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The double phase representation of Sugawara and Nambu, which assumes some simple analytical properties
with respect to momentum transfer for the phase of the amplitude, is applied to the discussion of large-angle

scattering. From the assumptions of Regge behavior and finite asymptotic Regge trajectories, one derives the
fixed-angle scaling laws F(s,8)™sF(8), and the extrapolation to the large-angle region of the Regge
formula; the high-momentum-transfer behavior of Regge residues is thereby obtained. As a byproduct, we

get the general form of the amplitude (including its phase) in the large-angle region for given values of b, and

of the three asymptotic leading Regge trajectories in the s, t, and u channels. The angular dependence of
various scattering processes is determined, using as input the values of b, and of the asymptotic trajectories
given by the constituent-interchange model. A strong correlation between the forward-backward asymmetry

of the angular distribution in a given channel and the ratio of the 90' cross sections in the other two

channels is shown to be present in a simple case. Applied to m 7r scattering the double phase representation

shows, together with positivity and the Froissart bound, that the angular distribution can take only two

possible forms for each choice of the fixed-angle power 5; in this case one also finds, using the Kinoshita-
Loeffel-Martin upper bound, that the asymptotic Pomeron trajectory is bounded from above either by 0 or
by 2/3.

I. INTRODUCTION

Experiments have shown that large-momentum-
transfer exclusive scattering processes obey fixed-
angle scaling laws of the form (modulo possible
lns factors)

—(AB —CD) s sf(8),
dt

where R is independent of 0. This behavior has
been related' to the finitely composite nature of
hadrons, and has led to the conjecture that Regge
trajectories may be asymptotically finite, in con-
trast with the situation generally assumed in dual
models with no fundamental constituents: infinitely
raising trajectories and exponential energy depen-
dence at fixed angle. A correlation between the
asymptotic behavior of Regge trajectories and the
fixed-angle high-energy behavior is of course ex-
pected on an intuitive ground: Continuity with the
Regge regime seems to imply that fixed-angle
scaling laws are consistent only with finite asymp-
totic Regge trajectories. In fact, a general scheme
for deriving the properties of Regge trajectories
and residues for large values of the momentum
transfer from the knowledge of the amplitude in
the fixed-angle regime has been established in
Ref. 2, and applied to the constituent-interchange
model (CIM). The main purpose of this paper is
to show that it is also possible to proceed in the
reverse direction in a somewhat model-independent
way, i.e., to derive fixed-angle scaling laws from
the assumption of finite asymptotic Regge trajec-

tories. To achieve this, we will rely on the Man-
delstam analyticity of the amplitude, implemented,
however, in the more restrictive form of the
double phase representation (DPR) of Sugawara and
Nambu. ' The DPR assumes some simple analyti-
cal properties with respect to momentum transfer
for the phase of the amplitude, and says essentially
that the amplitude can be factorized as the product
of a polynomial times a function which contains all
the Mandelstam cuts, but has no zeros.

As a by-product of our method, we obtain the
general form of the amplitude (including its phase)
at large energy and fixed angle, for given values of
the fixed-angle power R and of the three leading
asymptotic trajectories in the s, t, and u channels.
We can thus strongly constrain the angular depen-
dence f(0), much in the spirit of the works of
Uematsu' and Pire. '

Further, the DPR leads to an interesting connec-
tion between the fixed-angle high-energy behavior
and the zeros of the amplitude: One shows that the
high-energy fixed-angle amplitude is completely
determined, apart from normalization, by the
knowledge of the polynomial which takes care of
these zeros in the DPR, and that of the leading
asymptotic trajectories in the s, t, and u channels.
This fact, together with positivity and the Frois-
sart bound, severely restricts the possible forms
of the fixed-angle amplitude for H~ elastic scat-
tering. Essentially, the angular dependence can
take in this case only two forms for each choice of
R. Moreover, by requiring consistency with the
Kinoshita- Loeffel-Martin upper bound' for fixed-
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angle scattering, we find that the asymptotic value
of the effective Pomeron trajectory in w'm' scatter-
ing cannot be larger than —,. If the intercept of the
Pomeron is assumed to be at unity„ this result
implies, without using analyticity in the angular
momentum plane, that the Pomeron cannot be a
fixed pole for n'm scattering.

We are also able to establish in the present
framework the asymptotic behavior of Regge resi-
dues. Here the basic result is that the fixed-angle
amplitude can in general be obtained as the large-
momentum-transfer extrapolation of the leading
Regge-pole contribution in a given channel (even-
tually supplemented or replaced by a few "daugh-
ters" as defined in Sec. IV). This is similar to
what has been found in the CIM,"with some dif-

ferences mentioned in Sec. IV and further discussed
in the conclusion (Sec. VI).

This paper is organized as follows: The DPR
is described in Sec. II. The fixed-angle asymptotic
behavior is discussed in Sec. III (an outline of the
derivation in a simple case is given in the Appen-
dix), and the extrapolation from the Regge to
the fixed-angle regime is considered in Sec. IV.
Applications are given in Sec. V: Some Pomeran-
chuk-type theorems for fixed-angle scattering are
discussed in Sec. VA; &'~ scattering is treated
in Sec. V B; the angular dependence of some other
meson-meson and meson-baryon scattering pro-
cesses is derived in Sec. V C, taking for the asym-
ptotic trajectories and ~ the values obtained in the
CIM.

