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Unitary coupled-channel analysis of diffractive production of the A, resonance
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Employing unitary coupled-channel J ~ = 1++ partial-wave amplitudes for the per and K~K systems, we
show that the mass dependence and phase variations of the diffractive data on ep ~(pm)p are indicative of
the presence of an A, resonance whose mass and width we determine to be roughly 1.3+0.15 CeV and
400+ 100 MeV, res xxtively. Our urlltary amplitudes incorporate the Deck backgrounds explicitly. The fits
to the data are excellent. %e point out some interesting quantities to be measured in the future in order to
resolve remaining uncertainties.

I. INTRODUCTION

The A, resonance and its partners in the J
= 1"SU(3) nonet remain one of the enigmas of
meson spectroscopy. ' A broad enhancement cen-
tered near M= 1.1 GeV in the pn' mass spectrum
is observed in the diffractive process wp-(pw)p.
The structure has the desirable quantum numbers
4 = 1', mith the pm system in an S wave, and has
roughly the "expected" mass. Homever, as the
mass of the pm system is varied, the phase of the
1+ wave chRnges slowly with respect to other par-
tial maves, ' unlike the rapid behavior expected of
a Breit-Wigner A., amplitude. Complicating the
interpretation is the fact that many features of the
data can be explained qualitatively Rs a kinemati-
cal (or background) Deck enhancement. ' In this
article me present a nem analysis of the A, res-
onance r'egion observed in diffractive production.
We begin mith the assumption that R calculable and
reasonably mell defined Deck background is pres-
ent in the J = 1' partial wave. We then calculate
the unitax'ity "corrections" to this Deck amplitude
by taking into account the behavior of the pm'-~
scRttex'lng amplitude Rnd its RttendRnt 1escRttex'-
ing corr'ections, using the techniques of final-state
interactions. "Our amplitudes are properly ana-
lytic and obey unitarity; there is no "double-count-
ing. " A crucial nem feature of our Rppxoach is
that me consider both the pn and K*K coupled de-
cay channels of the 4,. %e shorn that inelasticity,
in terms of the K*X channel, may be directly re-
sponsible for the modest phase variation ob-
served in the J = 1' prr wave in the resonance re-
gion. %'e find that certain critical aspects of the
diffractive data are explained naturally if me in-
voke an A, resonance in interference with the Deck

background. These include absolute normaliza-
tion, the structure of do/dM, and the phase of the
1+ amplitude.

Our A, , resonance is broad, mith M„=1.3+6.15
GeV and 1„=0.4a0. 1 GeV. The assumption that
the pn amplitude does not resonate can be dis-
carded mith good confidence. Homever, me also
stress certain critical aspects of the data which
deserve to be improved in ordex tomake more pre-
cise quantitative statements possible.

There are tmo principal components in our ap-
proach. First, me require the Deck production
amplitudes for the J P =1' partial wave of the pn
system in wp-(pw)p, and for the O' = I' K*K sys-
tem in wp-(K*K)p. Second, we develop a param-
etrization of the coupled-channel scattering am-
plitudes fox' pter' px, pm E E, Rndg~K E+g. Given
the Deck amplitudes and the 2 2 couyled-channel
vector pseudoscalar scattering amplitudes, the
rest of our problem is a proper implementation of
the requisites of unitarity. Unitarity and analyti-
city permit us to establish the form for the unitary
coupled-channel partial-mave Deck amplitudes for
diffractive production of the A, region. The dif-
fx'Rctlve dRtR cRn then be used to deter mine the pa-
rameters of the pn —ps~ and K*K-%*K scattering
amplitudes lllcludlng ln pax'tlculRX' the possible
px'esence of R 1esonRnce.

While developed for the A, cha, nnel, our method
18 eRslly generalized to other dlffx'Rctlve produc-
tion processes including, for example, mp

Ap, pp-N~(1400)p, and Kp Qp, where the rele-
vant coupled channels may be A, -(fw, K~(1420)K),
IV~(1400)-(IV h w), awnd Q-(K~w, pK, and &oK).

In Sec. II me desex'lbe oux' Deck amplitudes Rnd

discuss horn theoretical pxedictions are compared
mith experimental spectra. In Sec. III me explain
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fully our method for incorporating unitarity cor-
rections, and we provide analytic forms for the re-
sulting amplitudes. Section IV contains our numeri-
cal results, and finally, in Sec. V we discuss these
results and present concluding remarks.

1
T n

=gp~t (t,,), is„e"~o„
m~ —t2

(2 I)

Here gt is the pew coupling constant, Kt(f, ) is the
incident pion momentum in the, p rest frame, g is
the slope of the mXelastic diffraction peak, and a,~

is the mP total cross section. The invariants g»,
t„and t, are defined in Fig. 1(a). For similicity in

the above equation we have not introduced Reggeiza-
tion of the pion propagator, ' nor any off-mass-
shell dependence, nor lower-lying trajectories in
the wN amplutide. To Eq. (2.1) must be added the
contribution of the vector-meson-exchange graph'
of Fig. 1(b).

We are interested in the J ~ =1+ $-wave pro-
jection (in the final ps system) of the Deck ampli-

II. BACKGROUND DECK AMPLITUDES

A. Generahties

The Deck amplitudes which contribute to the dif-

f' active productionof the nonresonant pm system are
well known. '6 Diagrams are shown in Figs. 1(a)
and l(b). The pion-exchange amplitude of Fig. 1(a)
contributes a term to the total invariant amplitude

having the form

tude, with t-channel helicity g, =0. The resulting
expression is straightforward to obtain. ' At
fixed s, it depends on the momentum transfer g, and
on the invariant mass M of pg. Among its impor-
tant properties, we note the following:

(a) In the limit of forward production (t, -0), at
large values of s, the J =1+ 5-wave ~, =0 pro-
jection of Eq. (2.1),

Ttp -,+(M2, s, f, ),

takes on a very simple form, '

where n is a known constant, discussed below in
subsection C.

(b) For t, g0, the S-wave projection of Eq. (2.1)
exhibits a mass-slope dependence which can be
represented to a good approximation as'

Tz&,+(M, s, i, )=—Ttt, +(M, s, 0)e '

(2 3)
As we shall see presently, this mass-slope corre-
lation is of practical importance when theoretical
results are compared with the experimental spec-
tra. We remark that the mass-slope correlation
observed experimentally' is in agreement with the
predictions of the Deck model. ' Between jM =0.9
and 1.5 GeV, an acceptable parametrization of
X(M ) is (all units in GeV)

(2.4)

In the next subsection, we discuss certain prac-
tical considerations which are important for con-
frontations with data. Formal theorists and other
readers not actually concerned with such detail may
skip to subsection C.

i
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B. Mass-slope correlations and fits to experimental spectra

For analytical convenience [see Eq. {2.2)j, and to
avoid the introduction of parameters which might
obscure the results, we choose to compute am-
plitudes at I;, = 0. However, the data' consist of
cross sections integrated over some limited range
in t„which does not reach t, =0. For theoretical
purposes, it would obviously be preferable to com-
pare with data extrapolated to t, = 0. Present sta-
tistical precision apparently does not permit a re-
liable extrapolation.

A second possibility, which w'e adopt, is to in-
tegrate the cross section obtained from Eq. {2.3)
over the experimental t, range, i.e., to compute

(b)
FIG. &. Deck diagrams for 7fp —pap. (a) 7j.-exchange

graph, (b) p-exchange graph. P stands for Pomeron
exchange. The kinematic variables are indicated.
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Since z(iIP) decreases by a factor of -2 between
M =1.0 and 1.4 GeV, Eq. (2.5) shows that obsevve'd
spectra (which correspond typically to t'I--0. 1
GeV' and tI"--0.3 GeV')' will be depleted at low
masses when compared to the g, =0 Deck model
In our opinion, this is a relevant observation fox
oux' present A, calculation as well as for similar
approaches, as in the ease of the Q problem. ' The
apparent discrepancy between theory and experi-
ment at low values of M is perhaps mainly due to
the fact that the influence of the mass-slope cor-
relation has not been fully appreciated.

We shall use Eq. (2.5) in comparing our results
with experiment. However, we emphasize that
Eq. (2.3) taken at face value would not be an ap-
propriate expression for the dispersion-relation
calculations done in Sec. III. Because of its awk-
ward analyticity properties in M', Eq. (2.3) cannot
be used as it stands. It is only valid in a limited
range in flP Afu.lly rigorous treatment for

~ f, ]

&0 would consist in calculating first the true par-
tial-wave projection of Eq. (2.1) for

~ f, ~
&0 [which

would be close but not identical to Eq. (2.3)], and
then performing the t, integration after the disper-
sion-relation calculation. At the present level of
experimental accuracy, we believe that this is an
unnecessary complication. We are not concerned
with effects which could have a 20 to 30% influence
on the results. Our aim is to extract the main
qualitative and quantitative aspects within the sim-
plest possible framework.

