
PH YSICA L RE VIE% D VOLUME 16, N UMBER 3 1 AUGUST 1977

Duality structure of inclusive diffraction dissociation*

Keisho Hidaka
High Energy Physics Division, Argonne Nationa/ Laboratory, Argonne, II)inois 60439

(Received 10 March 1977)

The duality structure of diffraction dissociation is studied in a triple-Regge (TR) analysis of the diffractive
process pp ~pX. A scheme (normal scheme) is proposed which is quite different from the scheme previously
suggested by many people (abnormal scheme). Diffractive resonance production is dual to the Pago
(Pomeron exchange) term in the abnormal scheme, whereas it is dual to the POPO (ordinary Reggeon
exchange) term in our normal scheme. From a careful TR analysis performed with much more data, we
conclude that the data favor our normal scheme at least for 0.1 &

~)
& 0.5 (GeV/e)'. Here t is the mass

squared of the external Pomeron (P,).

I. INTRODUCTION

The duality structure of Beggeon-particle scat-
tering can be studied by the analysis of inclusive
cross sections, since an inclusive spectrum near
the phase-space boundary is directly related to
the absorptive amplitude of the Reggeon-particle
forward scattering through Mueller's optical the-
orem. Here the question arises whether the usual
Harari-Freund duality, which identifies the Pom-
eron exchange as the background term, works for
Beggeon-particle scattering as well as for parti-
cle-particle scattering. Unlike the case of the
meson Beggeon-particle scattering, where normal
duality seems to work, ' it is still uncertain whether
normal duality holds for the case of Pomeron-
particle scattering. According to Einhorn et al.'
we expect an abnormal situation in which the cross
section for diffractive resonances is described,
on the average, by the triple-Pomeron term P,P,PO,
that is, resonances dual to Pomeron exchange.
This scheme has been suggested phenomenological-
ly by several authors. '~' In this paper, however,
we propose a scheme (normal scheme) quite dif-
ferent from this current scheme. In our scheme
the cross section for diffractive resonances is
described, on the. average, by the P,P,R, term,
that is, resonances dual to meson Reggeon ex-
change. In previous papers"' it has been shown
that the data on the diffractive processes pp-pX,
m p -pX, and K p-pX favor our normal scheme.
In this article, by triple-Hegge (TH) analysis of
the high-energy inclusive data on pp»pX at Fer-
milab and at the CERN ISR, "we investigate in
more detail (e.g. , we perform the TH fit including
interference terms) and with more care whether
the experimental data favor the normal or abnor-
mal duality scheme.

In the next section (Sec. II) we explain the dual-
ity schemes of diffraction dissociation. In Sec. III
we test duality by a TB analysis assuming the ab-
sence of interference terms. In Sec. IV we check

whether the inclusion of interference terms causes
a drastic change in our conclusions obtained in
Sec. QI. In Sec. V we discuss the reliability of our
duality test in comparison with the duality analysis
of Field and Fox.' Section VI is devoted to con-
clusions.

II. DUALITY SCHEMES

(a) (bj

FIG. l. (a) Reggeon-particle amplitude ip jp and
(b) TR diagram.

We consider the process p(p, ) +p(p, )-p(p, )
+anything via the exchange of Pomeron and Reg-
geons in the t channel, as is depicted in Fig. 1(a}.
We define the invariants s =-(p, +p, )', t =-(p,-p3), M = -(p, +$2-p, ), and v =M -ms —t,
where m is the proton mass. In the limit of M'-~
and s/M'-~ one would expect, by analogy with parti-
cle-particle amplitudes, the Beggeon-particle am-
plitude (tp-jp) tobe describedby the Hegge-pole ex-
change of Fig. 1(b). This leads to theusual TRbehav-
ior for the inclusive cross section, i.e.,

(g)
tl

gN(
)

The coupling G is the product G,»(t)
=P;(t)P;(t)], (t)&,*(t)P,(0)g. ,,,(t)/Ms', where P's
are the usual Beggeon-particle-particle couplings,
t's are the signature factors, g„~(t) is the TR cou-
pling, and v, is taken as 1 (GeV}'. Following the
usual method'6 we can write the first-moment
finite-mass sum rule (FMSH) for large s/v in the
for m
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„y(o)-;(t) - (t)+3 y at„(0
+&g G (t) Z;(i)+~, (i) -=g G(tju) ." r dtdv s' „, "'

o(,(0) a-, (t) c(-, (t) +2 v,

Now we consider two-component duality for the
absorptive forward amplitude of Heggeon-particle
scattering (tj) jp-) Various arrangements (twists)
of dual diagrams lead to various duality schemes
(Appendix). There are three typical schemes. One
is the normal scheme proposed by us. The second
is the original abnormal scheme of Einhorn et al. '
The third is the extreme abnormal scheme of Field
and Fox (FF).' We propose a normal scheme

I(background) =QG(tjP),

I (res) =g G(ijR) .

