
PH YSICAL REVIE% 0 VOLUME 16, NUMBER 1 1 JULY 1977
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The angular momentum analysis of the reaction n p~n m+n p has been improved by using three-pion-

state amplitudes which both satisfy unitarity and have proper analytic structure. The integral equations for
these amplitudes and the method of solution used are discussed. The results of fitting the CERN-IHEP data
at 25 and 40 GeV/c for m p ~m m+m p are almost identical to the earlier fits; in particular, the amplitude

for the J = 1+ state still has no large phase change over the mass region where its magnitude has a
maximum {the A, bump). We do, however, point out that there are ambiguities in the fit which make the

phase determination less clear than earlier reports indicated.

I. INTRODUCTION

Interpretation of the peak at about 1200 MeV in
the three-pion mass distribution for the reaction
~ P - ~ m'~ P has been controversial ever since it
was first noted (Refs. 1, 2, 3, and earlier works
cited therein). On one hand, the peak may be
a resonance (the A, ) and, on the other hand, it
may only be a kinematic reflection of some other
process. The Deck mechanism is a favorite kine-
matical effect which has been used to try to ex-
plain the peak, but it tends to produce too broad
a bump. ' An early proposal, called the Peierls
mechanism, "' attempted to explain the peak as
due to the one-pion-exchange contribution in pm

scattering. This model was rejected when it was
pointed out by Goebel' that the one-pion-exchange
singularity is on the (unphysical) second Riemann
sheet for processes which involve production of
the p~ state.

Antipov et al.'" and earlier workers attempted
to clarify the experimental situation by ana1yzing
the data with Ascoli's isobar-model analysis pro-
gram FIT, which removes explicitly the two-pion
final-state interactions (p, e,f mesons) and de-
composes the three-pion system according to total
angular momentum and parity. For any J'~ state
in which there is a resonance, the fitting function
C (M„) was expected to have the characteristic
Breit-Wigner form (M„' —M„' —iM„F„)'. This
was indeed the case for the 3' state (6e A, res-
onance); however, the 1' state has a bump but no

phase change.
The isobar model was criticized' on the basis

that, because of the symmetrization of the identical
pions in the w &m system, the amplitudes used
did not satisfy two-body unitarity. This criticism
was answered by Ascoli and %'yld, ' who used a
E-matrix formalism to write integral equations for
amplitudes w'hich would be unitary. Reanalysis of
the data with these functions showed no major

changes, but some details were different, in par-
ticular the fits were not as good.

This unitarized E-matrix formalism was then
criticized"" as having introduced the faults of
the Peierls model in that the one-pion-exchange
singularity had been brought up to the physical
sheet, i.e., that the amplitudes did not have the
correct analyticity properties. Several sugges-
tions for generating appropriate amplitudes have
been proposed, but the procedure is not unique,
and numerical results are just beginning to become
available. ""

%e have picked one possible procedure which
should generate unitary and analytic amplitudes,
namely relativistic Faddeev equations similar to
those of Mennessier, Pasquier, and Pasquier"
and Aaron Amado and Young xs In Sec. II these
equations are given and the ambiguous arbitrary
two-body input functions used are specified. In
Sec. III the numerical procedures used to solve
the equations are described and the general fea-
tures of the solution are presented. The data of
Ref. 1 were reanalyzed using these new fitting
functions and the results are given in Sec. IV.

II. THE FADDEEV EQUATION

As discussed briefly in the Introduction, the
Heitler equation or K-matrix equation used in
Ref. 3 (hereafter called AW) was not a success.
The functions generated, although suitably uni-
tary, contained spurious first- sheet singularities.
This difficulty is eliminated by using the full Fad-
deev equation. The solutions of this three-body
Schr5dinger equation are guaranteed to have cor-
rect analyticity properties.