II. THE DOUBLE PHASE REPRESENTATION

To simplify the notation, we will restrict ourselves to amplitudes with no poles (whose inclusion is
straightforward). The DPR of Sugawara and Nambu' is essentially a double dispersion relation for the
logarithm of the amplitude. It is an extension of the single-phase representation of Sugawara and Tubis, '
which takes into account the analyticity of the amplitude with respect to momentum transfer. It can be
given' the explicitly crossing-symmetric form

F(s, t, u)
F(0 0 )

=P(s& t&u) x Q(s, t, u), (1a)

(2a)

where P(s, t, u) is a polynomial in s, t, u with real coefficients which contains all the zeros of F, and

s " ds' p(s') t " dt' p(t') u —a " du' p(u')

st " " ds' dt' p(s', t') t(u —a) " " dt' du' p(t', u')
w, , s' t' (s' —s)(t' —t) v', t' u' —a (t' —t)(u' —u)

+ (u —a)s " " du' ds' p(u', s')
(1b)v', u' —a s' (u' —u)(s' —s)

'

0

In Eq. (1), F is the invariant amplitude which satisfies the usual Mandelstam representation, s, t, u are the
Mandelstam variables with s+ t+u =a, where a is a constant, and we have subtracted at s =0, t =0, u =a,
assuming for simplicity F(0, 0, a) o 0. For ease of notation, we have distinguished different functions by
the different names of their variables: For instance, p(s') and p(t') are in general different functions.
The DPR (1) can be cast into the form of the single-phase representation at fixed t,

So 7T S S —S & ~ & —t —u u —u

where we set
N S n

F(0,0, a)P(s, t, u)Q(0, t, a —t) =- g b„(t)—
no

"
So

5,(s) and 5,(u) are respectively the s- and u-chan-
nel phases at fixed t, and satisfy dispersion rela-
tions in momentum transfer such as

Equation (2b) identifies as usual the double spectral
function p(s, t) as the discontinuity of the s-channel
phase with respect to t for t & t„and a similar
interpretation holds for p(u, s) and p(t, u). The
single spectral functions in (1b) are related to the
phases and the double spectral functions through
the relations'

t "dt'
5,(s) = 5,~(s)+-

to

t " du'
a —u —s

p(s, t')
t' —t

p(u', s)
u —uI (2b)

s
p(s') = b,~(s') —— du' p(u', s')

u' —a t'

dt' p(s', t')
u' —a
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and similar relations for p(t'), p(u'). To derive
the second equality in (3), one uses the fact that

5,(s) and 5„(s) are the same s-channel phase, but

expressed with different variables, i.e., 5„(s)
= 5. . .(s).

The conditions for the validity of the DPR are
essentially" '.

(i) that single-phase representations of the form
(2a) exist at fixed s, t, and u, and

{ii) that the phases in the s, t, and u channels
have the simple analytical properties and rate of
growth at infinity with respect to momentum trans-
fer expressed by Eq. (2b) and its analogs. We fur-
ther assume that the double spectral functions in

(lb) are bounded uniformly by constants at infinity,
which still allows a logarithmic increase of the
phases when their momentum-transfer variable
tends to infinity.

The main consequence of (i) and (ii) is that all
the zeros of E(s, t, u) are contained in the poly-
nomial P(s, t, u). Concerning condition (i), we
merely recall here that it is implied' by Regge
behavior at fixed s, t, and u. Concerning condi-
tion (ii), we remark that it is a stronger require-
ment than the Mandelstam analyticity of the amp-
litude. The main reason is that the ratio (deleting
the explicit u dependence)

may well vanish (or become infinite) for s fixed
above threshold for some values of t [lying of
course outside the region where F(s, t) is a real
analytic function of s], which will introduce extra

branch points in 5,(s). The hypothesis that this
ratio stays finite for all t's appears to be much
more restrictive than the Mandelstam represen-
tation, and one can check that it excludes such
simple functions as

E(s, t) =a,(-s) &(-t)~&+a,(-s) '(-t)2,
where a„a, are real constants Qy+Py Q2+P2
and n, —0., W integer.

III. REGGE BEHAVIOR AND FIXED -ANGLE SCATTERING

We now restrict ourselves to amplitudes with
Regge-pole behavior at fixed s, t, and u. It is
mell known' that Regge behavior implies that the
phases have definite limits at infinite energy when
their momentum transfer variable is kept fixed.
More precisely, let us call P(t) the t-channel Reg-
ge trajectory; we have' in an obvious notation

P(t) =N —[5,(u-= ~) + 5,(s = ~)], (4)

where N is the number of zeros in the fixed-t
amplitude. If the Regge trajectories are asym-
ptotically finite, i.e., P(~) -=lim, „P(t)&~, Eq.
(4) then suggests that lim, „5,(s=~)&~ and

lim, „5,(u =~) &~. (In fact, these two conditions
can be obtained, under physical reasonable assump-
tions, as a consequence of Regge behavior and the
DPR'. The finiteness of asymptotic Regge trajec-
tories thus hardly appears as an independent hypo-
thesis here. ) One can then derive' from these con-
ditions the following result, relevant to the large-
angle behavior:

with

5(s =~) —= lim 5,(s =~) = lim 5„(s=~)
t -+~co tt w~(g

and similar relations for 5(t =~), 5(u =~). The argument leading to this result, although not completely
rigorous, is rather simple, and its main features are most clearly illustrated in the simpler case where
the amplitude has no u cut, which is discussed in the Appendix. A treatment of the general case will be
given in Ref. 9.