In the original abnormal scheme of Einhorn et az. ,
we have

I(background) =G(RRP), (5)

I (res) =G(PPP) +G(J PX) +G((PRI.R) +G(RRR)

(8)

with vanishing or very small PPR, PRP, and RPP
terms for which there are no natural places in
their duality rules. Stimulated by the suggestion of
Einhorn et gl. , FF proposed phenomenologically
an extremely abnormal scheme, "that is,

I (background) —G(pPR) +G()(PR) P) +G(RRP)

( I)

(8)I (res) =G(PPP) +G((PR)/R) +G(RRR) .
Here G(/PR/I)) = G(PRI2) +G(R-pk), and I (back-
ground) and I (res) are the background and reso-
nance (including proton) integrals of the left-hand
side (lhs) of Eq. (2), respectively. P is the Pom-
eron, R means the meson trajectories, and X,
which was introduced by Einhorn ef, al. , represents
lower-lying singularities (such as Reggeon-Reg-
geon cuts) with intercept (2«(0) ~ 0 (presumably =0).'
The term G(PPP) in Eqs. (8) and (8) is called the

abnormal dual component, that is, the PPP term
dual to the diffractive resonances. In the follow-
ing we investigate which scheme the experimental
data favor.

III. DUALITY TEST VfITHOUT INTERFERENCE TERMS6

There are very many high-energy and high-mass
data on pp-pX, so we can estimate the eouplings
G...(t) with good accuracy by fitting the data to the
form of Eq. (1). In particular these data cover
so large a range of energy s, especially in the re-
gion 0.1 «~ t~ s0.5 (GeV/q), 2 that we can separate
)'2 = Pomeron (scaling) from )'2 = meson Reggeon (non-
scaling) contributions to the cross section with
little ambiguity in this t region. " This separation
is crucial for the duality argument. 'We can esti-
mate the right-hand side (rhs) of E(ls. (3)-(8) using
the TH parameters obtained this way. On the other
hand, we can calculate the lhs of E(ls. (3)-(8) using
the background-resonance-separated low-mass
spectra in 0.1«~ t

~
«0.5 (GeV/c)'. "" In this way

we can check which scheme such data dominated
by the diffraction components favor

A. TR fit

E. Fitting procedure

We use only the TR formula Eq. (1) in the prac
tical ealeulation of TB parameters without using
the FMSR Eq. (2). Hence we input only high-s,
lngh Mdat-a' "(see Table I, which also lists
other data, not used" "). We make four-term
fits: PPP, RRP, PPR, andRRR in the normal
and the extreme abnormal cases, and PPP, RRP,
(PR /R, and RRR (abnormal I) or PPP, RRP, JPR'/R,
and PPX (abnormal II) in the original abnormal case.
For the Hegge trajectories in the "t"channel of ip
-jj) scattering, we keep the intercepts as (2~(0) = 1,
(2„(0)= —,', and (2„(0)= 0.

Fitting formulas are as follows:

=G (t)(1-«)' 2~/ti)+G (t)(1-«)' 2")i(i)
GVdv

RAP

j./2 l/2
+G (t)(l «) /2 a1P( )20i-+G (t)(1 «) &/2 2&)i(i)

in the normal and the extreme abnormal cases,

p 1j3 p 1/2

(t) (1 «) &/2 aP(i) - a)2(i) -2 +G (t)(I «) 1/2-2ag(i)
(PR$ R &

- g~g
(10)
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TABLE I. pp p& cross-section data.

(a) High-M data

s (GeV~)

108, 213, 285,
503, 752

551

930

930

387

194, 763
(We only use

s= 194)

100,360

566
(We do not use)

1995
(We do not use)

M (GeV~) or x

Plotted vs x
0.8& x& 0.93
(We use all)

Plotted vs M~

OSM~S 50
(We only use M~~17)

Plotted vs M~

OEM~K 140
(We only use M &28)

Plotted vs M
0+M2+ 5
(We only use M &28)

M ~5
5~M —25
25 —M ~50
50(M (100
(We only use M &15)

Plotted vs x
0.56 x (1.0
(We only use 0.8&x
60.96, i.e. ,
15~M~&77)

Plotted vs x
0.6& x&1.0
(We only use 0.80&x
(0.97, i.e. ,
6~M ~S40)

Plotted vs x
0.78 ~x ~ 0.94
(We only use 0 8 —x)

Plotted vs M~

0~M~&50

8~M ~14
20&M~&60

Plotted vs
0.3%x( 1.0

-t =0.15, 0.35, 0.55,
0.65, 0.95, 1.25

—t =0.35,
0.65,
0.95,
1.25,
1.55,
1.85,
2.25,

0.45, 0.55,
0.75, 0.85,
1.05, 1.15,
1.35, 1.45,
1.65, 1.75,
1.95, 2.05,
2.35

—t = 0.25, 0.35, 0.55,
1.05, 1.75

Plotted vs t
0.0 ~ —t ~ 0.4

—t =0.05, 0.15,
0.25, 0.35

p,~ =0.05, 0.15, 0.30,
0.50 (t =-P~'/x)

—t = 0.33, 0.45

—t=0.056, 0.094

Plotted vs t
0.019& —t & 0.19

p J. =0 7t 0 8t 0.9t
1.0, 1.1, 1.2

-t or p~' [(GeV/c) ]
or p& (GeV/c)

—t = 0.16, 0.20, 0.25
0.33

Re ference

9 (Fermilab)

10 (CERN)

10 (CERN)

11 (CERN)

12 (Fermilab)

13 (Fermilab)

14 ( Ferrnilab)

15 (Fermilab)

21 (Fermilab)

22 (CERN)

s (QeV~)

(b) Low-M~ data (not used in our TR fits)