We shall therefore work at t, =0 and apply the
dispersion relations rigorously to T(fIP, 8, 0), ig-
nox'ing the M' dependence of e '~'~~~"'~'j. We then
use Eq. (2.5) to compare with the data. A possible
u posteriori justification stems from the expex'i-
mental results themselves. Indeed, the data show

a mass-slope correlation. By fitting the data to
obtain the resulting pRI'Rnletel' A. (M ) [which Rgl'ees
with Eq. (2.4)] and assuming that, for the pIIysI'caf
amplitude, Eq. (2.5) is col'I'ect Ill tile flP I'Rllge of
interest, one can invex t this lattex equation to ex-
tract the value of do/dMdf, at fI =0. This amounts
to doing a simple extrapolation to f,, =0.

C. Speci6c Deck amplitudes

We choose to work wltll the simplest and mo8t
transparent Deck amplitude. It is clear that im-
provements can be made, but our main ambition
here is to exhibit the essential features of unitarity
(or final-state-interaction) corrections to such an
amplitude. We feel thRt given px'e8ent statistics
it is inappropriate to introduce too many refine-
ments and parameters. However, one essential
feature of our appx'oach is the inclusion of channels
other than the "elastic" pg channel. A glance at

K

P r

FIG. 2, Kaon-exchallge Deck diagram for +-E*gp.

SU(3) coupling coefficients shows that the A, state
may be strongly coupled to the K~g channel, as
well as to pg. While neglect of K*g is understand-
able if the A, is a narrow resonance with mass
-1.1 GeV, the same is not true for a potentially
broad resonance with higher mass.

In this article we provide a coupled-channel
treatment of the mN- pm@, mN-K*KN, and mN

-K*K/ amplitudes. As remarked in subsection
8, we specialize to forward production (fI -0),
whereupon simple analytic forms for the J'~ =I'
8-wave pF RIld E K Deck amplitudes Rre eRslly ob-
tained' from the complete amplitudes for Figs. 1(a)
and 2. These J~ = I"Beck amplitudes with iso-
spin I=1 and f-channel helicity X, =0 are."

2~~ ~
' gjo~+~- +qo&&+

III w ) gr*oII+ r- Kr*&r~z
(2.3)

We have written the amplitude as a two-compon-
ent vector to emphasize the two-channel natux'e of
our problem. The mass dependence (M'- m, ') '
is common to the two channels. The upper element
of Eq. (2.6) refers to the pII system with f=1 (thus
the W factor). The lower element refers to the
f=1, Q =+1 combination (W) '(K*K-K~K) (not
just K*K alone). For notational simplicity, we use
++@1n the remainder of th18 paper to x'epx'eseIlt
the C =+1 combination. The established coupling
constants areg, o,+, = 4II(2.4) and gr+or+, -= 4II(1.66);
o,&

and o~~ axe the mp and Kp total cross sections,
24 Rlld 19 mb, I'espec'tlvely, RIId Kp (Kr+) ls tile
magnitude of the incident m momentum evaluated
in the p(K~) rest frame at t, =0.'

We comment briefly here on the normalization
constants N, and N„in Eq. (2.6), for two reasons.
First, the relative normalization of the pg and
g*g Deck terms plays R x"ole ln determining the
final parameters of our A., resonance. Second, as
a result of including the 3,, resonance and final-
state interactions, we enhance the cross section
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in the pm and K*K channels. Since the cross sec-
tion from Deck alone' is within a factor of 2 or 3
of reproducing the pw data at 40 GeV/c, only an
enhancement factor of this size is permissible.

In the limit of exact SU(3), the pw and

(W) '(K*K —K*K) Deck amplitudes in Eq. (2.6) are
in the ratio g~o, +, -/g»*o»+, - -W. This ratio is
altered (increased) in practice because m» &m„
0'„&&a~&, and so forth. In the Deck amplitudes
sketched in Figs. 1(a) and 2, form factors of the
type exp(t —m, ') and exp(f2 —m»') are present. '
Qne of their effects is to reduce the size of the J
=1+ waves; thus, N»&N, &1 in Eq. (2.6). However,
addition of the vector-exchange Deck graphs such
as Fig. 1(b) compensates in part' for these reduc-
tions. After a detailed numerical analysis we find
that the properly normalized J~ =1' Deck back-
ground amplitudes with ~, =0 are obtained if we set
N, = 1 and N» = 0.5 in Eq. (2.6). Reasonable modi-
fications of these Deck amplitudes do not change
any of our major conclusions.

D. Normalized cross sections

To obtain the JP=1' $-wave part of the differen-
tial cross section for w p-(p'w )p, we must inte-
grate the upper element of Eq. (2.6) over phase
space. Including all factors, we derive

do' 1 1 q„
dt, dM, 0 2 0.3893 8(2w)'s'

(2.7)

In Eq. (2.7), qz, is the magnitude of the three/vec-
tor momentum of the p in the p~ rest frame. The
factor 0.3893 converts the cross section to mb,
under the assumption here that the mp total cross
section o,~ which appears in Tn „(pw)is expressed
in mb (not GeV) units. The factor of » on the right
side of Eq. (2.7) is an isospin factor which arises
because we present cross sections for the specific
change configuration w p-(pow )p.

For the J~= 1' S-wave component of the specific
reaction w p-(K*'K )p, or w'p-(f6*OK')p, we de-
rive

q~*z
dt, dM, 0 2 0.38938(2w) s

1

(2.8)

In Eq. (2.8), q~g~ is the magnitude of the three-
vector momentum of the K* in the K"K rest frame.

III. UNITARITY

A. Formal framework

We impose unitarity by requiring that our am-
plitude T~p 1+(M s I'1) which we denote T(M'),

(T' —T )/2i= f,pT (3.1)

where p is the diagonal phase-space matrix p„.
=(2q;/M)8(M' —s, ); q, is the c.m. momentum, and

s,. is the physical threshold for channel i. Equa-
tion (3.1) can be reexpressed as

T'= ST (3.2)

The operator S is

S=1+2if,p. (3.3)

It satisfies SS*=1(S*is the complex conjugate
of S), if time-reversal invariance holds, and if
f, is symmetric. S is trivially related to the sym-
metric, unitary strong-interaction 8 matrix

8 —1+2jp1~2f p~~2 (3 4)

Our Eq. (3.2) is the generalized version of Wat-
son's theorem' and has been quite thoroughly dis-
cussed in Ref. 5. We recall that (a) below the in-
elastic thresholds (one-channel situation), T(M')
has the form Te"'~', where 6(M) is the phase shift
for wp elastic scattering, and (b) above the inelas-

satisfy the proper discontinuity relation in the
variable M'. We make the usual assumption that
we can treat the variable M' separately, and that
there are no other unitarity corrections, for in-
stance, in the variable s. This is justified by the
fact that the reaction takes place at high values of
s. We study the amplitude for n'P - (pn)P at low
values of M„',where mN or pN rescattering cor-
rections are negligible.

We follow the method of Ref. 5. In the unitarity
relation we retain the two-particle intermediate
states (w p and also e.g. K*K, p~, etc.), treating
the vector mesons as stable, and restricting our-
selves to S-suave orbital angular momentum states.
It is a minor technical problem to extend this pro-
cedure to other two-particle states. ' The three-
or-more-particle sector is not easily tractable at
present. Considering for generality n communi-
cating intermediate states, we introduce the n-di-
mensional column vector T(M') =—(T,.(M')i =1,n)
formed of the n amplitudes for producing these
states. Apart from other singularities, the am-
plitude T(M ) in a given partial wave has a right-
hand unitarity cut in M' beginning at the lowest
threshold M~= m, +m, . Let T' and T be the val-
ues of T above and below this cut, and let f,(M')
be the (n && n) strong-interaction t matrix for this
set of states. That is, f, (M') describes the scat-
tering of, e.g., pn' pw, pw K*K, K*K K*K,
pm —pro, etc. For the moment, let us assume that
f, is known. Actually, it is the unknown of our
problem. Below, in Sec. IIIB, we will parame-
trize it in terms of a K matrix.