We note that (5) gives the fixed-angle behavior v'.en there are no zeros. Otherwise, we have to multiply
(5) by the asymptotically leading part of the polynomial P(s, t, u), i.e. , by the terms of maximal degree in

P(s, t, u) considered as a function of two independent variables. When this is done one gets the result

&-y(~& ~~
+ &-e(~)+a t n&~)+y(~)-4-a

P{s,t, u) ~ —— c, ——
lsl, I tl, lftl ~ Q0 ~0 t0

where

[I + o(l)],
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and the coefficients c, are real. Two other equiva-
lent forms can be obtained by circular permuta-
tion on s, t, u and n(~), p(~), and y(~) (but with
different sets of coefficients). o.(~), P(~), and

y(~) are the asymptotic Regge trajectories in the

s, t, and u channels At fixed angle, we obviously
get in any channel a fixed-angle scaling law of the
form

F(s, 8) ~ s~F(8),
S ~oo

which gives the interpretation of ~ as the fixed-
angle power of the amplitude. We note that 6 is
a constant, independent of 0 and of the considered
channel, and that (8) implies the bound

teresting to remark that Uematsu's results4 con-
cerning the angular dependence of the amplitude
for a given negative integer value of 4 turn out
to be equivalent to Eq. (7) with o.(~) = p(~) = y(~)
= -1, although they were obtained by a different
method, which does not assume the DPR. How-
ever, Eq. (7), which is stated in a more compact
form, taking into account that only two among the
three variables s, t, and u are independent, shows
that the amplitude really depends only upon q
+1 =-2 —2~ independent combinations of the -3
—34 parameters appearing in Ref. 4.

(c) For y(~) =A, (7}becomes

2& —o'( )+P( )+y( ). (10}

where P,(z) is a polynomial of z of maximal degree
q, with real coefficients [which implies that the
phase of the amplitude is given by v(b. —n(~))].
If A is smaller than P(~) and y(~), the angular
distribution exhibits in general forward and back-
ward peaks [this may not be true if P,(z) has a
zero at z =+ 1]; then it is possible in principle to
determine A —P(~) and 4- y(~) by looking at the
tail of the angular distribution in the forward and
backward directions.

We end this section with a few miscellaneous re-
marks:

(a) An interesting case is obtained when 2h
= n(~}+P(~)+y(~) (which includes the case where
the amplitude has no zeros}. The amplitude is
then completely determined (except for normaliza-
tion) and is given by

+~g(cO )

F(s, t, u) ~ const x
ls I, I & Is lul Sp

&-8(~) u 4-7(~)
X

fp up

x [1+o(1)], (12)

where the normalization constant is real.
(b) We note that n(~), P(~), y(~), and 4 need

not be integers in the present scheme —this must
be the case only for their combination q [see
(8)]. However, if we require the amplitude to be
real at large angle in the three channels, then
these four parameters must be integers. It is in-

The angular dependence of the amplitude is given
by F(8}, which is channel-dependent. Setting
t/s =--,'(1 —z), u/s = —,'(1+z), with z =cos8, we
obtain for instance from (7) the angular dependence
in the s channel as

1+z ~-"(") 1F (z) =e "(~ ~( ))
S 2

P (z)S y

x [1+o(1)].

One can check that this is exactly the result one
would get under the stronger assumption that the
u-channel discontinuity vanishes ("exotic" u chan-
nel); in the latter case one expects in general
y(u) =y(~) = 4 for any u, since backward scattering
then appears as a special case of fixed-angle scat-
tering for 8 =v (such a behavior has been first
conjectured in the CIM'). The condition y(~) =&
could thus give a more general definition of ex-
oticity in the u channel for large-momentum-trans-
fer scattering, compatible with a nonvanishing u-
channel discontinuity for finite u. In particular,
y(~) =A implies no backward peak, as can be seen
from (11).

(d) Finally, we note that the knowledge of the
polynomial P(s, t, u) and of the asymptotic Regge
trajectories completely determines the f ixed-
angle amplitude at high energy, apart from nor-
malization. This will be particularly useful for
m mp scattering.