M (GeV) —t [(GeV/c) ~] Reference

20.4

30.2, 39.6, 57.6

46.9

Plotted vs M
M%2.0

Plotted vs M
M(2.0

Plotted vs M
M%2.5

0.023, 0.044, 0.059,
0.12, 0.20, 0.29,
0.86, 0.88

0.044, 0.88

0.05%—t 66.0

20 (BNL)

19, 23 (CERN)
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in the abnormal-I case, and

Q (t)(1 )1-2R/t) +Q (t)(1 )1-2RR(t)
dM PPP + RRp

v
+G tt)(( -*)'* ~" ""'(—' +(i (&)(( -*) * ~"

in the abnormal-II case. Here x =1 —))/s is Feyn-
man's scale parameter. Fits to the data are per-
formed at each fixed value of t [t =-0.2, -0.3, and
-0.4 (GeV/c} ], and the values of t-channel tra-
jectories a~(t) and n~(t) are allowed to vary for an

optimum fit. With this variation of a~(t) we can
effectively take w exchange into account. '

3. Results of fits

Table II shows the TR parameters obtained this
way. " Also shown are the optimum values of u p(t)
and as(t) in terms of o, ~(0) and o~(0) with a~(t) =1
+()(~(0)t and c(~(t) =as(0) +t. Figure 2 shows how
well these TR parameters reproduce the data.

2. Data input

In the TR fits we use only the high-s, high. -M'
data with 0.8 (x of Refs. 9-15 (Table I). The
cross-section data at each value of t [t =-0.2,
-0.3, and -0.4 (GeV/c)'] are obtained by inter
polation from the data near the t point with a
simple exponential form.

4. Comparison with other TR analyses

Here we compare our TR fit with other TR anal-
yses. There are two TR analyses that use the
Fermilab and ISR data, that of Roy and Roberts
(RR)2~ and that of Field and Fox (FF).' We sum-
marize the outline of these analyses.

(I} TR analysis of RR":

TABLE II. Estimations of TR parameters in Eqs. (9)-(11)by X fit.

Normal and extreme Abnormal I

(a) Estimation at t=-0.2 (GeV/c)

Abnormal II

&' (0) [(GeV/c) ]

Q~ (0)
Qpp (mb/GeV )

&zas
X

Degrees of freedom

0.25
0.1

0.422 +0.069
40.2 + 6.0

0.970+ 0.350
7.35 + 33.6

27.2
90

np(0)
~s(0)

~pa}a
~aas

X

Degrees of freedom

0.05
0.1

0.349 + 0.054
41.5 + 5.9
16.9 + 6.3

—77.2 + 64.4
27.9
90

&p(0)
n~(0)
~ppp

Cppx
Gpz}z

X

Degrees of freedom

0.35
0.1

0.566 + 0.036
37.1 + 3.7
1.76 + 0.99
4.05 +4.15

27.4
90

(b) Estimation at t=-0.3 (GeV/c)2

&p(0) [(GeV/c) ]
~z(0)

&ppp (mb/GeV2)

~zap
~PPR
&zan

X

Degrees of freedom

0.35
0.1

0.334 + 0.044
25.1 +4.3
0.715 +0.236

34.3 + 26.9
34.9
92

&p(0)
&z(0)
&ppp

&ys}a
ma

X

Degrees of freedom

0.05
0.1

0.218 + 0 ~ 020
26.6 + 3.7
10.5 + 3.4

-17.5 +43.0
37.6
92

0'p(0)
&g(0)

~zas
&ppx
Gpz}

X2

Degrees of freedom

0.15
0.1

0.266 + 0.015
26.3 + 2.8
0.489 + 0.459
7.31 +2.54

36.8
92

(c) Estimation at t=-0.4 (GeV/c)2

~;(0) [(C V/c)-']
Q~ (0)

Gppp (mb/GeV )

G&m

~zas
X

Degrees of freedom

0.25
0.1

0.205 + 0.024
22.2 + 3.6
0.317+ 0.123

18.07 + 21.82
26.5
86

&p(0)
0'z(0)

Gyg}
&ass

X

Degrees of freedom

0.05
0.1

0.138 +0.012
24.0 +3.2
6.61 +2.34

—25.8 + 35.1
27.9
86

&p(0)
&z(0)
&ppp
&am
~ppx
&ys}s

X

Degrees of freedom

0.25
0.1

0.229 + 0.012
22.1 + 2.39
0.518 + 0.324
2.72 + 2.02

27.0
86
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I
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b

l (a)

I
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PPRr - ~ pRR

RRR

O.8 0.9 0.8 O.9

L

f

I

ABNORMAL E

I I4—
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EXTREME

j ABNORMAL Z
I I

(b) T f

f" ii

~PRP ~ ',RRP .' ~RRPI I I
PPP ( ', r PPP ~ ppp

I
y /

0.8 0.9 0.8 0.9 0.8 0.9

I
I

I

~ = -0.2 (GeV&c)
2

~ = -0.~ {GeVt'c) ~= -0.4 (GeV~c)
2 2

l0—
(c)

b +

ii

S — " "r — 5—
IIr

il p 41

iir I I

4 Igii "i

Pp
I

2

I I

0.05 O. I

I I

005 0 I

I/js (GeV )

I I

0.05 O. I

FIQ. 2. (a) and (b) pp pX cross-section data plotted against x at g = 930 GeV2 and t = -0.3 (a) and -0.4 (b) (GeV/g)2
(beefs. 10,11). The solid lines are the fitted curves of normal and extreme case fit, abnormal-I case fit, and abnormal-
Q case fit. {c)pp pX cross-section data plotted against 1/Wg at @=0.9 and t =-0.2, -0.3, and -0.4 (GeV/e)2. Solid,
dashed, and dotted lines are the fitted curves of normal and extreme case fit, abnormal-I case fit, and abnormal-II
case fit, xespectively.