The unitarity relation for T can be written as
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tic thresholds (several intermediate states), uni-
tarity alone does not fix the phases of the produc-
tion amplitudes. It only provides constraints
which relate these phases to each other and to the
moduli of the amplitudes, once the two-particle
(e.g. pm- pn) strong-interaction phases and in-
elasticities are given. '

The final complete unitary partial-wave ampli-
tude T(M') has two parts. The first may be termed
a unitarized Deck production amplitude and is dis-
cussed below in subsection A1. The second en-
compasses additional contributions including pos-
sible "direct production" of the A, resonance, as
we explain in subsection A 2.

l. Uniturized Deck amplitude

We construct the unitarized Deck amplitude from
a knowledge of its singularity structure, using the
Cauchy integral theorem. There are two types of
singularities. The discontinuity across the right-
hand unitarity cut was described just above. Sec-
ond, we assume that the "left-hand" singularities
of T(M') are provided by the production model.
These singularities arise from the singularities
in i, (and u, ) of Figs. 1 and 2. The dominant ones
are assumed to be the pion- and p-exchange Deck
graphs and their sum is therefore by definition
To(M') =- To „.The problem we address here is
the following: Given T~ „anda parametrization
of the J = 1' S matrix for, e.g. , pm and K*K scat-
tering, determine an analytic and unitarity ampli-
tude T~ with the proper discontinuity structure.
The general formal solution of our problem is well
known. "' It is first necessary to devise a 2 x 2
analytic matrix D(M') which possesses only the
right-hand unitarity discontinuity, satisfying the
equa. tion D'(M') = SD (M'), but which is a.lso in-
vertible (viz. , the determinant of D should not van-
ish anywhere on the first sheet). By construction,
the function D '[To —To] then has only a right-hand
discontinuity given by -disc(D ')Ts. Writing a
dispersion integral for D '(To —To), we derive a,s
our answer

Ts(M') = To(M')

, disc(D '(s'))Ts(s')
(s' M'}-

(3.5)
Equation (3.5) is our definition of the unitarized
Deck amPlitude, i.e. , the Deck amplitude with re-
scattering corrections taken into account. The
amplitude T~(M') has, in particular, the follow-
ing properties:

(a) It has the same left-hand production model
singularities as T~(M').

A. Additional contributions

In most of our calculations, the S matrix con-
tains an A, resonance, and the D matrix has ele-
ments which decrease like powers of M', as M'
approaches infinity. In such cases, an amplitude
which satisfies the above criteria (a), (b), and (c),
and vanishes at infinity, has the form'

T(M') = Ts(M') + D(M')P(M'}, (3.6)

where P(M'} is a vector whose n components are
polynomials in M' and which are such that DP van-
ishes a.t infinity. The choice (3.5) is such that
T(M') Ts(M'}. as M'

We shall argue below that part of the additional
contribution DP in Eq. (3.6) can be viewed as a
"direct" production of the A, resonance. It can
also represent the contribution of singularities
which may have been omitted in T~„„,are located
farther away in M', and provide a smooth contri-
bution (apart from unitarity effects) in the M' re-
gion of interest. For instance, it is clear that our
scheme does not explicitly incorporate crossing
symmetry, in the sense that unitarity is neglected
in the crossed channels t, and u„where only the
poles are taken into account. In order to achieve
quantitative agreement with the data, it may be
necessary to include the extra term on the right-
hand side of Eq. (3.6).

B. Practical method: Basic features of the amplitudes

There are many ways to parametrize the
coupled-channel S matrix of interest to us. Even-

(b) It satisfies the unitarity relation (3.2).
(c) It reduces to To(M') if the strong-interaction

pseudoscalar vector pn and K~K scattering ampli-
tudes f, vanish, in which case D = 1 and Im D= 0.

In reality the f, never vanish, but they are pre-
sumably negligible for exotic channels such as p'w'.

Equation (3.5) is not in general the only ampli-
tude which satisfies the above three requirements.
There is a well known polynomial ambiguity' when
resonances are present. In the Appendix, we give
a brief justification for our definition of Eq. (3.5)
as the unitarized production amplitude. This
choice can be proved more rigorously' in non-
relativistic quantum mechanics. In a previous
paper, ' we used an integral over the left-hand cut
to obtain our unitarized production amplitude,
rather than the integral over the right-hand cut
in Eq. (3.5). However, as we remarked, for the
choice of parameters required by the Q data ana-
lyzed in Ref. 5, this difference has no practical
consequences for the Q problem. We now judge
that Eq. (3.5) is the correct procedure.
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tually, given enough data, one will be able to adopt
a parametrization in terms of phase shifts and
then to determine these by a direct fit to experi-
mental results. Since this desirable level of pre-
cision is still some years away for three-particle
processes, we adopt instead a simple pole para-
metrization of S, using a K matrix formalism. As
pointed out in Ref. 5 this has the advantage of
yielding analytic expressions for the D matrices
which we need.

We begin with a real symmetric n x n K matrix.
The S operator of Eqs. (3.2) and (3.3) is then

S(M') = [1—K(M')C'(M')] ' [1 —K(M')C (M')].

(3.7)

In most of what follows, we set n = 2, i.e. , we shall
consider the coupled pn and K*K channels. The C
matrix in Eq. (3.7) is diagonal, C,&

——&,&C, . The
C,. are the usual unequal-mass Chew-Mandelstam
functions for pw and K*K. E.g. , C,(M') is cut from
M' = (m, + m, )

' to +~; for M ) (M, + m, ), it satisfies
ImC, (M') = 2q/M. Each C, is defined so that C,.(0)
= 0. Explicitly,

C,(x)= ————[(m, +m, )'-x)'~'[(m —m, )'-x)' ln
mpm~ I

2 2 2 2
p l ~ p +mt

2x m, 2(m, ' —m, ') m,
(3.8)

1. One-channel case

As a point of departure and to have a basis for
comparison, it is of interest to recall first the
main features of the well-known one-channel case.
Setting K=g'/(s, M'), we obtain

1
D(M')=s M, 2C (M2)

' (3.9)

This is a very simple parametrization of a reso-
nant amplitude. For a narrow resonance of mass
m and width I', the parameters s, and g' are fixed
by s, = m'+g'ReC, (m'} = m' and g'ImC, (m') = mI'.
The parameters s, and g' can be fixed rigorously
by imposing the presence of a pole of D(M') on the
second sheet. This is the manner in which we pro-
ceed below. Assuming the simplified form of Eq.
(2.2} for the Deck amplitude

T~(M') = (3.10)
M —s

we use Eq. (3.5) to obtain the unitarized Deck am-
plitude. It is

(3.11)

DM P

s, —M'-g'C, (M'} ' (3.12)

Since C,(so} is real, this amplitude has a real zero
near M'= s,. For a narrow resonance, the zero
occurs near the resonance mass value, M'= m', as
expected (see the Appendix). Thus, the unitarized
production amplitude changes sign near the reso-
nance position, and the phase of T~ will jump by
m. If we now add, as in Eq. (3.6), a "direct pro-
duction" term

where P is a constant, the resulting amplitude
T(M') = T~(M') + PD(M') has its zero shifted. The
new position is

M =
o [s, -g'C, (s,) ] —Pso

a —P

This shift of the position of the zero is accompa-
nied by an increased enhancement of the amplitude
compared to the Deck amplitude; e.g. for P= n the
zero is at infinity, and the modulus of the ampli-
tude at the resonance is enhanced by a factor of
order m/I'. Notice, however, that if a» p, then
the resonance produces a pronounced dip in do/dM
near the nominal resonance location, not a peak.

Because cos& vanishes near M'=s„ the M de-
pendence of Eq. (3.11) may be approximated very
crudely as e' cos6, if the resonance is narrow
[i.e. , for g'C, (M') small]. Even for a, broad res-
onance, the net effect of the zero is significant
and causes sharp structure in do/dM near the res-
onance position. In our A, problem, this effect
will explain the steep decrease of the pm mass
distribution in the J~=1' wave near M=1.3 GeV,
an effect not obtainable from the pure Deck am-
plitudes. Stated otherwise, the steep decrease ob-
served in do/dM helps to fix our parameter s„
which is related to the position of the A, reso-
nance.

Turning now to our specific case of a diffractive
process, with the A, resonance in the mp system,
we have a=2i~2sgpo g KpogpN» and s, =m, '. Our
Eq. (3.11}then represents the full physical situa-
tion if the A, is observed only through the Deck
final-state-interaction mechanism. However, once
a resonance is postulated, a direct production term
may also be present, as is illustrated in Fig. 3.
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Ai

P i ( t, j
I

FIG. 3. Diagram representing a direct coupling of the
postulated p~ resonance to the exchanged Pomeron.

The corresponding direct diffractive amplitude is

iso„Gf(t,}
s, —M'-g'C, (M'} ' (3.13)

We omit possible Regge exchange terms propor-
tional to s~s, ns- 2. Equation (3.13) may be com-
pared to Eq. (3.12). The fact that their analytic
forms are identical is our reason. for associating
Eq. (3.12) with a direct production amplitude. In
Eq. (3.13) G is related to the direct vA, Pomeron
coupling strength, and f(t) represents the f depen-
dence of the Pomeron exchange in Fig. 3. Both
are a priori unknown and must be determined by
fits to data. In particular, f(t} may be different
from the t dependence of the unitarized Deck am-
plitude Eq. (3.11). If the resonance width is nar-
row, the behavior of Eq. (3.13) as a function of M
is roughly that of a Breit-Wigner form, i.e. ,-e"sin&. This may be contrasted with the be-
havior of Eq. (3.11), which, as we remarked, is
closer to e"cos&. In our comparisons with data,
we determine that the direct coupling term Eq.
(3.13) plays only a small role in the diffractive A,
situation.

