~y 3X+ X (x~g g p )
(7)

The expressions on the right-hand side of (7) are
the sums of either two or three stringsegments.
The subscripts on the left-hand side indicate which
quarks are attached to only one segment. In the
4C model, the minimum-length configuration al-
ways has two strings attached to the monad. One
of these strings joins a single quark, the ith one„
to the monad. The other string is part of a mini-
mum-length string system which joins the monad

FIG. 1. Minimum-string-length configurations in the
3C model I(a) and (b)], and in the 4C model [(c) and (d)).
Solid lines represent the gluon "strings. "
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Using Eqs. (7}, but with q and f replaced through-
out by g, and f, , we have

S, =r, +-max[s„,(i),s„(i),s„(i),s„(i)]. (11)

The SLP given by Eq. ('I) or Eqs. (8), (11) is not

convenient for explicit calculations because it is
nonanalytic; different expressions hold in different
configurations. For explicit calculations we re-
place it by a sum of analytic terms which are
homogeneous (of degree one) in the coordinates.
The terms are required to be simple enough that
their matrix elements in the harmonic-oscillator
basis are easy to calculate. In the 3C model we

may include the following quantities:

Note that b is the perimeter of the quark triangle,
and that a, for fixed p, is proportional to the
squared area of the quark triangle. In the 4C
model we may include also the quantities

quark-exchange properties as well as terms with
a different dependence on the distances between
constituents.

IV. PERTURBATION OF HARMONIC-OSCILLATOR STATES

%e treat the replacement of the conventional
harmonic-oscillator Hamiltonian by the Hamilto-
nian for a string model with relativistic constitu-
ents as aperturbation which shifts the energy lev-
els of the conventional model. (In the 4C model,
the $ oscillator is taken to be in its ground state. )
The most significant effect of this perturbation is
to strongly depress the energies of radial excita-
tion states (A & n} below the energies of orbital
excitation states (A =n). When p or 1 is such that
energy terms linear in displacements or momenta
exceed terms which are quadratic, we observe that
the radial wave functions for K= 1 have nodes,
while those for K=O have maxima, where 2K=n
—A. It can also be shown that if the potential and
kinetic energies are, respectively, proportional
to p and X, the energy levels are proportional to

E~ ~ = A+ 0 2K+ constant (14)

The last two terms (f and g) would contribute only
to matrix elements in which the $ oscillator does
not remain in its ground state.

A characteristic of the string potential is that it
favors positions in which the constituents lie along
a line, so that a is small. In fact, the string
length S in the 3C model is always greater than

&b, unless a=0. This is illustrated in Table IV
for isosceles-triangle configurations (g &=0).
Thus, in the 3C model we might approximate S by
& 5, provided we add a term proportional to a.
Similar qualitative considerations apply to the 4C
model, although numerical values would differ.

In addition to the dominant SLP term, the poten-
tial energy might contain terms with different

TABLE IV. String length S versus half-periIQeter 25
for isosceles triangles with p= l.

for large A (a similar formula is given in Ref. 1).
Perturbations of the various S,(30, states with

the same A depend on more complicated properties
of the SLP. To discuss these perturbations, we
examine the density functions D~(r. , q) which can
be constructed from squares of wave functions.
Here the subscript A refers to the 0, classification
of the density function. These density functions
are scalar (f. = 0) and are symmetric in the quarks
(1'). For A » 6 the following density functions
occur:

By considering the reduction of ASA (in 0,) we see
that the first-order splitting of A= 2 states is given
entirely by the D„density function. , while the split-
ting of A = 3 states depends on both D, and D,.
Table V gives the coefficients d, and d, in the ex-
pression for the averaged density (for p=1)

(equilateral)

g =-,3, ~10
(120')

~W3+~~w3~ &w3&2+-"

1 +2(1-'g) + i ~ ~

(3)i/2
2

(6)4/2

—b2

~&3+~ n —,' ~3@2

1+ g(1-'g)

3~2

(
1 + 1 ~3) (

6
)
i/ 2

Q $('=N(I+ d4D, + d+8). (16)
i

The sum is extended over all K members of a
given (S,SO,) multiplet.

The first-order energy shifts are proportional
to the averages of the D~ multiplied by the kinetic
energy and by the various potential terms from
Eqs. (12), (13). The first term in D, is proportion-
al to a. Thus, on averaging over 0, rotations,
(aD,}&0. Next, consider the effect of a term in
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TABLE V. Coefficients of (1,0) densities. (aDQ —=0. The averages of q and o times D, are

(2, 0)

(1+,2)

(2, 2)

(1,1)

(1', 1)
(1,1)

(2, 3)

(2, 1)

(1+,3)

, 3)

(2.2)

(70,0+)
(56,z')

/
/

/
/

/
/

(70, )

(56,3 )
(ao, &-)

the potential proportional to b. Using quark-inter-
change symmetry, it is sufficient to consider
(for p= 1)

(r,g,) =(qD,) = —,', .
For the kinetic energy, we calculate in momen-
tum space (for X= 1) using D,(o, e). In the 3C mod-
el we have

(16)

In the 4C model the numbers are somewhat dif-
ferent, but the signs remain the same: Both po-
tential and kinetic energies give positive contri-
butions to an average with D,.

Since a i.s a linear combination of Do and D„

The opposite signs in (12) occur because D,
changes sign when q and g are interchanged. Since
averages with D, are small and since there is a
cancellation between potential and kinetic energy
terms, the splitting of n= 3 states with symmetry
1' and ]. produced by the D6 term are expected to
be very small.