(1) Both TH formula Eq. (1) and FMSH Eq. (2) are
used

(2) Hence they input both high-M' (Hefs. 9-12,
15, 22) and low-M2 (Hefs. 19,20, 23) data.

(3) Four-term fit: PPP, RRP, PPR, and RRR
without interference terms.

(4) G,»(t) are fitted at each fixed t
(5) The t-channel trajectories a~(t) and n ~(t) are

allowed to vary for the optimum fit. In Os-t&O. S
(GeV/c)' the results are described nearly by a~(t)
=1.0+0.25t and nR(t) =0.2+0.5t. As for the "t"
channel trajectories of ip-jp scattering, the in-
tercepts are fixed as a~(0) = 1 and ae(0) =-,'.

(6) With this variation of na(t) v exchange is ef-

fectively taken into account.
(II) TH analysis of FF':
(1) The same as (1) of HH.

(2) The same as (2) of HH [here the input data are
from Hefs. 9-12, 14, 21, 26 (high M2) and Hefs. 19,
20 (low M')].

(3) Six-term fit: PPP, PPR, RRP, RRR, vvP,
and mmR without interference terms.

(4) G,»(t) are fitted by parametrizing in the ex-
ponential form.

(5) The Pomeron slope a~(0) with n~(t) =a~(0) t+1
is allowed to vary for an optimum fit; a~(0) =0.36
(solution 1) and a~(0) =0.37 (solution 2) are ob-
tained, where solution j. and solution 2 corre-
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)02

IO

FF (SQL. i)
———- FF (SQL. 2)
~ ~ ~ e ~ ee PR

o QUR FIT

(00

IO

0.8 0 Q, ~

-e Gev/eI j
0,8

FgG. 3. TR couplings Qg~g(t) and Gag(t) in the TH

analyses of BR (Ref. 24), FF (Bef. 5), and us (normal
and extreme case fit). Here the normalization of G&&I,(t)
is determined by the TH formula (1).

spond to the parametrization with G»~(0}ceO and
G»~(0) =0, respectively. For the second leading
trajectory, a„(t)=t+ —,

' istaken. Forthe "t"-channel
trajectories of ip-jp scattering, the intercepts
are fixed as n~(0) = 1 and as(0) =-,'.

(6) The t-channel w exchange terms vvp and vvR
are given by the theoretical estimation of Bishari.~

(III) Our TR fit (normal and extremely abnormal
cases):

(1) Only TR formula E(I. (1) is used
(3) Hence only high M'-data are input' "(Table

I).
(3)-(6) The same as (3)-(6) of HH [optimum-fit

values of the t-channel trajectories a~(t) and c.e(t)
are given in Table II].

The results of these three TB analyses are com-
pared in Fig. 3. The agreement of the thxee is very
good in 0.1 sI t I &0.5 (GeV/c)e (we refer to this re-
gion as the T, region) while the disagreement be-
tween RH and FF is extremely large (almost order-
1 difference) m It I ~0.1 and It I ~0.6 (C V/c}e (we
refer to this region as the T, region} especially in
the relative size of G»~ and G»~.

%e can explain the reason of this large disagree-
ment as followers. In Fig. 4 the data points are
plotted in an s-t plane. As is seen from Fig. 4 and
Table I the data in the 72 region have very small
density and cogey g geyy gM./os 8 Kgsge. The TH
couplings are fitted in the parametrization of G„,(t).
=a, e'~' +a, e'2' in the FF case. Noting the small
data density in the T, region and the very large
data density in the T, region, me can say that these
parameters a„b„„aadnh, (especially the rel-
ative size of G,» and G, ,~)" are mainly determined
by the T,-region data. So the FF estimations of

(a ) HIGH-M DATA POINTS ( b ) LOW-M DATA POINTS

IOOO—

0 ~ ~ 1 ~ ~

IOO—

Ol

C9 500—
0 ~ )

~0oo 040000 ~ 0 ~ oo

0 i) ~

0 O. I 0.2 0.3 O.eI 0.5 0,6 0.7 O.S 0.9 0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[(Gev(c) ]
FIG. 4. Data points of pp pX cross sections (Table Q plotted in an s-t plane.
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TR couplings in the T, region are strongly affected
bythe T,-regiondata. Wemay say, FF's TR cou-
plings (especially the relative size of G, , ~ and

G, ,s) in the T, region are something like the "ex-
trapolation" from those in the T, region. Qn the
other hand, in the RR case the TR couplings are
fitted at each fixed t, so the TR couplings in the T,
region are determined only by the T,-region data,
which have very small density and which cover a
very narrow s range, completely independently of
the T,-region data. Hence there arises such a
large disagreement between RR and FF in the T,
region, especially in the relative size of Gppp and

PPR'
This large disagreement shows that the esti-

mation of TR couplings in the T, region obtained
by using only existing data entails very large am-
biguity. Here we note that both RR and FF input
the FMSR data in the T, region in their X fits, so
the FMSR is well satisfied in the T, region in their
analyses t Fig. 9(b) j.