The structure of our final amplitude for mp

-"A,"p has several features in common with those
found in empirical analyses" of yp pp. In p pho-
toproduction, both a direct diagram (vector dom-
inance) and a, Drell-Deck background are impli-
cated. Fits to the data show that the direct dia-
gram is dominant in yp- pp, in contrast to our
A, conclusions, but the unitarized Drell-Deck
term nevertheless plays an important role in
shifting the p to lower mass and in altering its
apparent width. " We view this example of yp- pp
as supporting evidence that our present proposal
for the analysis of the A, channel has more gen-
eral applicability. In particular, we consider the
Zp- pp results as an excellent experimental justi-
fication for choosing Eq. (3.5) as the definition of
the unitarized Deck amplitude.

We conclude this somewhat pedagogical subsec-
tion with some comments about our choice of the

strong-interaction amplitude and the D function
Eq. (3.9). It is clear that the resonance in our
parametrization corresponds to a Castillejo-
Dalitz-Dyson (CDD) pole. It is an unstable state
coupled to the pm continuum, and not a dynamical
pn effect. In making this choice, we comply with
(a) the experimental observation that phase shifts
do not seem to obey Levinson's theorem (do not
decrease to zero above the resonance region) and
with (b) the present theoretical point of view that
meson resonances are primarily qq bound states.
We could improve our strong-interaction ampli-
tude by taking into account. some mp forces. This
can be done easily in an N/D formalism. By
choosing

and imposing the presence of a CDD pole, we
would have

1
C(M )

where

C,(M') —C,(s,)
—S]$e2

It is easy to see that the arguments developed
above would remain qualitatively unchanged.
While several refinements can be thought of, our
point of view has been to choose amplitudes which
are as simple as possible.

2. Two-channel case

Since the A, resonance can have a mass close to
1350-1400 MeV, and since we are interested in
the region above 1.4 GeV, it is important to in-
corporate the inelastic K*K channel in the calcu-
lation. We use the K matrix

(3.14)

Here s, is related to the mass-squared of the Ay
resonance; g, and g, are the coupling strengths
of the A, to the pv and the (v 2) '(K*K -K*K)
states; n'=g, '+g, '. SU(3) specifies g, /g, = u 2
for the A„which underlines the importance of
including the K*K effects in the analysis. From
this simple form chosen for K, we derive

1 g, g,(s, M a'|-",)
D(M') =

s, -M -g, C, -g, C, g g(s, -M' —&'C )
(3.15)
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For the final Z~ = 1' partial-wave amplitude, we use Eq. (3.5) to obtain

1
s M' g 'C (M') -g 'C (M')

Tn(pr) [s, —M' —g, 'C,(M') —g, 'C, (m, ') ]
+g,g,TD(K*K) [C,(M') —C,(m, ') ]

TD(K*K) [s, -M' -g, 'C, (M')-g, 'C,(m, ')]

+g,g, Tn(pn) [C,(M') —C,(m, ') ]

(3.16)

For each of thetwo channels, our Eq. (3.16) has

the appearance of a resonance factor

D (M') = [, M' g, 'C, (M') g, 'C—,(M')]

=8"sin6

is illustrated in Fig. 3. The corresponding ampli-
tude is similar to Eq. (3.13):

T (s M' f)=der l l 1 D (M2)

multiplied by a function which contains a complex
zero near M'= s,. It is important that the zero is
now shifted into the complex plane. This permits
a more slovenly varying phase in the region
where the cross section shows a break &dip),

as opposed to the one-channel case, where the

phase jumps by 180'.
By simple algebraic manipulation, Eg. (3.16)

may be recast in a form with the appearance of
a sum of amplitudes: Deckresonance. However,
both are modified by the requirements of unitarity.
We observe again that Eq. (3.16) has the desirable
properties that Ts(M') tends to the unmodified

To,~(M') if the resonance is absent (g, = 0), or if
M'-m, ', or if M'-~. We remark also that T~D

—= Tn „(M'}if the resonance is orthogonal to the
Deck mixture g, /g, = TD(K*K)/Tn-(pv) [in the exact-
SU(3)-symmetric case with C, = C,], as found4 to
be the approximate physical situation for the Q~.
For the parallel mixture, where g, /g, = Ts(pv}/
T (K~K), the two-channel problem reduces to an
effective one-channel case, and

s, —M' —g, 'C, (m, ) -g, 'C, (m, )
-M2 — 2C (M2)- 2C (M )

(3.17)

A direct production term may also be present, as

D(M ) — . (3.18)
0

3. Two-channel, two-pole K matrix

In our investigations, we have also studied a
slightly more sophisticated expression than Eq.
(3.14) for the K matrix. The reason is primarily
to be able to modify the inelasticity independently
of the relative coupling of the A, to prr and K*K.
The p~ channel, for instance, has a threshold at
-1550 MeV, the P-wave em, D-wave pm channels,
etc. are present, and there are other possible in-
elastic effects which we represent globally by the
sole K*K channel. We also want to have more
flexibility in our parametrization of the pseudosca-
lar-vector coupled-channel amplitude, and to be
able to incorporate a nonresonant background con-
tribution and/or a second resonance.

A simple two-pole form for the K matrix is

fr gig2 fA
K=

The D matrix becomes

/ g, (s, —M') -C,(M') f,A f,(s, -M') +g,C,(M')A

D (g,(s -M )+ C,(M'}f,A f,(s, -M')- g,C,(M')A

Here A=g, f, g,f, and-
D,(M') = (s, —M')(s, —M') -C,(M') [g,'(s, —M') +f,'(s, —M'}]

C,(M') [g,'(s, —M') -+f,'(s, —M') ]+C,(M')C, (M')A'.

As before, we use Eq. (3.5} to obtain Ts(M'). All
the necessary integrals may be evaluated analyti-
cally again and yield simple, if lengthy, results in
closed form. The polynomial P(M'} of Eg. (3.6) can

have the form

(3.22}
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where G„G„f„andf, do not depend on M'. It
is clear in this case that the interpretation of the
whole term D(M')P(M') as "direct production" is
less straightforward than in the simpler case of
Eq. (3.18). Although it does contain direct pro-
duction of the resonance, additional terms are also
included here in DI'.

The two-channel two-pole formulation of sub-
section B 3 includes the previous two examples as
special cases, obtained by setting some of the cou-
pling strengths to zero in Eq. (3.19). Our final uni-
tary coupled-channel partial-wave amplitude T(M')
is expressed by Eq. (3.6). The term TD(M') is ob-
tained from Eq. (3.5), with D(M')produced in Eq.
(3.20). At f = 0, our direct production term
D(M')P(M') is obtained from Eq. (3.20) and

P(M') =i so,„~— (3.23)

IV. RESULTS AND INTERPRETATION

%e have attempted to reproduce three desidera-
ta: (i} the absolute normalization of the ~ =1'

where a and 5 are adjustable constants. Our pa-
rameters are therefore the two g„the two f „

the
twosg, 8, andb.

In Sec. IV, we compare spectra computed from
T(M') with data, using Eqs. (2.7) and (2.8) to com-
pute differential cross sections at t, =0, and Eq.
(2.5) for (I, ~

&0. We also compare phases with
available data. We dejine P(1') to be the phase
of T(M'), after removing the overall 90' production
phase represented by i in Eqs. (2.6) and (3.23).
Thus, if unitarity effects were negligible and the
unmodified Deck amplitude (2.6) alone were the
correct answer, then p(l') =—0 (real, positive). In
Sec. IVA, we describe how P(1') is extracted from
the data for comparison with our model calcula-
tions.

The phase g(l') is, of course, the phase of the
J~=1' 8-wave pn amplitude a.s observed in mp

-(pr)p. It is also interesting to examine the S-
wave phase shift 6 and the elasticity q parameters
which our model provides for pn - pm. To obtain
these, we note that the diagonal elements of the 8
operator Eq. (3.3) may be expressed as r~e"'
Therefore, for the pm- pm amplitude, we derive

qe" 6 —1 2q g, '(s, —M') +f,'(s, —M') -A'C, (M')
2i M Do(M )

(3.24)

In Eq. (3.24), q&, is the magnitude of the three vec-
tor momentum of the p in the pg rest frame;
Do(M'} is defined in Eq. (3.21).

S-wave pv cross section, (ii) the position and width
of the peak observed in the J~ =1' 8-wave pm in-
tensity, and (iii) the magnitude and slow variation
with mass of the experimentally determined phase
of this &~=1' 9 wave.