IV. CONNECTION BETWEEN THE REGGE AND

THE FIXED-ANGLE REGIMES

It is interesting to note that in the present frame-
work there exists a smooth extrapolation from the
Regge to the fixed-angle regime, similar to what

has been first observed in the model amplitudes
of the CIM" (although there are some differences
which will be mentioned below). The extrapolation
procedure takes it simplest form in the case where
the u cut is absent and there are no zeros (or more
generally q =0). Then we can go to the fixed-
angle region in a two-step process' [see (13)]:
First we take

~

s ~» ~f ~, which leads to the Regge
form E(s, t) =b(t)(-s/so)~"', then we let ~t~-~
and obtain for the Regge residue b(t} = const
x( t/t, ) '"', hence F(s-, t) =constx ( f/&, ) '"'-
x(-s s/, ) ~"s'( oencanalsocheckthat one gets the
correct normalization this way). The situation is
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in general less simple when there are zeros:
Then we usually have several terms in (13), which
can be interpreted as the contribution of a super-
position of the leading Regge pole P(f) and of q
= n(~}+P(~) —& "daughter" trajectories P(t) —1,
P(t) —2, . . . , P(t)-q . The residues of these sec-
ondary poles fall off sufficiently slowly at large
momentum transfer to compensate for the lower
values of the pole positions, thus allowing them to
contribute at fixed angle [if the c,'s do not vanish
in (13)]. It is remarkable that the DPR does not
allow other kinds of "genuine" secondary poles,
other than those particular daughters of the leading
one, to contribute to the fixed-angle amplitude.
This is rather different from what is obtained in
the CIM, ' and may indicate that the present frame-
work is too restrictive: Indeed in the CIM the
fixed-angle amplitude is generally built up from
pairs of asymptotically degenerate Regge trajec-
tories, which therefore cannot be "daughters" in
our sense.

In the general case where the three cuts are
present, a similar extrapolation procedure exists,
but one must pay attention to writing the Regge
form of the amplitude in the appropriate way. For
instance, if the amplitude has no zeros, the t-
channel Regge-pole contribution must be written in
the multiplicative form

with P,(t) = —(I/(()6, (s =~) and P2(f) = —(I/(()5, (u =~)
[one can check from (4), with N =0, that the overall
power at fixed f is indeed p(t) = p, (t)+ p, (t)]. In-
stead, the CIM suggests' the use of the additive
form

s u
b, (t) —— + b, (t} ——

So uo

Although these two forms are equivalent in the
Regge region, where u =-s, they are not in gen-
eral in the fixed-angle region. We note in this con-
nection that the simplest Regge-pole fit to elastic
scattering, including the Pomeron contribution,
favors the multiplicative form over the additive
one: The amplitude F(s, t) at t=0 is proportional
to is in this case, which can easily be represented
in the multiplicative form as v-s x v-u, but not in
the additive one, which would give (-s)+ (-u) =0
for s =-u, and is real anyway, if one uses only
poles (this is also the basic reason why the Pome-
ron cannot be represented by a Veneziano formu-
la, ' which takes care of signatured Regge poles in
the additive form, and should rather correspond to
a multiplicative Virasoro amplitude" in the frame-
work of dual models). When there are zeros, E(I.
(7) can be viewed again as a superposition of the

leading t-channel Regge pole and its q ~ daughters.
In particular, it suggests that the large-t behavior
of the leading t-channel Regge-pole residue is
given by (provided c, WO)

((&)„, .co stx(- — [1 0(()j.
0

(14)

V. APPLICATIONS

A. Pomeranchuk-type theorems

It can be immediately realized from the previous
results that the ratio of the differential cross sec-
tions at fixed angle in two different channels re-
lated by crossing tends to a finite value [except
eventually in a few exceptional directions which
correspond to zeros of the polynomial P,(z) in

(11)], since the fixed-angle power b is the same
for the s, t, and u channels. In general, one can-
not predict this value, which is angular dependent,
without knowing the polynomial P(s, t, u) which
contains the zeros of the amplitude. However, in
the particular case where 2b, = n(~)+ P(~) +y(e&),
there is no arbitrary parameter except an overall
normalization constant. Taking for instance the
ratio of the moduli of the 90 amplitudes in the s
and u channels, one immediately gets from (12)

F(s, 8, =90') (,) („)„(„)
F(s, 8„=90'} (15)

As an application of this formula, let us assume
that the u channel carries exotic quantum numbers.
Then it is natural to expect y(~) & n(~), and there-
fore the ratio in (15) to be smaller than l. One
thus expects the 90' cross section in a nonexotic
channel to be appreciably smaller than the corres-
ponding cross section in a crossing-related exotic
channel. This may explain the large value of the
90 pp elastic cross section, compared to that of
the pp elastic cross section. More quantitatively,
it is easy to check that (12) gives in this case (we
neglect spin in the present argument)

do' ~ const x s'~ '(1 —z') '" '
PP

(16}

Since b, is the same in the s, t, and u channels,
(14}gives relations of the type mentioned in Ref.
2 between asymptotic Regge poles and residues in
these three channels. If the leading t-channel Reg-
ge pole has a definite signature, (7}also suggests
one must have

P( )
2

+y(~) —6 = integer or half-integer

[and a similar relation replacing y(~) by n(~)],
depending upon whether the signature is even or
Qdd.
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where o&(~) is the asymptotic trajectory in the pp
channel, and also