B. Test of FMSR and duality

In the preceding we have estimated the TR pa-
rameters by using only high-M2 data in order to
calculate the rhs of Eqs. (2)-(8), i.e. , Regge con-
tributions. Now we estimate the lhs of Eqs. (2)-
(8), i.e., resonance and background contributions,
by integrating the lou -M' spectra. Then we can
test FMSR and duality by comparing the estimation
of the rhs with that of the lhs. There are reso-
nance-background separated low-mass data of
Allaby et al."and Edelstein et al. ' in 0.1&~t

~
&0.5

(GeV/c)'. They fitted the mass spectrum with the
sum of Breit-Wigner forms and smooth polynomial
background, e.g. ,

where C, is the coefficient of the polynomial, M,.
and I',. are the mass and width of the ith resonance,
and a,. represents the differential cross section of
the ith resonance production, i.e., the area of
Breit-Wigner curve. C„, M, , I'„and a,. are the
parameters of the X' fit. In Table III is shown the
value of each term of Eqs. (2)-(8) obtained this
way at P („=24 GeV/c, t = -0.3 (GeV/c)', and v

=3.0 GeV . In Fig. 5 are shown the semilocal
versions of Eqs. (3)-(8) at P „,=24 GeV/c and
t =-0.4 (GeV/c)'. In Fig. 6 the rhs and lhs of Eqs.
(2)-(8) estimated this way are shown against s at
v = 3.0 GeV' and t = -0.2, -0.3, and -0.4 (GeV/c)'.

From these we can say the data favor our normal
scheme. " We see also that the FMSR Eq. (2) is
well satisfied in the normal case. It is to be noted
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0.4 '—
6

0.3 -(
0

0.2—

BACKGROUND SPECTRUM

J
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FIG. 5. Background and xesonance spectra of pp pX
with typical error bars at p&~ = 24 GeV/c and t = -0.4
(GeV/c) 2 (Bef. 19). Dashed-dotted, long-dashed, dotted,
and short-dashed curves represent the semilocal contri-
bution of Begge exchange in normal, extreme, abnormal-

', and abnormal-II cases, respectively.

that the original abnormal scheme as well as our
normal scheme ean describe the resonances but
that it gives too little background as seen in Fig. 5.
There is a possibility that the inclusion of the neg-
lected terms such as (PR)P and PPR in the prac-
tical calculation may change this situation in the
original abnormal scheme. However, even if such
terms exist, they should be very small in the
duality rules of Einhorn et al.2

Before closing this section we summarize our
results as follows. The original abnormal duality
scheme of Bef. 2 and the extreme abnormal duality
scheme of Bef. 5 are inconsistent with the high-M'
and resonance-background-separated low-M2

data at least in O.lsjt! s0.5 (GeV/c)', while our
normal scheme is quite consistent with the data
in the same t region. The original abnormal
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scheme of Ref. 2 is ruled out by our analysis, so
we do not discuss this scheme in the following.

IV. DUALITY TEST INCLUDING INTERFERENCE TERMS

The test in Sec. III is based on the assumption
of the absence of interference terms. In this sec-
tion we examine whether the inclusion of the inter-
ference terms causes a drastic change of our con-
clusions in Sec. III. We estimate the rhs of Eqs.
(2), (3), (4), (7), and (8) by performing a TR fit
with five terms: PPP,

(PRIMP,

RRP, PPR, and

(PR jR . We neglect the RRR term since it is very small
both in the high-M' and low-M' regions, as seen

in Sec. III. We perform a TR fit for various val-
ues of the ratio R —= G(»)s(t)/G»s(t) fixed at each
t [t = -0.2, -0.3, and -0.4 (GeV/c)']. The t-chan-
nel trajectories as(t) in the R, R,Pc term and a~(t)
are allowed to vary for an optimum fit at each
fixed R. For the t-channel trajectory cr„(t) in the
interference terms [P, R,jP, and fP, R,]R, we take
an ordinary meson trajectory c&s(t) =t +0.5 as s
exchange does not interfere with p exchange by
parity conservation in the small-t region [i.e. ,
(P, s,)P, =(P,»,)Re=0]." For the "t"-channel tra-
jectories of ip jp -scattering we take ap(0) =1 and
crs(0) =0.5. In this case the TR formula Eq. (1)
becomes

=Q (f)(1-x)' '"& "+G (t)(I &c)' ~J-I'& ~R('&+G (t)(1 x)'-'ccrc(&&
dtdv RRP

v, p 1/2
+G (f)(I-~)'" '"~"—' +G (t)(i -x)' ' "~(c&-"s"&—'

PPR s PR~R S
(13)

We make g' fit with four parameters Q»P, G&»»,
GRRP, and QPPR for each fixed R. Here the trajec-
tories a~(t) and n„(t) are allowed to vary for an
optimum fit. The restriction R ~Re [Rc = -3.1 for
t=-0.2, R0=-3.6 for t=-0.3, andRO= 4 3 for
t =-0.4 (GeV/c)'] is obtained from the experimen-
tal fact that the nonscaling part of the invariant
cross section is positive at least in 0.8sxs1.0
and O. 1 ~ ~t ( s0.5 (GeV/c)'. The same high-s,
high-M' data used in Sec. III are input (Table I).