A. Data

l. Normalization and mass dependence

%'e use symbol cr to denote the differential cross
section da/dt, dM ~, averaged between M = 1.0 and
1.2 GeV and extrapolated to t, =0. For the J~
=1' p-wave pm system in the specific charge state
p v from v p- (p'v )p, v is experimentally'
o =4 3+0..3 mb/GeV'. The data, we use are taken
from an analysis of s p-(3v) p at 40 GeV/c and
are an experimental average over a range of g, .
This average smears both the mass and phase va-
riations. When data on 3m production reach the
level of precision available in sp-(2v)iV, one may
contemplate extrapolations to t, =0 and/or ampli-
tude analyses at fixed t, . For now, we compare
the experimental mass spectrum with the integral
of the square of our model amplitude,

ts

f I r(M', t, =0) ('exp(~f, ).

The slope X(M) is specified by the Deck model. "
A s mentioned in Sec. II, we para, metrize it as
X(M') =-2+16/M2. We have chosen f,' = -0.1 GeV'
and t,"=-0.3 QeV'. The choice g,'=-0.03 would re-
inforce our curves slightly for low values of M2.

In order to obtain the experimental phase of the
1' S-wave ps amplitude, we use the 40-GeV/c da-
ta' on the mass dependence of the phasedifference,
p(2') —p(1'), between the "A," and "A,"pv partial
waves. This difference passes through zero close
to the nominal A, position M„—1.32 GeV. Data"2
from the same experiment have been used to show
that the overall energy (s) dependences for produc-
tion of the A, and A, waves are essentially identi-
cal for p ~ 10 GeV/c. According to standard
theorems relating phase and energy dependence,
this implies that the production phases should also
be identical. " Therefore, we interpret the phase
difference as due approximately entirely to the
relative decav phases of the 2+ and 1' pg waves.
Because the 2' amplitude is saturated by the bona
fide A, resonance, with little background„Deck
or otherwise, its phase r1ses through 90 at I
and should head towards180'. The fact that 4t)„,
= 0 near M„ implies that the experimental ab-
solute phase p(l'} is also near 90' for M in the
neighborhood of M„.

2



666 J. L. BASDEVANT AND EDMOND L. BERGER 16

Since the 2' wave is free from background, ' we
adopt a standard Breit-Wigner form' to describe
the 2' amplitude:

r -'g, ) M' —M„'+IM„r(M)

and

r(M)=F, —' ""'
qo p(qo)

with M„=1.315 GeV, I'=0.115 GeV, and p(q)
=(9+3Roq + R4q') '. The q' factor ensures the cor-
rect threshold behavior. We employ a cutoff fac-
tor with radius" R =4.4 to guarantee" that p(A, )
-180' for M»MA, .

From this 2' phase and the experimental differ-
ence P(2') —p(1') we obtain the 1" phase to which
we compare our results. Notice, however, that it
is possible that the actual values of p(1') could be
systematically lower by 5 to 10' if the production
phases for the "A," and "A," are not strictly
equal, "or as occurs in a "unitarized" amplitude
analysis of the same data. "

Other phase differences have been measured' in
addition to p(2') —p(1'). Nevertheless, only the
2+ wave provides what we may term an "absolute
reference phase, " allowing us to fix within reason-
able bounds the value of the I+ phase near M =1.3
GeV. Phases of the I' (pm) wave measured with
respect to various (&m) waves are instructive in one
additional respect. They show that the mass de-
pendence of the 1+ pz wave is most likely rather
smooth and slowly varying over the mass range up
to -1.8 GeV. We accept this as a qualitative con-
straint on our solutions. Because the & is so ill
defined, we do not attempt to devise a model for
the (eg) waves. Accepting our theoretical deter-
mination of the absolute phase of the J~ = 1' pm

wave, one may use data on various phase differ-
ences to deduce the absolute phases of a large set
of partial waves, e.g. that of the J~ =1 P-wave
pw system.

B. Model solutions

As mentioned in Sec. II, we begin with the very
simple Deck amplitude of Eq. (2.6). We are in-
terested in finding what S-matrix parameters for
pw- pm can account for the diffractive data, based
on the method described in Sec. III. In practice,
we select values for the parameters g, , f„and
s,. which enter Eq. (3.19) [or Eq. (3.14), to which

Eq. (3.19) reduces in the limit where some of the

g, or f, vanish]. For the "direct production" term
of, e.g. , Eq. (3.22), we choose the functions

G,f, (t, ) and G, f,(t, ) to be constants, and there-
fore parametrize P(M') as

(I
P(M') =Iso, Ni'"&bi (4.1)

While the g dependences of the direct production
and of the Deck amplitudes are in general differ-
ent, the present data are not sufficiently detailed
to warrant our introducing such luxurious compli-
cations. In an attempt to elucidate the physics of
the problem, we shall not merely present one
"best" fit to the data, but we shall display a set
of six "solutions" with different characteristics.
These solutions, denoted by A, B,C, D, E, F cor-
respond to values of the parameters given in Table
I.

A question of particular importance is whether
an A, resonance can be established. For each so-
lution, we have searched for the presence of sec-
ond-sheet poles. Since ours is a coupled-channel
problem, the complex hP plane has a four-sheeted
structure. We can classify these four sheets in the
standard way according to (sign(lmqo, ),
sign(imqr*r )). Sheet I =(+, +) is the physical sheet,
sheet II =(-, +) is closest to the physical region be-
low the K*K threshold, sheet III =(-, —) is closest
above this threshold, and sheet IV is (+, -). In all
our solutions, except solution F which corresponds
to a nonresonant amplitude, we have found a pole

TABLE I. Values of the parameters for the six solutions described in the text. These
parameters are defined in Eqs. (3.19) and (4.1). The asterisk next to some of the values
of g2 indicates that'the ratio g&/g2= v2, as specified by SU(3) for the A&.

Parame
Solution

D

gf (GeV)
g2 (GeV)

(GeV)
f g (GeV)
f2 (GeV)
g 2 (Q eV2)
a/2
b/2

0.88
0

1.43
0
0

0.47
0

0.94
0.66*
1.495

0
0

0.38
0

0.85
0.60*
1.48
1.27
2.16

14.4
0.7

—3.2

0.98
0.42
1.55
5.5

46.7
1.37 x 10
0,25

0

1.74
1.23 +

1.89
7.1x 102

6.4 x10
—3.3x 10

0.24
0

1.7
1.7
2.0
0
0
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'TABLE II. Physical parameters associated with the six solutions described in the text.
M~ and I'~& are the mass and width of the A~. They are determined from the position ofAg
the second-sheet pole. ao is the &p S-wave scattering length in pion Compton wavelengths,
and o is the average value of do/dt&dM (t~

——0) between M=1.0 and 1.2 GeV.

Characteri A C
Solution'

Mg( (GeV)
I'g( (GeV)
ao(m„)
0 (mb/GeV3)

1.360
0.480
0.30
5.4

1.382
0.470
0.31
5.4

1.383
0.425
0.33
5.1

1.485
0.520
0.30
4.9

1.186
0.394
0.02
4 7
4.3 if a=0

0.66
4.5

in sheet II. The positions of the poles for the var-
ious solutions are given in Table II, together with
the values of the averaged cross section 0, and the
values of the mp S-wave scattering length a, . This
latter quantity is of some interest since we may
compare it with the Weinberg current-algebra pre-
diction" of a0-0.22m, '.

1. One-channel, one-pole reference model

Solution A corresponds to a purely elastic, one-
channel, zp amplitude, parametrized with a very
simple one-pole K matrix. No inelastic effects are
incorporated. It is displayed in Fig. 4. Some
direct production is included. This solution is the
starting point of our discussion since, in other so-
lutions, we will try to eliminate its defects while
maintaining its appealing features. In Fig. 4(c)
we show the full differential cross section at ty

compared to that from the unmodified Tn „(pm)
alone, as well as the contribution to the final re-
sult from the direct term alone. A few points may
be stressed. The sharp decrease of do/dM be-
tween 1.2 and 1.4 GeV arises from the final-state
interactions embodied in Eqs. (3.11)—i.e., the
zero near M' = s, (discussed above). It is even
more pronounced if a=0 in Eq. (4.1), i.e. , no di-
rect production. This sharp decrease is also seen
in the data displayed in Fig. 4(a). It is evidence in
our framework for a resonance and helps to fix
our parameter s, . The large peak centered be-
tween M =1.1 and 1.2 GeV in Figs. 4(a) and 4(c)
is not the A, resonance. Rather, it is the Deck
background enhanced and sharpened by final-state
interactions. The peak in do/dM at t = 0, which
would be observed~if there'were no Deck background,
is that shown for the direct term alone in Fig. 4(c).
This broad structure centered near M =1.35 GeV
may be observed in the J~ = 1+ pn I= 1 cross sec-
tion extracted from forward charge- or hyper-
charge-exchange data fe.g. v p-(3s)'n], from pp
annihilation data, or in neutrino-induced reactions,
where the backgrounds should be substantially

smaller. Low-energy charge- exchange data" are
at least qualitatively consistent with this expecta-
tion. Higher-energy and much-higher-statistics
charge-exchange data should be instructive.