( , „2dt
pp

dt

A good fit to experiment seems to be'

der
'

const x s "(1-z') '
dt j~'

(17)

which is also one of the forms predicted by the
CIM, ' and corresponds to d =-5, n(~) =-6. Put-
ting these values in (17) then leads to the predic-
tion

s- 2' = 256
dv do'

dt
pp

dt

B. 7I'w' elastic scattering

This case is of particular interest, since it lends
itself to a typical application of our results: The
high symmetry of this reaction makes it possible
to strongly restrict the form of the polynomial
P(s, t, u), hence to make some rather model-inde-
pendent statements about the angular dependence
of the amplitude. We note in this connection that
the same symmetry makes a straightforward ap-

(the experimental value" at 5 GeV/c is about 100).
The value of this ratio is very sensitive to the in-
put parameters: Had we taken the dimensional-
counting result" n =-4, together with a(~) =-6,
we would have got the value 2"=1024 (also pre-
dicted in Itef. 14).

A slightly different way to express the content of
E&ls. (12) and (15) is to note that they predict a
strong correlation between the forward-backward
asymmetry of the angular distribution in a given
channel and the ratio of the 90 cross sections in
the other two channels. Indeed, (12) shows that the
angular distribution in the t channel is proportion-
al to (1 —z,) ""'(1+z,)~ "'"', a strong forward-
backward asymmetry in this channel therefore
means a large difference

~

c&(~) —y(~) ~, hence a
very large (or small) value for the ratio (15).
This is what happens in the pp case, since pp
elastic scattering shows a very sharp peak[which
behaves as (1 —z) '] in the forward direction, and
no peak in the backward direction (at least away
from the region where peripheral Regge peaks
may dominate). A similar phenomenon occurs in
K"p elastic scattering; hence one could expect a
rather large ratio

If' do'

dt z+& z+& dt &&„z+z

at sufficiently high energy.

which corresponds to b = -3. On the other hand,
if the Landshoff contributions" are important, one
expects still another form, namely

F(s, t, u) =.jstuj'"

and 4 = ——,'. Both of these forms will be obtained
as special cases below.

(1) Possible forms of the amplitude. One can
show' that positivity, the Froissart bound, and the
s, t, u symmetry of the ~m' amplitude imply that
the most general form of P(s, t, u) is given by

P(s, t, u) =c,+c,(s'+t'+u')

+ c,(s'+ t '+ u'), (19)

where c„c„and c, are real. One can also show"
that the amplitude has no zeros, i.e., c, =c, =0, if
its S-wave scattering length is negative. Further-
more, putting b(s = ~) = b(t = ~) = b(u =~) -=5 in (5),
we get

Q(s, t, u)-constx (-stu) " '". (20)

Combining (19) and (20), we obtain only two pos-
sible forms of the fixed-angle amplitude for a given
value of the fixed-angle power t [note also we have
o( ) =P(")=y(")]

(a) If c,e0, then

F(s, t, u) - const x (-stu)~~' (21a)

and

2h =3n(~) (21b)

(this same form is obtained when the amplitude has
no zeros).

(b) If c, = 0, c, e 0, then

F(s, t, u) - const x (s'+ t'+u')( stu)&~ " ' (22a)-

and

26=3o&(~) —2. (22b)

We note that the Landshoff amplitude" corresponds
to case (a) with o&(~) =-1, whereas the CIM am-
plitude (34) corresponds to case (a) with o&(~) =-2.

(2) Upper bound on the asympotic Pomeron tra-

plication of the dimensional-counting rules" fail:
It is easy to check that, with the values ~ =-2,
a(~) = P(~) =y(~) =-1 suggested by dimensional
counting and the CIM, ' (7) cannot lead to a com-
pletely s, t, u symmetric amplitude. In fact, an
individual (st) interchange graph for meson-meson
scattering is expected to give a contribution c/st
in the CIM', adding symmetrically the (su) and

(tu) contributions then gives

const
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j ectory. An interesting result is obtained if one
combines the relations (21b) and (22b) with the
fixed-angl. e upper bound of Kinoshita, Loeffel, and
Martin' (which can be derived from unitarity and

the Mandelstam representation)

I F(s, cosB) I & const x (lns)-,'
san-6I

(23)

This bound implies A~ 0 in (21b) and (22b). We
therefore get either n(~)~0 for case (a) or o.(~)
~ —', for case (b). In both cases, we must have n(~)

The possibility o(~) =1, sometimes expected
in theories with vector-gluon exchange, ' is there-
fore excluded in the present scheme. If one further
assumes that o.(0) =1, this result shows that the
Pomeron cannot behave as a fixed pole for t= 0.
We therefore have here an independent argument
for the necessity of including some t dependence
in the Pomeron trajectory ("shrinking"}, at les.st
for ~~ scattering, which is perhaps more direct
than Gribov's argument, "since it does not make
use of the analyticity in the angular momentum
plane. Most importantly, the present argument
deals with the behavior at large negative t, in con-
trast with Gribov's argument, which is concerned
with the behavior at small positive t.