For the lhs of Eqs. (2), (3), (4), (7), and (8) we
take the same estimations as obtained in Sec. III.
We examine duality for each fixed R. In Fig. 7 are
plotted the ratios rhs/lhs of Eqs. (2), (3), (4), (7),
and (8) estimated this way at P„,= 24 GeV/c and

(a) t =-0.4 (GeV/c)', v =3.52 GeV', (b) t =-0.3
(GeV/c), v =3.42 GeV, and (c) t =-0.2 (GeV/c),
v=3.32 GeV'againstR'—=R/(1+~R~). The error
of the estimation of the lhs of these equations is
-20 jo. The error of the estimation of the rhs is
-30% for Eq. (2), -50% for Eq. (3), -33% for Eq.
(7), -18% for Eq. (4), and-30% for Eq. (8). When
the ratio of rhs/lhs is close to one, then the
scheme is good. From these we see that our nor-
mal scheme is consistent with the data for any R'
value where FMSR Eq. (2) is well satisfied, while
the extreme scheme is consistent with the data only
for 0.65sR' s0.85 at t =-0.2 (GeV/c)', 0.5sR'
&0.85 at t = -0.3 (GeV/c)', and -0.50 &R' &0.75 at
f =-0.4 (GeV/c) . However, as is seen from the
semilocal version of Eqs. (3), (4), (7), and (8) in
Fig. 8, the extreme scheme is inconsistent even
for the R' value [0.65&R' s0.85 at t =-0.2 (GeV/c)',
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FIG. 7. The ratios of rhs to lhs of Eqs. (2), (3), (4),
(7), and (8) at P&~ =24 GeV/c and (a) t =-0.4 (GeV/c),
& = 3.52 GeV, (b) t = -0.3 (GeV/c), v = 3.42 GeV, and
(c) t=-0.2 (GeV/c), v=3.32 GeV plotted against p'.
The solid, long-dashed, dashed-dotted, short-dashed,
and dotted curves correspond to Eqs. (2), (3), (4), (7),
and (8) ~ respectively. Here Rt& —=Rc/(1+ (Rc(). Low-
mass data are taken from Ref. 19.
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of Bef. 19 with typical error bars at p&24 QeV/c and
t=-0.2, -0.3, and -0.4 (GeV/c)2. (a) and (b) The long-
dashed and the short-dashed curves are the semilocal
predictions at t=-0.4 (QeV/c)2 of the normal and the
extreme schemes for R'=-0.2, respectively. The
dashed-dotted and the dotted curves are of the normal
and the extreme schemes for 8'=0.5, respectively. (c)
and (d) The long-dashed and the short-dashed curves
are the semilocal predictions at t =-0.3 (GeV/c)2 of the
normal and the extreme schemes for R' = 0.5, respec-
tively. The dash-dotted and dotted curves are of the
normal and the extreme schemes for 8'= 0.8, respec-
tively. (e) and (f) The long-dashed and the short-dashed
curves are the semilocal predictions at t =-0.2 (QeV/c)2
of the normal and the extreme schemes for g' =0.8,
respectively.

PPR
Oq

'. PPP + ~ ~R + RRR

~ PPP PPP

0.5sR' s0.85 at t =-0.8 (GeV/c)', and -0.5sR'
&O. V5 at t =-0.4 (GeV/c) ] where it seems to be
consistent arith the data in the global form. So &re

again obtain the result that the data favor our nor-
mal scheme. Hence me can say that inclusion of
interference terms does not change our conclusions
obtained in Sec. DI.

V. RELIABILITY OF TEST (COMPARISON KITH OTHER

DUALITY ANALYSIS)

In this section me discuss the reliability of our
duality test comparing with the other duality anal-
ysis. ' The duality test is beset arith bvo uncer-
tainties, i.e., P(scaling)-R(nonscaling) separation
ambiguity and resonance-background separation
ambiguity.

~ ~. RRP
svP ~.~,~
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FIG. 9. (a) The energy dependence of the first-moment
FMSH (m +@2)I(s, t, v) at t =-0.044 (QeV/c)2 and T= 3.16
QeV2 constructed from the pp pX data of Bef. 19
(filled circles) and Ref. 20 (filled triangle) compared
with the results (solid line) of solution 1 of the TR
analysis of FF (Fig. 17 of Hef. 5). The contribution to
the FMSR of the each TB term is shown explicitly. The
open circles represent the resonance contributions to
the FMSB with N*(1410) taken as resonance. (b) The
energy dependence of the first-moment FMSH (x/V2) I(s,
t,7) at t =-0.044 (GeV/c)2 and T= 3.16 QeV2 constructed
from the pp -pX data of Hefs. 19 and 20. The solid and
dashed curves show the results of the TR analyses of
FF (Bef. 5) (solution 1) and HB (Bef. 24) (Fig. 3 of Bef.
32). PPP and PPR contributions are shown explicitly.
The open circles are the resonance contributions to the
FMSH with N~(1410) taken as resonance.
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as a pure resonance or not. However, the pro-
duction cross section of the N~(1410) peak is near-
ly zero in 10sP„,&30 GeV/c and 02 &ItI &0.4
(GeV/c)' where we make duality analysis. ""

B. Comparison with the test of FF~

FF' made a similar duality test to ours nearly at
the same time as me. ' They made TH fits with six
terms ppp', p'PP, RRp, BRA, mwp', and mwR as is
explallled ln Sec. IIIA4 (II) and they 'tested duality
at t = -0.044 and -0.88 (GeV/c)' in the same way
as me. Their conclusion is contrary to ours. That
is, both the diffractive components of resonances
and background are dual to some combination of
PPP and PPR with nonvanishing PPR {mixed dual-
ity). In their fits PPP and PPR are primarily dual
to the diffractive resonance and background pro-
duction, respectively, (extreme duality) and the
normal duality is ruled out. One of their results
is shown in Fig. 9(a).