Although the mass spectrum and the averaged
cross section agree well with the data, the phase,
Fig. 4(b) differs substantially from the data. The
unitarized amplitude changes sign owing to the
presence of the zero near s, . Correspondingly,
the phase suffers a sudden change of 180' at -1540
MeV (this value of mass would be lower if we set
a =0), whereas no evidence for such a change ap-
pears in the data. As indicated in Table II. the Py
resonance is quite broad (I'-480 MeV) in this one-
pole calculation, but a broad resonance cannot pro-
duce a flattening of the J~ = 1+ $-wave phase above
1400 MeV. We note that the resonance in this so-
lution turns out to be close to the inelastic K*K
threshold. It is apparent physically that we cannot
avoid incorporating inelasticity in the calculation,
especially if we want to explain the region above
1400 MeV. W'e note that there are many possible
sources of inelasticity; besides K*K, there are
the ev, fov, pro, . . . channels.

2. T~o-channel, one-pole model

Solution B, shown in Fig. 5, represents a cou-
pled- channel calculation involving the pn and K*K
intermediate states. The K matrix is again very
simple, with a single factorizedpole, and a ratio
g, /g, =W in agreement with SU(3) predictions for
the A, . The values of the parameters are provided
in Table I. The mass spectrum shown in Fig. 5(a)
is again quite acceptable. The resonance position
and width (cf. Table II) are essentially the same as
in our one-channel reference example. The phase
now has a more acceptable behavior up to 1.5 GeV
owing to the introduction of inelasticity. It rises
slowly at first, passing through 90' near M=1.36
GeV, then displays a cusp at the K*K threshold,
and flattens off up to 1500 MeV. However, above
1.5 GeV it decreases rapidly toward zero. In con-
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trast to this rise and fall of the phase of our full
diffractive amplitude g „(I„p( ') the hase of the
subamplitude for p~ —pw is perfectly normal, as
shown in Fig. 5(c). Indeed our pg- p7) amplitude
f ll ws the boundary of the unitarity circle unti
M =1.39 G V, whereupon it enters sharp y,
0 ow

continues its rotation with an average elasticity
parameter g == 0 7 The reason for the cusp and
fol the ne't overall slow variation of the phase in

—( w) is the presence of the two channels.
The sharp decrease toward zero a

perhaps one artificial feature of the phase in Fig.

5(b) which does not seem to be present in the data.
Th' d crease is a direct reflection of the change18 ec

shiftin sign of the unitarized amplitude and of the shi
b 180'of the phase of the one-channel solution A.
The shift is softened by the inelasticity because

f the amplitude now lies in the complex
plane. For I~1.45 QeV, the intensity of the

ntall and eventswave is rather small experimen y,
so ident f d may in fact be misclassified owing to

It is er-ambiguities in the partial-wave analysis. i p
ha s not possible to rule out a sign change in
T(M'). Nevertheless, the descent of o
aps n

t of our calculated
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represents our full solution 8; the dashed line is the pure Deck "background, "without unitarity corrections; the dotted

line is the contribution of the direct production term alone.

phase $(I") for Ma 1.5 GeV seems to us unaccept-
able abrupt. In order to correct for this, a simple
and reasonable procedure is to use a pn and /*K
vector-pseudoscalar two-channel 8 matrix which is
more sophisticated than the very simple one-pole
K matrices of solutions A and B.

T~o-channel, two-pole model

Solution C, displayed in Fig. 6, corresponds to
a two-pole K matrix and a two-component "direct
production" term. It is also constructed so as to
be very close to solutions A and B as far as pm- ~
scattering is concerned, below the inelastic K*R
threshold, and to have similar parameters for the
A, resonance. We notice that (a) the behavior of
the phase jn Fig. 6(b) ls now much smoother and

therefore more acceptable, and (b) the mass spec-
trum also is improved above 1.4 GeV.

From the three solutions A, 8, and C, we de-
duce the following observations:

(I) The elastic pw- pw phase shifts below the
%*K threshold are extremely similar in these so-
lutions [cf. Figs. 4(b), 5(c), and 6(c)]. It is this
phase shift which really determines the shape of
the mass spectrum below M= 1.4 GeV. Thus, it
is not surprising that the resulting spectra are
also similar.

(2) The three solutions differ considerably above
1.4 GeV. These differences are apparent in the
pw- pw amplitude and in our amplitude T(M'). It
is clear that inelasticity must be introduced in or-
der to yield a flattening of the phase above 1.4
GeV. Furthermore, a sophisticated treatment is
required of both the pm and K*K 2 2 coupled am-
plitude and the "direct production" term, which
contains direct production of the resonance and
contributions of omitted left-hand singularities in
M.

(3) It is interesting, however, that the two re-
gions above and below 1.4 GeV seem to be dis-
connected. We can modify what happens above
this energy without changing appreciably what hap-
pens below.

(4) The 8-wave scattering l.ngths in these three
solutions can be considered in acceptable agree-
ment with the current-algebra prediction, since
the predicted value is expected to be increased
owing to the presence of a resonance, as in the
case of the I= 0 8-wave m'm amplitude.

(5) The absolute normalizations at f, = 0, w, are
somewhat higher (by -25%) than the experimental
value. We do not consider this to be an important
flaw. It could be repaired by a reduction of 10%%uo

in the absolute normalization of our Deck ampli-
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the mass spectrum is now depleted at low values
of M compared to solutions A, 8, and C, in better
agreement with the data. Solution E fits the com-
bined mass spectrum of the 25- and 40-GeV/c
data' very well. The reason is that since ap is
sma, ll, the Deck amplitude is not enhanced at low

M. While it may be dangerous to assign too much

weight in the analysis to the low-M points, the so-
lution is nevertheless attractive.

(2) As a consequence of this low value of a„the

A] mass is now smaller, -1.2 GeV, while its width

is still of the order of 400 MeV.
(3) The phase shift & of the pw- pm amplitude

shown in Fig. 8(c) crosses 90' at a value of M con-
siderably higher than the resonance position, M
= 1.2 GeV, which we determine from the location
of the second-sheet pole. We note, however, that
the rate of increase of & is greatest near M= 1.2
GeV.

(4) We notice that inelasticity plus the nonreso-
nant background also lead to a better fit of the
mass spectrum in Fig. 8(a) above 1.4 GeV.

(5) Finally, in Fig. 8(f) we show the K~K cross
section that we compute. We call attention to the
enhancement and peak near threshold. In this re-
spect, it is relevant to remark that a dominant
J = 1' S-wave component has been identified near
the K*K threshold in data" on w p-K* K p at16
GeV/c. Accordingly, our use of this channel as
a source of inelasticity for the A, has direct ex-
perimental support. Refined measurements of the
K*K channel would be useful, both for establishing
the parameters of the A, resonance and for deter-
mining the amount of direct production.

6. 1Vonresonant alternative

To end this section, we discuss briefly the pos-
sibility of a nonresonant amplitude, i.e. , an am-
plitude with no A, resonance. The main argument
for this has been, traditionally, the absence of any
strong phase variation in the J~ = 1' S-wave pm am-
plitude in the mp-(pw)p reaction. Before display-
ing a solution in which the phase is fitted without
a resonance, we record a few observations. In-
dependent of the variation of the phase with mass,
the data show that the pw phase reaches -70 to 90'
near 1300 MeV, i.e. , the elastic pw phase must be
appreciable even before the inelastic thresholds.
The only way to obtain a strong phase with no res-
onance is to have a large value for the scattering
length ap However, if ap is large, one expects a
large enhancement of the Deck amplitude near
threshold, and therefore an incorrect shape for
the mass spectrum. This is perfectly borne out
by solution F, shown in Fig. 9. We have adjusted
the phase in order not to have a resonance. The

behavior of the phase is very satisfactory, but the
mass spectrum is unacceptable, much too en-
hanced near threshold. Is this a safe argument at
present for discarding the possibility of a nonres-
onating amplitude~ Not quite, of course, but we
feel confident that the existence of the resonance
is more probable than its nonexistence. With data
of slightly better quality one may be able to rule
out a nonresonating amplitude completely.