C. Applications to meson-meson and meson-baryon scattering

The formula (7) can be used to determine the an-
gular dependence of the amplitude for given values
of n(~), P(~), y(~), and b, , consistent with the re-
quirement that o.(~)+P(~)+y(~) —2A be a positive
(or null) integer. In the following, n(~}, P(~), and

y(~) are not necessarily the true leading Regge-
pole trajectories, but the "effective"' leading tra-
jectories, i.e., the highest-lying trajectories which
effectively contribute to the fixed-angle amplitude,
and which can well be "daughters" of the leading
one (in the sense of Sec. IV) if coefficients such as
c, in (7) vanish; one can cheek that with this

&max
more general interpretation the formula (7) is still
correct. We shall consider a few examples, using
for the trajectories and ~ the values obtained in
the CIM,""although some features of the CIM are
sometimes in conflict with the DPR, as noted in
Sec. IV. The apparent inconsistency of this pro-
cedure is removed by the observation that the fol-
lowing applications do not really depend on the va-
iidity of the DPR. This is due to the circumstance
that in the CIM, the asymptotic trajectories take
negative integer values, and in this case, as stated
in Sec. III, remark (b), the formula (7) is equiva-
lent to Uematsu's relations. ' The latter are ob-
tained from a 1/s expansion in the Mandelstam
representation, and do not assume the DPR (how-
ever, the DPR may give some justification to this

procedure; see the concluding remarks in Sec. Ifi).
In a recent paper, ' Pire has derived the angular

distribution of some exclusive scattering processes
using Uematsu's relations and the values of the
trajectories abstracted from the CIM, together
with some additional physical assumptions. We
show here that the latter are unnecessary, and that
Pire's results can be obtained from the first two
ingredients only. We also refer to Pire's paper
for a comparison between the results obtained in
this way and in other models.

(l) m E' elastic scattering. In this case, the
CIM gives, using for the trajectories the notations
of Ref. 7,

We note that n(~) + P(~) + y(~) —2& =0; therefore,
applying (12). we get

F(s, t, u)- (24)

which is the result given by Uematsu' and Pire. '
However, we do not have to use the extra assump-
tion of a vanishing u-channel discontinuity ("exoti-
city"). The fact that the CIM predicts y(~) =S in
this case has the same effect, as far as the angular
dependence is concerned, as the exoticity assump-
tion (which is therefore redundant), in aeeordance
with remark (c) of Sec. III.

(2) m'p elastic scatterzng. Assuming y, invar-
iance at high energies, the spin-average differen-
tial cross section for meson-baryon elastic scat-
tering has the form"

da' g,

dt (25}

We note that n(~)+ p(~)+y(~) —24 =2. From (7)
we then obtain

1 co c~ c~B(s f u) -——'+—'+—'
u' s' st t'

where B is an invariant amplitude which has Man-
delstam analyticity. The CIM gives"

R=8 Q +p= zr Qg = —1,
where we recall that R is defined by do/dt =s sf(B)
The above values of the fermionic trajectories dif-
fer by a spin-flip factor of ~ unit [related to the
kinematical factor in (25)j from those given in Ref.
7, and agree with those suggested by Pire. ' We
deduce the values of the corresponding parameters
for the amplitude B, taking into account the kine-
matical factor in (25):

& = -4, n(~) = a~p ——,
' = -2,
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hence, by circulax permutation on s, t, u we get
the equivalent formula

1 l ao a~ a2II(s «)=—
I

—'+—'+~
~

~t'( u' su s j

Mandelstam representation by itself gives very
little infoxmation on the large-angle behavior of
the amplitude, even if the values of the fixed-angle
power and of the leading asymptotic trajectories
are given. For instance, amplitudes of the form

Since

1 1 1
t'su t's t'u

for s, t,u-~, this gives

N

)'(s, ()=p,.(-s)" ( ()-

with

O=f gf ge e e &q &e e e (g -~+P

(28)

00 1 1 Q~

t2 2 ai ts +t3 +tm 3)tu ts tu ts (28)

Since we have a(~)+P(~)+y(~) —2b, =0, we get
from (12)

I3(s, t, u}- .. . , (2V)

which agrees with Pire's result. Here again we
note the relation (r(~) =4, which replaces the ex-
oticity assumption for the s channel.

VI. CONCLUSION

The results of this paper show the usefulness of
the DPR for questions dealing with large-angle
scattering. The DPR was originally introduced
and used by Sugawara and Nambu' to discuss the
shape of the forward peak at all values of t, as-
suming that it does not shrink. %'e have extended
their analysis to the case of a shrinking peak (mov-
ing Regge pole), and to the study of the scattering
amplitude in the fixed-angle, high-energy regime;
we thus obtained the extrapolation at large mo-
mentum transfer of the Regge formula, together
with fixed-angle scaling laws, from the assump-
tion of finite asymptotic Regge trajectories. One
can note that the latter assumption is necessary if
one requires the amplitude to have Regge behavior
and to satisfy the Mandelstam representation
with a finite number of subtractions. How-
ever, as pointed out in Sec. II, the DPR is
more restrictive than the Mandelstam representa-
tion plus Regge behavior. One must stress that the

which agrees with Pire's result, but is obtained
without any extra dynamical assumption. As noted
by Pire, ' (28) and isospin invariance lead to a
unique prediction for the charge-exchange reac-
tion m"p —m n.