We examine duality in 0.1&I t I &0.5 (GeV/c)' (T,
region) while FF examine it in

I
I

I
&0.1 or I I I

& o.5
(GeV/c)' (T, region) [especially at t = -0.044 and
-0.88 (GeV/c)']. As is explained in Sec. IIIA4,
the estimation of TH parameters [especially
P(scaling)-R (nonscaling) separation] in the T,
region obtained by using only existing data is ac-
companied by very large ambiguity in contrast to
that in the T, region. Hoyer" also pointed out this
fact. In Fig. 9(b) (Fig. 3 of Hef. 32) is shown the
contribution to FMSH integral at t = -0.044 {GeV/c)'
of each TH term in the TR fits of HH'' and FF.'
Their two analyses disagree with each other
markedly, especially in the P(scaling)-R (nonscal-
ing) separation. " In this respect we believe that
the results of our duality test are more reliable
than those of FF's test.

VI. CONCLUSION

We summax'ize our conclusion as follows. The
original abnox'mal duality scheme in the frame-
work of Hef. 2 and the extremely abnormal scheme
of Hef. 5 are disfavored by our analysis at least
in 0.1& It I

&0.5 {GeV/c)'. On the other hand our
normal scheme is quite consistent with all the dif-
fractive data of pp -pX, m p -pX, and K p -pX in
the same I; x egion. "We cannot say anything about
the duality structure of diffraction dissociation in
~
t I &0.1 or I t I &0.5 (GeV/c)' for lack of data in

these I; regions.
After the computations reported in this article

mere completed, nem sets of data'~' '~ have be-
come available. The ISR data in Bef. 34 and the
Fermilab data in Ref. 35 are mell reproduced in
both normalization and shape with our TR param-
eters of the normal and extreme case fit. The

Fermilab data of Bef. 36 at smaB M' values are
also mell described semilocally.
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APPENDIX (DUALITY SCHEMES)

In the tmo-body case, the g-I" duality scheme
states as follows. The total cross section, mhich
is equal to the imaginary part of the forward elas-
tic amplitude by the optical theox'em, has two com-
ponents represented by the dual diagrams of Fig.
10. For Fig. 10(a), for the process ab-ab, one
has one pair of quark-antiquark lines going across,
indicating resonance in the direct channel. The
pair of quark-antiquark lines linking gg to 55 means
that for the process gb-gb one has meson trajec-
tories being exchanged. The diagram 10(a) there-
fore represents the component in mhich direct-
channel resonances are dual to meson exchange.
In contrast, diagram 10(b) has 2 quark and 2 anti-
quark lines in the dixect channel and none in the
crossed channel; it represents then the component
in mhich the background is dual to the exchange of
the Pomeron.

We nom apply the same language to inclusive
cross sections, say for the reaction gb-gX in the
fxagmentation region of g.

(I) Our nonngl scheme. We propose a normal
scheme which states as follows. The inclusive
cross section of the process ab - aX(a-' a), which is
equal to the discontinuity of the forward three-
body amplitude by Mueller's optical theorem, has
six components in the limit of large s/M', where
the exchanges in the gg channel Beggeize. Some
of these six components are shown in Fig. 11. In-
terpreting these diagrams as before, one sees that
for diagram 11(a) in both the direct channel cab

ggb and the crossed channel b5-gggg, one has
one pair of quark-antiquark lines going across.
Diagram 11(a) thus represents a component in
which, as usual, direct-channel (i.e., the missing-
mass channel) resonances are dual to the meson-

(b)

FIG. 10. The two Quality components for the imagin-
ary part of the forward elastic amplitude.
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b

(a) (c)

FIG. 11. Some duality components for the forward
absorptive amplitude aab aab in our normal scheme.

FIG. 12. A duality component for the forward absorp-
tive amplitude aab aab in the original abnormal
scheme.

exchange term of the inclusive cross section. Dia-
gram 11(a) contains ordinary Reggeon-particle
scattering, since in the aa channel one has a pair
of quark-antiquark lines going across. So dia-
gram 11(a) represents the RRR term dual to the
nondiffractively produced resonances. Similarly,
the diagram 11(b) would represent a, component
which has the Pomeron exchange dual to a back-
ground, i.e., the RRP term dual to the nondiffrac-
tive background. As for the diagram 11(c), in the
aa channel one has no quark line going across, so
the diagram 11(c) contains Pomeron particle -scgt-
tenng. Diagram 11(c) would represent a compo-
nent which has the meson exchange dual to reso-
nances, i.e., the PPR term dual to the diffractive
resonances. Similar statements can be made for
the other three components and finally Eqs. (3) and (4)
are obtained in our normal scheme.