V. CONCLUSIONS AND DISCUSSION

In this article, we developed an essentially new

method and applied it to the phenomenological anal-
ysis of diffractive data on wp- (pv)p at high en-
ergies. We demonstrated that our Deck model
modified in a mell-defined way by the require-
ments of unitarity in the (pv) system leads to an
excellent explanation of the data. There are few
free parameters in our approach. Moreover, all
of these parameters are connected intimately with
the behavior of the pm- pm JP=1' S-wave scatter-
ing amplitude, whose physical characteristics it
has been our ambition to extract from the diffrac-
tive data. The parametrizations allow either for
the presence of an A, resonance in the J =1' pm

system, or for the absence of this long-sought
and most enigmatic of the resonances of the con-
ventional quark model. Concluding from our best
solutions, we find it most probable that the A, res-
onance does exist, and that it is broad. With the
present data we determine a mass and width of
1.3+0.15 GeV and 0.4 +0.1 GeV, respectively.
These figures are based on the location of the sec-
ond-sheet pole of our pm scattering amplitude, and
represent rough averages of the specific values
we determined from individual solutions. We can-
not exclude the nonresonant alternative complete-
ly, but we judge it an unlikely solution. Better
data should be decisive, and we provide specific
suggestions below.

Some of the most important new ingredients of
our unitary and analytic approach are listed here;

(a} Incorporation of inelasticity. We accomplish
this with a coupled-channel framework, including
both the pm and K*K decay channels. Inelasticity
permits the phase P(1') of the J~= 1' pm wave in

mp-(pm}p to cease its rapid growth with mass at
and above 1.4 GeV, owing to the different form of
the Watson final-state-interaction theorem above
inelastic thresholds. The inelasticity required by
the data is consistent with the SU(3) expectation
that the ratio of 2, coupling strengths g„/gr~»
=a 2.

(b) Unitary parametrizations of the J~= 1' pw- pw

scattering amplitude which include not only a res-
onance pole but also nonresonant background in the
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same partial wave. Our best solution E suggests
that the backgxound may be significant.

(c) Incorporation of some direct diffractive pro
duction of the A, resonance, in addition to the uni-
tarized Deck production. The proportion of direct
production and its t, dependence could be deter-
mined from a careful analysis of more accurate
data. At the present time, our solutions show a
wide latitude for the fraction of direct production.
The unitarized Deck term is always dominant.

(d) Mass-slope correlation. A property of both
the data and of our Deck production model, the
logarithmic slope of the production momentum
transfer distribution do/dt, decreases dramatically
as M increases. One practical consequence is that
the position of the peak in do'/dM changes for dif-
ferent selections on

l f, l. A proper analysis of the

data, and conclusions regarding the position and

width of the A, resonance, not to mention its exis-
tence, require a proper treatment of the mass-
slope correlation.

(e) The 2'-1' phase difference. We take seriously
the data on the phase difference between the J~ = 2'
D-wave pm and J =1' S-wave pn systems. This
crucial information has generally been ignored in
earlier analyses.

It is interesting to compare the state of our
understanding of p~ scattering, as we nom view it,
mith that of wm scattering. " In both cases, unitary
analytic coupled-channel partial-wave analyses
are required. " For mw scattering, the KK thresh-
old effect is very important. Similarly, in our A,
analysis, we showed that the coupling to K"K is
significant. However, the production mechanisms
are different. Analyses of mm scattering are based
on data in which one of the "incident" pions is an
off-the-mass-shell exchanged pion. In our A, anal-
ysis, the "exchange" is a Pomeron, and (in a
loose sense) we study wP-wp and wP-K*K. Nei-
ther ease is without its technical complications.
Because of complicated spin dependence, compe-
tition from A, exchange, and absorptive effects,
the "data" on mm scattering are obtained through
model-dependent extrapolations to the exehanged-
pion pole. Indeed, an extrapolation must be per-
formed in order to permit extraction of the mm

phase shifts. To some degree, the Deck produc-
tion mechanism in the A, case is better under-
stood and easier to deal mith than are the produc-
tion related complexities in mw scattering. The
observed helicity properties of the A„predom-
inantly t-channel helicity zero, and the strong
mass-slope correlation of the production momen-
tum-transfer distribution are correctly px'edicted
by the Deck model. '

Our analysis of the data shows that it is the uni-
tarized Deck term which dominates in wp-(pw}p,

and not the term representing direct production
of the A, . Because the Deck amplitude is domi-
nant and sufficiently well known, we believe that
any phase and elasticity assignments for the
strong-interaction pm pw amplitude can be veri-
fied not only by confronting p(l'), the phase of the
J = 1' part of wp-(pw)p, but also by checking the
shape and magnitude of the differential cross sec-
tion d&r/dt, dM To. be sure, there are some unre-
solved problems associated with diffractive pro-
duction. We may mention the pronounced struc-
ture»se~ed ne»

1 &i I
= 0 2 GeV' in some inelas-

tic diffractive processes. " It is not known whether
such structure is present when the J = 1' 8-wave
pw system is extracted from data on wp-(pw)p.
However, if so, it mould not be explained by our
simple unabsorbed Deck model. For this and other
reasons, me would prefer to work with data on

wp-(pw)p as close to f, = 0 as possible, and ideally,
with differential cross sections and phases extra-
polated to t, =0. Nevertheless, in the A, case, the
dependence of cross sections and phases on t, is of
potential interest in itself. For example, with

enough good data, analyzed with our method as a
function of mass in different narrow intervals of
t„mecould identify differences between the t, de-
pendences of the Deck and dixect production terms.
In some models, ' the direct production term is ex-
pected to vanish as t, -0. Such subtleties are lost
in the px esent data, which neither reach small
enough t, nor are of sufficient statistical quality to
permit an analysis more differential than me have
performed.

The data analyzed in this article are based on a
sample of 43 x 10' events of wp-(pw}p obtained at
40 GeV/c by the CERN-IHEP' collaboration. While
xepresenting the highest statistics available at a
single energy, these data are neverthe1. ess so scant
that the intervals in mass and momentum trans-
fer in which results are presented are 50 MeV and
0.3 GeV', respectively. An analysis based on

roughly 10 events would permit more refined con-
clusions, perhaps providing more convincing evi-
dence for phase variations as a function of both
mass and momentum transfer. As remarked above,
it mould be useful if the point t, = 0 were accessible,
with absolute normalization. The lom-mass part
of the spectrum do/df, dM was shown to play an im-
portant role in the selection of our solutions, in the
determination of the scattering length a„and, as
a consequence, in the specification of the A, mass
and width (as well as its very existence). Thus,
good data at small I are needed, in several reas-
onably small intervals of t,. This latter point is
important because of the strong mass-slope corre-
lation.

We demonstrated that the K*K channel is an im-
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portant second decay channel for the A, . Thus, we
also advocate a detailed study of vp-(K*K)p at
high energy. It would be useful to be able to incor-
porate into our analysis measurements of the mass
and momentum-transfer dependences of the phase
P(1') and differential cross section for the 8~= 1'
S-wave K~rC system from wp-(K*K)p. We discov-
ered that with present data the two regions M& 1.4
GeV and M ~ 1.4 GeV can be treated independently to
some degree, in the sense that many amplitudes can
be constructed with approximately the same char-
acteristics for M & 1.4 GeV, but very different be-
havior above. Once better data are available above
M= 1.4 GeVonthe J~= 1' pr andK*K systems from
both vp - (pw)p and ~p -(K~X)p, a well defined pre-
ferred solution may be selected up to perhaps M= 1.8
GeV.

We have concentrated on diffractive production of
the A, . Nondlffx'active 1 eactions such as x"p
-(pw)'n, K p-(pr)'A, and Kp-(K~K)A require a
somewhat different analysis. In these px'ocesses,
the exchange is presumably either a "p" or a "K*"
The data permit a study of n"p" -7rp, K"K*"-pn,
and K"K~"-K*K, in the absence of diffractive
production. In our treatment of unitarity for the
diffractive processes vP-(pv)p and vP (K~K)P in
Sec. III, we consider only two-body intermediate
states in the unitarity equation. Thus, the multi-
particle contribution mP-mP is excluded. Our uni-
tarity constraint on mP m'p and mP-%*K has a
linear form. For the nondiffraetive processes,
this simplification is not permissible. As a re-
sult, except for coupled-channel effects, and for
eomplieations owing to its large width, nondif-
fractive production of the A, should show the reso-
nant e'~ sin& behaviox' a.s a, function of mass which
Fox conjectured. ' The curves which represent
our dixect production contributions in Figs. 4-8
ax'e thus illustrative of our expectations for the
shape of the I = 1 Z~ = 1' component of da'/dM in
nondiffractive processes. They all show a, broad
featureless spectra, consistent with our conclusion
that the A, is a wide resonance. The pkase of the
Jp= 1' 8-wave I = 1 a,mplitude observed in the
charge-exchange reaction v p-(3v)'p should be that
shown in Figs. 5(c), 6(c), or 8(c), if p exchange
dominates. Obviously a careful spin-parity analy-
sis of high-statistics nondiffra, ctive data at high
energy would be instructive. I ow-energy results
may suffer from serious ambiguities owing to the
influence of overrlappi. ng competing channels. The
px esent data" are consistent with our expectations.
We may remark in passing that the long-ignored
processes KP (K*K)A and Kp-(K*IC)Z could be a
rich source of information not only on the A, but
also on the lost mesons withI = 0 in the J~~ = 1"
and 1'" nonets.