%e shall forego a full-scale derivation of the
Faddeev equation from first principles, instead
merely indicating how the K-matrix equation used
in AW can be "promoted" to a corresponding Fad-
deev equation. The essential difference between a
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Faddeev equation and the corresponding K-matrix
equation is that the Schr5dinger Green's function

(d3 = PRE +P1 +P2 + 2P1P2COS~12 ~ (2.5}

= p +iw6(W —E)
1 1

(2.1)

in the Faddeev equation is replaced by its imagin-
ary part iw6(W —E) to obtain the Z-matrix equa-
tion. We shall reverse this process, starting with
the E-matrix equation [AW, Eq. (2.25)]

S~~'(s, ) = 6.,6t, (s,)
1

+ ie "~sin6, d(cosy, ,) X„(1,2)
~l

&& S~SJ f(& ) (2.2)

s, = ~(W'+ 3m, ' —s,) + 2P,q, cosy, , (2.3)

W = (p,'+ s,)'~'+ (p,'+ m, ')'~'

= (d1 + (d2 + (03 y (2.4)

This equation has already been simplified as much
as possible. The notation is defined in the Appen-
dix of AW and, in particular, we shall need the
kinematic relations

The replacement of the imaginary part of (2.1)
by the full Green's function is not a uniquely de-
fined process because the invariant mass of the
two-body system (e.g., Ws, ) and the momentum of
the third particle (e.g., p,) are now independent
variables which together determine the value of
8', rather than being related by the condition that
W' have the fixed value E. In particular we could
have introduced a Green's function proportional to
2W/[W'- (E+ is)'] as was done in Ref. 17. How-
ever, we shall use the simpler choice and in Eq.
(2.2) make the replacement

i = i dW6(W- E)-— dW . . (2.6)
1 1

We must also replace the single variable s, in the
function S~~'(s, ) by the two variables s, and p, or,
equivalently, by q, =(s,/4- m, ')'I' and p, .

With these substitutions in E|I. (2.2) we find a
double integral over W and cosx, . Changing vari-
ables with the aid of (2.3)-(2.5), we obtain in
place of (2.2)

(2.V)

The q, dependence is removed from S~~'(P„q,}
by the ansatz

S."'(p„q,) = I'w (qg)&w (&i)W."'(p,),
which would be appropriate to a separable two-
body interaction. Here o, is a function of p, (see
below} and all of the q, dependence is described
by the functions

(2.8)

(2.9)

which contain a threshold factor and a form factor
for the iwo-body resonance of spin S (the notation
is adequate since there is only one resonance for
each spin S=0, 1,2). We used

(2.10)

8w&(r
Vs'(q)Ts(o) = e "w sm6, , (2.11)

and o is the on-sheQ s obtained by setting W =E
in (2.4) and solving for s:

This is flat in the resonance region (q~ =0.360 GeV
for the p) and provides a cutoff for ~q» 1 GeV for
both real and pure imaginary q. The factor ww(o)

is the propagator for the two-body resonance. It
is defined by the on-shell condition

c=E —2Em+m, . (2.12)

In the on-shell Eq. (2.11}q = (o/4- m, '}' '. We
used the same Breit-Wigner resonance formulas
as AW (see Table I of AW}

M~X'
M' —o —iM I'' (2.13)

(
0)'~" M„ (2.14)

Substituting (2.9), (2.13), (2.14) into (2.11) we find

(2.15)

l.e.y

q '"& (q')'
'(P') =

8 M *r8
In (2.1V) q is a function of P, as specified in the
next paragraph.

With the substitutions (2.8) and (2.16), the Fad-
deev equation (2.V) becomes

(2.1'?)

A substitution similar to (2.8) is made for the in-
homogeneous term 6t, of (2.7):

S
I' (q, )& (,)x (p,)=&=M . ' '.I r, (2.16)S 1 S 1 4 1 ~ 2 g @g



R. L. SCHULT AND H. %. %YLD, JR. 16

(2.18)

In this equation v, (o,) is calculated from (2.15)
using c, =E' —2E&o, +m, ', (d, =(P,'+m, ')'I', and
the q's in (2.15}are evaluated at q = (o,/4 —m,')'I'.
The inhomogeneous term X,(p, ) is calculated from
(2.IV) and the q's in that formula are given by q
=(o /4 —m ')'~2 c =E' —2E(d +m ' (d =(P '
+ m,')'I'. On the other hand, the factors V,(q,),
V,(q,) are functions of P, and cose» since they are
calculated off the mass shell: q, =(s,/4 —m, ')' ',
s, =W' —2W&o, +m, ', q, =(s,/4 —m ')' ' s, =W'
—2W&o, +m, ', with W and v, given by (2.4), (2.5).
All this constitutes, of course, an interpretation
of hom one should go off the mass shell. Using
v(a, ) with c, calculated from E appears to us con-
sistent with the choice of an energy denominator
O'- E —i& for the three-body problem during those
periods when two particles are interacting to form
a Breit-signer resonance and the third particle is
a, spectator.