(3) Z'p elastic scattering The C. IM gives in this
case"

3
g p Py g+p 2y gg

We deduce, proceeding as above,

d =-4 a( ) —o( -~ —-4

obviously satisfy the Mandelstam representation,
a fized- angle scaling law with the fixed- angle powc

4, and Regge behavior in the s and t channels with
constant leading trajectories n and P, but the num-

ber N of terms in the summation above, as well as
the values of the e, (which do not need to be inte-
gers), is largely arbitrary. The DPR gives a way
to considerably reduce the nature and the number
of terms in expansions of the type (28) by relating
them to the polynomial of the zeros of the ampli-
tude. %'e note in this respect that Uematsu~. was
able to achieve a similar goal for 4 an integer,
starting from the Mandelstam representation, but
assuming that an I/s expansion is possible under
the double dispersion integrals; now this appears
to be a rather restrictive hypothesis in view of the
above example, even when & is an integer.

To better understand the restrictive nature of the
DPR, and the connection it may have with Uemat-
su's procedure, we note that an amplitude obtained
in superposing several amplitudes, which separ-
ately obey the DPR, will not in general satisfy it.
For instance, if the superposed amplitudes have
the same fixed-angle power, but are characterized
by asymptotic trajectories which differ by nonin-

teger values, the resultant amplitude will behave
like (28) at large angle (in the case of no u cut),
with & &W integer, a result clearly incompatible with
the DPR. Another possibility, which may well oc-
cur in the CIM (and explain the discrepancies be-
tween this model and the DPR discussed in Sec.
IV), is that the amplitude can be split into two (or
more) amplitudes, each satisfying the DPR with
the same fixed-angle power and asymptotic values
of the trajectories, but with distinct trajectories
at finite-momentum transfer. The resultant am-
plitude then possesses asymptotically degenerate
trajectories which contribute at fixed angle, a fea-
ture again forbidden by the DPR (see Sec. IV), but
often realized in the CIM.2 However, the form of
the angular distribution, which depends only on the
values of 4 and of the asymptotic trajectories, will
be the same in such a case as if the amplitude
would satisfy the DPR; indeed, this kind of possi-
bility could give an alternative rationale to Uemat-
su's relations, ~ which are valid more generally for
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amplitudes which can be written as a sum of a few
DPR amplitudes admitting negative-integer asymp-
totic trajectories. As another aspect of this lack
of stability of the DPR against superposition of am-
plitudes, we note that an amplitude which satisfies
the DPR and has discontinuities in the s, t, and u

channels cannot in general be decomposed into a
sum of three amplitudes, each satisfying the DPR
but having only the (st), (tu), and (us) discontin-
uities respectively —a similar fact exists in the
realm of simple Born dual models, where it is
well known that a V'irasoro amplitude" cannot in
general be split as a sum of three (st), (tu), and

(us} Veneziano terms. "
Finally, we mention that the methods used here

ean be extended in a simple way' to the case of
logarithmic Regge trajectories [which correspond
to lim, , „p(s, t) e 0] when the amplitude has no u

cut. Then one finds that the amplitude at large s, t
has the form of the right-hand side of Eq. (13},
multiplied by a factor (-s)s "', where

P(t) -pin(-t)+ const for t —-~
(this is the same factor as in the logarithmic tra-
jectoried dual model of Baker and Coon" ). At

fixed angle, we then get an exponential high-energy
behavior in (-s)' "~ ' ', where

A(0) = p ln(1 —cosg) + A(8 = 90') .
The effective fixed-angle power thus shows a cor-
related dependence in s and 8. Note that at fixed
u, we get the exponential energy dependence cor-
responding to 0 = m: This is the basic reason why
unbounded Regge trajectories are not in general
compatible with Regge behavior at fixed s, t, and
u in the framework of the DPR, as mentioned in
Sec. III. If one insists on having Regge behavior at
fixed u in this case, one must relax the DPR, and
use rather a superposition of DPR amplitudes of
the (st), (tu), and (us) type: Regge behavior at
fixed u is then implemented by the (tu) and (us)
terms (a situation closely similar to that encounter-
ed in the Veneziano model" ).