(II) Original abnormal scheme of Ref. 2.
horn et al. proposed an abnormal scheme which

states as follows. The inclusive cross section of
the processab- aX(a-' a) hasfive components. One
of these components shown in Fig. 12 has a singular
dual structure. One see that, in the direct (miss-
ing-mass) channel, one has a pair of quark-anti-
quark lines, indicating resonances. Whereas, in
the crossed channel, one has no quark line imply-
ing therefore Pomeron exchange. This diagram
contains Pomeron-particle scattering, since in
the aa channel one has no quark line going across.
This diagram would thus represent a component
which has a Pomeron dual to direct-channel reso-
nances, i.e., the PPP term dual to the diffractive
resonances. Hence it is called abnormal dual
component. The similar statement can be made
for the other components and finally Eqs. (5) and

(6) are obtained in the original abnormal scheme.
Notice that in this scheme there is no natural place
for the triple-Regge terms PPR, PRP, and RPP,
so these terms should vanish or be very small.

*Work performed under the auspices of the United
States Energy Research and Development Administra-
tion.
P. Hoyer, R. G. Roberts, and D. P. Roy, Nucl. Phys.
B56, 173 (1973).

2M. B. Einhorn, M. B. Green, and M. A. Virasoro,
Phys. Lett. 37B, 292 (1971); Phys. Rev. D 7, 102
(1973).

3Chang Hong-Mo, H. I. Miettinen, and R. G. Roberts,
Nucl. Phys. B54, 411 (1973).

R. G. Roberts and D. P. Roy, Phys. Lett. 47B, 247
(1973).

5R. D. Field and G. C. Fox, Nucl. Phys. B80, 367
(1974).

K. Hidaka, Lett. Nuovo Cimento ll, 503 (1974).
K. Hidaka, Lett. Nuovo Cimento 12, 273 (1975).
K. Hidaka, Lett. Nuovo Cimento 15, 221 (1976).

9K. Abe et al. , Phys. Rev. Lett. 31, 1527 (1973).
M. G. Albrow et al. , Nucl. Phys. B72, 376 (1974).

' M. G. Albrow et al. , Nucl. Phys. B54, 6 (1973).
S. J. Barish et al. , Phys. Rev. Lett. 31, 1080 (1973).
J. Whitmore et al. , Phys. Rev. D 11, 3124 (1975).
J. W. Chapman et al. , UR Report No. UR458 (UHBC 73-

21) (unpublished).
F. Sannes et al. , Phys. Rev. Lett. 30, 766 (1973).

6J. Kwiecinski, Lett. Nuovo Cimento 3, 619 (1972);
M. B. Einhorn, J. Ellis, and J. Finkelstein, Phys.
Rev. D 5, 2063 (1972).

~tFF did not refer to the duality of (PR)P and (PR)R
terms in Ref. 5. There is no dual-diagram theory that
gives these terms an abnormal duality assignment,
i.e., (PR)P contributing to resonances and (PR)R
contributing to background. So we take a normal dual-
ity assignment for them here. In any case, as is seen
in the practical calculation done in Sec. IV, they are
not so large that our conclusions on the duality test
depend on the duality assignment for them.

' F. E. Paige and L.-L. Wang, Nucl. Phys. B46, 477
(1972).
J. V. Allaby et al. , Nucl. Phys. B52, 316 (1973).

20R. M. Edelstein et al. , Phys. Rev. D 5, 1073 (1972).
S. Childress et al. , Phys. Rev. Lett. 32, 389 (1974).
M. G. Albrow et al ., Nucl. Phys. B51, 388 (1973).
Bonn-Hamburg-Munchen collaboration, paper sub-
mitted to Aix-en-Provence Conference, 1973 (unpub-
lished).



702 KEYS HO HIDAKA l6

24M. Bishari, Phys. Lett. 38B, 510 (1972); K. Abe et al. ,
Phys. Rev. Lett. 31, 1530 (1973); R. G. Roberts and
D. P. Roy, Nucl. Phys, B77, 240 (1974).

25We take the statistical errors, which are large in
general, plus the systematic errors as the errors
of the input data for the TR fit. Hence the small y
values arise.
F. T. Dao et al. , Phys. Lett. B45, 399 (1973); F. T.
Dao et al. , Phys. Lett. B45, 402 (1973).
Here it is to be noted that the relative size of G, .&
(coupling of scaling term) and G;,.& (coupling of non-
scaling term) is mainly determined by the s depen-
dence of the data.
Each term of rhs of Eqs. (3)-(8) depends on np(0) and

nz(0) so slightly that our conclusion of duality test
does not change with the way of the choice of the values
of a&(0) and n&(0).

SIt is possible that the background, which is obtained

by fitting the mass spectrum by a sum of Breit-Wigner
forms and a polynomial term (Refs. 19,20) is over-
estimated as it may contain weak secondary reson-
ances such as daughters.
R. D. Field, C"ltech Report No. CALT-68-459, 1974
(unpublished) .

3~See Ref. 27.
~2P. Hoyer, in Proceedings of the XVII International

Conference on High Energy Physics, London, 1974,
edited by J. R. Smith (Rutherford Laboratory, Chilton,
Didcot, Berkshire, England, 1974), p. I-158.

3As is explained in Sec. IIIA (4) they both input the
FMSR data (besides high-M data) in this T2 region in
the X fit, so FMSR is well satisfied at t= —0.044
(GeV/c) (T2 region) in these two analyses.
M. G. Albrow et al. , Nucl. Phys. B108, 1 (1976).
R L Anderson et al Phys Rev Lett 38 880 (1977)
R. L. Anderson et al. , Phys. Rev. Lett. 37, 1724 (1976).