Our A., resonance is broad. As a result, con-
troversy may arise concerning the determination
of its paxameters fromphysical region data, ac-
cording to the different forms proposed for its
parametrization. Because of its breadth, theA, , may
alsobe subjecttothe sameambiguities of interpre-
tation which plague the bx'oad candidates for mem-
ship in the 0 + multiplet, such as the & and g. Itis in-
teresting that the mass of our A, places it close to the

In no sense have we "hidden it under" the 3,2. As
we explained in8ec. III, the mass of ourA. , is deter-
mined by the sharp drop observed in the J~= 1'
component of dh/dM between M = 1.2 and 1.4 GeV.
The proximity in masses of the A, and A, is not un-
expected since both are /=1 exeitations in the quark
model.

In the near future we expect to return to our
study of the Q mesons, ' using a method of analysis
similar to that developed here. When justified by
the desire for precise quantitative agreement with
new future data on the A.„some improvements
and refinements of our present approach may be
investigated. The Deck amplitudes can be refined
in various ways. For example, the true 8-wave
projection could be calculated for 141~0, inst~ad
of our approximate form, Eq. (2.3). Similarly,
the vector-pseudoscalar scattering amplitudes
(pv pe', K*K K*K, and pw —K*K) can be pa-
rameterized in a more sophisticated fashion. We
could also incorporate more channels, such as the
&m P wave, the K*K and p7r D waves, the pw 8 a,nd
D waves, the fm P wave, and so forth. lt would be
interesting to examine the small J~= 1' pw and
K TC amplitudes with I-channel helicity IX, I

= 1.
One may also wish to include a more complete
description of the forces in the pn system, through
an N!D formalism, for instance, as mentioned in
Sec. II. As an example, we may consider the pion-
exchange diagrams shown in Fig. 10. A eal-
eulation along these lines was reported by
Longacre and Aaron. " 'They include three-
body effects by the use of separaMe two-body
amplitudes. While the actual wv(K*K) amplitudes
(particularly the I = 0 S wave vv) may be much more
complicated than their choices, "at least the finite
widths of the p, e, and K* resonances are taken into
account in a reasonable manner. They conclude
that the pion-exchange diagrams provide only a
small contribution. In comparison, oux' point of

FIG. 10. Pion-exchange diagrams in pm' scattering.
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view has been to parameterize the pn - pm scatter-
ing amplitude phenomenologically and then to de-
termine the parameters from the data. The dyna-
mical explanation of the values which these pa-
rameters take on is another question with which
we are not primarily concerned. This procedure
is analogous to that followed in mm scattering. We
remark that the results of Ref. 21 cover a smaller
range in M than ours, and that our amplitudes fit
the data much better with fewer parameters. Per-
haps the conclusion that the A, has a mass as
great as 1.5 GeV is connected with the neglect in
Ref. 21 of the K*K and other inelastic channels
which open above M= 1.4 GeV. Nevertheless, it is
certain that in future analyses, we will have to de-
part from the two-body approximation which we
have made, and incorporate smearing of the results
associated with the p and K* widths.

While sharing some features in common with an
earlier analysis of the A, by Bowler et al. ,

"our
work differs significantly in at least three respects.
Our Deck amplitudes are well defined and con-
strained. Our approach is formally and physically
different in that we employ a two-channel method.
We do not postulate an ad hoc phase difference
of 40' between the Deck and direct terms, and our
direct term plays little role.

Given the existence of an A„it presumably lies
on a Regge trajectory which, if roughly parallel to
the p and A, trajectories, will intersect t=0 near
o.'„(0)= -0.5. Evidence for such an unnatural-par-

1
ity trajectory has recently been found in polari-
zation measurements in v p- v'n at 17 GeV/c (Ref.
23) and in data on ha~ in pp scattering at 6 GeV/c
at Argonne. "
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uum is the two-particle decay sector of interest
to us here. In this latter case, we call the reson-
ance an unstable state. It is also called a CDD
pole by dispersion theorists. According to our
terminology, the resonance of the quark model are
examples of these unstable states.

For resonances in the dynamical class, there is
no ambiguity in the specification of the final-state
interactions. " The phase shifts obey Levinson's
theorem, and Eq. (3.5) provides the correct ans-
wer. For unstable states, however, it is recog-
nized that the solution to the unitarity equation is
ambiguous. An extra prescription is required.

We consider the problem of an unstable state,
labeled "p" for definiteness, which is coupled to
two continua. We label these continua "wm" and
"e'e ". We suppose that the coupling to mp is
much greater than to e'e . Thus, the p width is
due mainly to the pwm coupling. We are interested
in obtaining an expression for the amplitude for
e'e»nm, which is assumed to be a relatively
weak process. It can be shown in formal scatter-
ing theory that Eq. (3.5) emerges as the appropri-
ate answer. ' We shall not expound the argument
here, but we present instead an intuitive justifi-
cation for the result.

We assume for simplicity that the unstable p is
an S-wave vv and e'e state Let .f be the paw

coupling strength and let a be the pe'e coupling
strength. We denote by P the value of thebare,
pointlike coupling e'e —wm. These three primi-
tive interactions are represented in Fig. 11. For
simplicity, we suppose that no other couplings are
present. As remarked above, we assume that
f»a and f»P.

According to our hypotheses, mm scattering oc-
curs only through the p. Thus, the nn amplitude
may be written, to lowest order in & and P, as

t (s)=Pal m 2 s f2'( )

APPENDIX

In this Appendix, we present a heuristic argu-
ment to support our claim that Eq. (3.5) is the
proper definition of a productionamplitude correct-
ed by unitarity, or final-state interactions.

In potential scattering, for instance, two types
of resonance may be distinguished. A resonance
may arise when the forces between scattering par-
ticles are sufficiently strong. We use the term
dynamical resonance to identify this situation
There is a second type of resonant scattering which
is encountered frequently. It occurs when a bound
state of a Hamiltonian Hp with energy E„is
weakly coupled to a continuum by some Hamilton-
ian H„thereby becoming unstable. " The contin-

z/2 e" sine.s-4m '
a

(Al }

This expression is obtained easily upon summing
the series illustrated in Fig. 12. Here C(s} is the
Chew-Mandelstam function for wn. Equation (A 1)

~e
a~

(0) (b) (c)
FIG. 1.1. Primitive interactions in our simple model:

(a) pn'7t coupling vertex. (b) pe'e coupling vertex. (c)
e'e —x7r coupling vertex.
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FIG. 12. mm xm'amplitude in our simple model,
~Q f~ ~Q f f t

(b) - — + — .~ + oee

f ""(e'e -ws) =
m p' —s f'C(s)-

The relative size of the two contributions (A2) and
(A3) is determined by the ratio of the para, meters
o and P. Depending on the particular physical si-
tuation, one or the other may dominate, or they
may be comparable. It is clear that (A2) and (A3)

(A3)

shows that the p has been moved into the complex
plane and has acquired a width as a result of the
rescattering series.

There are two contributions to the amplitude for
e+e -ss, shown in Figs. 13(a) and 13(b). The first
contribution, Fig. 13(a), is the sum of the primi-
tive bare coupling and of its attendant wm final-state
rescattering series. To first order in z and P,
this sum ls

(
2

)f"'(e'e -ss}=
P

The second contribution is a term in which the p
is directly produced and decays subsequently into
ms, Fig. 13(b). This direct series leads to the
amplitude

FIG. 13. e'e 717t amplitude in our simple model: (a)
The component in which the r~ system interacts in the
final state. (b) The direct resonance production compo-
nent.

have very different properties. Owing to the zero
at 8 2B

p the final-state- interaction amplitude
(A2} behaves approximately as e' cos5 in the vi-
cinity of the resonance position. By contrast, the
direct amplitude (A3) behaves roughly as e'~ sin().
If Eq. (A2) is dominant, then the existence of the
resonance is signaled by a dip in the mass spec-
trum near s =mz' not by the traditional peak. 2'

Our separation of the e'e -nm amplitude into
two components is transparent in the simple mod-
el described here. We may now compare Eqs.
(3.9), (3.11), and (3.12) of Sec. III, with (Al),
(A2), and (A3), respectively. Their complete si-
milarity is our heuristic justification for asserting
that our Eq. (3.5) is the proper definition of a pro-
duction amplitude corrected by final-state interac-
tions, whether the resonance is a dynamical effect
or an unstable state.

Similar arguments have been advanced by Pump-
lin and by Bauer. '
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