APPENDIX
%'e derive here the fixed-angle behavior in the

case where the amplitude has no u cut. Then (lb)
becomes

and (2b} becomes

6,(s) = 5, ,(s) +-t dt' p(s, t')
(A

to

From (AS) we see that Regge behavior at fixed t
implies

lim p(s, t') -=p(~, t')

=2;[5v.;,("}—5~;,(")]& (A4)

"dt' P(", t')
6,(s =")=5) (s = )+-

to
(A5)

The assumption of finite asymptotic Regge trajec-
tory in the t channel then leads to the relation

t "dt'
p(m, t')&ao . (A t)

Similarly, we have, from the asymptotic behavior
of the s-channel Regge trajectory,

"ds'
p(s' ")&"~

s S
0

(A8)

Furthermore, the hypothesis of Regge-PoEe be-
havior at fixed t is known to imply the following
constraint (which eliminates eventual lns factors
in the s dependence at fixed t):

l "ds'
, [5,(s') —5,(s' = ~)] & ~ .

s S

Hence, using (AS) and (A5)

(A9)

"ds'
D(t') -=, [p(s', t') - (p~, t')] & ~ (A10)

80

with a similar equation from the behavior at fixed
s. Comparison of (A10) with (AB) suggests the im-
portant relation

5(s = ~) -=lim 5,(s = ~)
t

"df'
=6(~(s =~)-- —, p(~, t'), (A6)

to

where we have taken the limit under the integral in
(A5); this is legitimate when" p(~, t') is bounded
as t'- ~, which is assumed to be the case here
[see (A4)]. Equation (A6) implies in particular

s
q(s, t}= exp—

"ds' 5,~(s')
S S —S

dS
D(~) -=lim D(t') =,— p(s', ~),

So
(Al 1)

"dt' 5 (t'}
expG(s, t), (Al)

(A2)
st " "ds' dt' p(s', t')

s' t' (s' —s)(t' —t)

where we used that lim„„p(~, t') =0 from (AV).
One can show' that (All) has a simple physics. l
interpretation: It means that the t-channel Regge-
pole residue has a generalized power-law behavior
at large

~
t ~, in the sense that its large t depen-

dence is given by a power, eventually multiplied
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by some logarithmic-like function.
%'e are now ready to establish the asymptotic be-

havior of G(s, t) defined in (A2). For this purpose,
we introduce

st " " ds' dt' p(s', t')
n .. . s' t' (s' —s)(t' —t) '

(A12)

where

p(s', t') =—p(s', t') —p(s', ~) —p(~, t') (A13)

and take the limit (~s~, ~t~}- under the integral
in (A12), thus getting

1 " "ds' dt'
llm G(s, t) = —

~ q
——

~ p(s, t ).
lsl ill 7T

S0 t0

(A14)

This step is justified, at least away from the cuts,
provided" the integral on the right-hand side of
(A14) effectively converges (on the cuts, oscilla-
tions may occur in the principal-part integrals,
but we assume, in the spirit of the Regge model,
that there is smooth behavior, so that the previous
limit holds also there). We therefore consider

ds' dt'

So to

and show that (All) "nearly" implies

"ds' dt'
f(~, ~) =—;—, p(s', t') (~s' t'

0

(the exact meaning of "nearly" will be clarified
below). We first observe that f(~, t) converges.
Indeed we can write, using (A10) and (All),

(A16)

' dt'
I( , t) = —,, [a(t') —n( )], (AI V)

t0

which shows also that f(~, t), if it diverges as
t-~, must do so less fast than lnt. The simplest
possibility is therefore that l(~, t) in fact converges
toward 1(~,~) as t- ~, which will be assumed here
[a similar statement holds of course for f(s, ~)].
One can show that this assumption simply elimin-
ates eventual logarithmic factors in the large-mo-
mentum-transfer dependence of the t-channel Reg-
ge-pole residue, exactly in the same way as condi-
tion (A9) ensures pure Regge-pole behavior for the
fixed-t amplitude. It is therefore physically rea-
sonable to expect that any violation of the condition
I(~,~)(~ will give rise only to logarithmic mod-
ifications of the basic fixed-angle scaling laws we
are going to derive. [Alternatively, one can ob-

tain' (A16) from the hypothesis of Regge-pole be-
havior in the u channel {or more precisely the
conditions

and

r
"ds'

[6„(s')—6„(s' =~)](~
S0

+ o(1), (A18)

where we also used (A5) and its s-channel analog.
At fixed angle, ~s

~

and ~t~ tend to infinity at the
same rate; therefore, provided the Regge trajec-
tories reach their asymptotes fast enough, we can
replace 6,(t =~) and 5,(s =~}by their limits 6(t =~)
and 5(s =~) in (A18) (again, if this condition is not
satisfied, this introduces only logarithmic modifi-
cations to the fixed-angle scaling laws).

Qn the other hand, the asymptotic behavior of
the single integrals in (Al) are well known. ' We
have for instance

+ const+ o(1) (A19)

with a similar expression for the other integral.
Combining (A19) with (A18) in (Al}, we get finally

q(s, t)
-(1/r)6(S=~)

(const X
S0

x —— 1+0 1

(A20)

The result (5) given in the text thus appears as a
particularly simple generalization of (A20).

"dt'
t, [6„(t')—6„(t'=")]( ),

t0

together with the assumption (which will also be
used below) that the s- and t-channel Regge tra-
jectories reach their asymptotes sufficiently fast;
this approach turns out to be particularly useful
in the general case where the three cuts are pres-
ent. ] From (A2), (A12), (A13), and (A14), we now

easily obtain

G(s t) ~ —f(~, oo)
1

lsl, I tl

—[6,(t = ~) —6,~(t =~)] —ln ——1 t

0

1 s—[6,(s = ~) —5, ,(s =~)]—ln ——
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