For both A= 2 and A= 3 states, therefore, the
influence of the B, density function will be domi-
nant, and the direction and relative magnitudes
of the first-order energy shifts are given by the
coefficients d, from Table V. The resulting spec-
tra are shown in Fig. 2. In particular, note that
for A = 2 the (2, 0) state has the lowest energy,
followed by the (1', 2) state. This means that
among orbital exeitations at the n = 2 level, the
(VO, O') lies lowest, foQowed by the (56, 2'). For
A=3 the (1', 1) states are lowest followed by the
(2, 3), so the (56, 1 ), (20, 1 ), and then the (70, 3 )
are the lowest orbital excitations at the n= 3
level.

V. EXCHANGE FORCES

The inclusion of additional potential energy
terms containing various quark-interchange oper-
ators may be required in order to provide a,gree-
ment with empirical baryon spectroscopy. For
completeness, we discuss here the additional den-
sity functions required for calculating the influence
of exchange operators. A quark-exchange opera-
tor gives an extra factor (+I) when applied to a
state with symmetry (1'). For these states the
D~ density functions are sufficient, provided the
sign factor is taken into account. For doublets
under S„additional density functions transforming
as (2, 0) and as (1,0) under S,I30, are required.

For A ~ 6 we define the following (2, 0) density
functions E»(t;, 7)):

f2 g2

2$ ~

(20)

SLP SLP + EXCH Sl P SLP+EXCH

FIG. 2. Energy levels for A =2 and A =3 states from
the string-length potential and as they might be altered
by a simple exchange potential. The energy scales for
A =2 and A =3 are not related, and the magnitude of the
splitting due to exchange forces is arbitrary.

In analogy with the definition of the coefficients
d» in Eq. (16), we define coefficients e» by

g y(z„q(=age»E»,

where E» is the upper component in (20). The e»
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TABLE VI. Coefficients of (2, 0) densitities.

e2 e,

(2, 1)

(2, 0)

(2, 2)

(2 1)

(2, 2)

(2, 3)

1
6

4
3

4
3
1

6

8
21

V„,~= (P»+ P»+ P„)v(p) (23)

because all density functions D~ or E~ with A» 2

vanish on averaging over a 6-dimensional sphere
of radius p. The potential (23) therefore does not
shift any states of symmetry (2), while states of
symmetry (I') and (1 ) within a given 0, multiplet
are shifted by equal amounts but in opposite direc-
tions. This is indicated schematically in Fig. 2.

VI. DISCUSSION

The Hamiltonian for relativistic constituents
interacting via the SLP leads to several charac-
teristic alterations of the three-quark harmonic-
oscillator spectrum. First, radially excited states
are displaced below orbitally excited states. The
orbitally excited multiplets are a,iso split in a
characteristic way determined by their 0, trans-
formation properties.

As noted in Ref. 1, the string-length potential
favors a linear configuration for the constituents,

are listed in Table VI. Densities involving other
elements of S, can be obtained by considering the
transformation properties of the E~.

There is also a (1,0) density function for A = 6:

(22)

However, F, does not occur in any diagonal matrix
element involving A= 2 or A = 3 wave functions.

The pattern of first-order energy shifts produced
by exchange forces would depend in a very compli-
cated way on the manner in which the exchange
forces involve the quark coordinates. This is
indicated by the complicated pattern of the coef-
ficients d~ and e~ given in Tables V and VI. How-
ever, a simple statement can be made about an
exchange potential of the form

with two quarks always relatively close together.
It was conjectures on this basis that the minimal
quark-diquark spectrum' would be favored. This
minimal spectrum contains only (56,L')~.„„and
(70, L )~ «multiplets of SU,I30,. The calcula-
tions presented in this paper show that the kine-
matical diquark effect from the string-length po-
tential is not sufficient to give the minimal spec-
trum. In fact, among A= 2, states, the (70, 0')
multiplet is lowest, with the (56, 2') multiplet next.
Among A = 3 states, the (56, 1 ) and (20, 1 ) multi-
plets are lowest (and nearly degenerate), followed
by the (70, 3 ) multiplet.

To reproduce the minimal spectrum one would
need to add explicit exchange forces having a com-
plicated dependence on the quark coordinates. A
simple exchange force such as Eq. (23) could lower
the (56, 2') energy below the (70, 0') energy. It
would also raise the (20, 1') energies, but would
leave the (56, 1 } multiplet well below the (70, 3 )
multiplet. A limit to the strength of such a force
is provided by the (70, 1 ) multiplet (A= I), which
is observed to lie below the (56, 2') multiplet.

In Ref. 1 evidence was put forth for the existence
of a (56, 1 ) multiplet with about the same energy
as the (56, 2') multiplet. The 4C model was pro-
posed as a natural way to obtain such a relatively
low-lying (56, 1 ) (inthe notation of this paper, as an
excitation of the degrees of freedom associated
with the variable $). The qualitative calculations
presented in this paper show that the 3C model is
also able to give a (56, 1 ) multiplet which lies be-
low the (70, 3 ) multiplet. It is noteworthy that
perturbation terms for the conventional harmonic-
oscillator model, as empirically determined by
Horgan, "lead to a similar order for the A = 3
states. Detailed numerical calculations will be
needed to determine whether the observed (56, 1 )
can be accommodated by the 3C model, or whether
the extra degrees of freedom of the 4C model are
required.

In either the 3C or 4C model, we find that (70, 0')
and (70, 2') multiplets are expected at energies
close to that of the (56, 2') multiplet, with the
(70, 2') somewhat higher than the (70, 0'). There
is no evidence for the existence of (70, 0'} states,
and only very meager evidence for existence of a
state attributable to the (70, 2') multiplet. " The
question of these multiplets' existence, and their
energies if they do exist, are important outstand-
ing problems of empirical baryon spectroscopy.
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