There is a minor technical difficulty mith the
resonance form expressed by (2.13}and (2.14).
Since the variable p, runs from 0 to +, the func-
tion rz(a, ) is needed for values of o, from -~ to
o ~ =(E—m, )'. Thus the form given in Eq. (2.15),
which is reasonable for physical values of a, needs
to be modified to avoid several unpleasant features.
The first of these is the singular factor I/v o in
the function I'. We chose to replace this by 1/2m,
for o &4m, '. However, for large negative o, the
resulting function F grows as ()('-o)' " so, for
8=1, this overtakes the linear term m~' —o' and'

has the sign to produce a pole in v (o) at o =-2.2
GeV'. To avoid this we also chose to change the
sign of I" for o'& 4m, 2 for 8 =1 only. Although this
procedure could certainly be criticized as not
analytic, the resulting function v' is small in this
region, and we believe our results are insensitive
to the details of v in this region. An alternative
analytic form using an effective-range formula
similar to that of Chem and Mandelstam" could be
used. In this modification the resonance denomin-
ator m„' —o —&n„I' is replaced by

z — &z z
m„+2@„m 2q+~o '

(2.19)

which has none of the above unpleasant features
and is compared with our choice in Fig. 1. The
differences appear to be minor. Ne did not use
this form because it differs slightly in the physical
region from the form used in the original fitting of
Refs. 1 and 2.

0.8 —MOD~FIED BRE ~&-SIGNER
REAL
lMAG INARY

EFFECTIVE RANGF
~0 (o-} 0 4 REAL

8m
I MAG INAR

/
/

'
ll

~ 2

0.0
-0.8 -0.4 0.0

-0.4
0.8

S-NAVE (S = 0}

0&—

-0.8 -0.4

-0.4
P-NAVE (S = l

FIG. 1. Comparison of two forms for the two-pion
propagator functions, v&{g), as functions of the two-
pion invariant-mass squared, 0. . The real (imaginary)
parts of the Breit-Wigner form which we used [Kq.
{2.15) and {2.14) modified as described in the paragraph
preceeding Eq. {2.19)] are shown by the solid curve
{dashed curve). The real {imaginary) part of the effec-
tive-range form [Eq. {2.19)] is shown by the dash-dotted
curve {dotted curve). The upper {lower) graphs corre-
pond to spin zero {one) in the two-pion system.

III. SOLUTION OF THE FADDEEV EQUATION

In this section we discuss the method we used to
solve the Faddeev equation (2.18). In order to
avoid the singularities in this equation many auth-
ors have employed a method involving rotation of
the p, integration contour into the complex
plane. ' '"'" W'e have used a more straightforward
method, which stays with real variables p„p, and

attacks the singularities directly. This turned out
to be much less difficult and to take less computer
time than we thought it would when we started. W'e
want to describe this method in sufficient detail so
that others might use it, since the method obvi-
ously has an applicability broader than the particu-
lar problem we solved with it.

The singularities in Eq. (2.18) arise from the
pole (W- E —ie) ', which, after integration over
cos8„(at fixed P, and P,), leads to logarithmic
singularities at the edges of the Dalitz plot. Re-
ferring to (2.4), (2.5) we see that the physical re-



i6 REANALYSIS OF THREE-PION PRODUCTION DATA WITH. . .

gion (the interior of the Dalitz plot) is given by

E m

where

(p 2+ m 2)1/2+ (p 2+ m 2)1/2

+ [(p,+p, )'+ m, ']'/',

W „=(p,'+m, ')' ~+,(p,'+m, '}' '

+ [ (p, p,}'+m,~]'/' .

(3.1)

(3.2)

p2o =&&+6(E- (dx)/vox i (3.3)

Betting 8' =E or W' „=Eto find the edges of the
Dalitz plot, w'e obtain for the upper or lower
boundaries P»„, P,~, at given P, the formulas

p„,= ~lp, q,-(E- ~,)H~, ~,

where o, =E' —2E(d, + m, ', q, = (o, /4 —m, ')'/', (d,

=(P,'+m, ')'/'. For q, real, a, ~4m, '. Thus the
Dalitz plot lies inside the square region defined

by

(3 4)

(d, «dn, (((, «on, &un = (E'- Sm,')/2E . (3 5)

It is convenient to explicitly separate off the
singularities in the kernel of (2.18), leaving an in-
tegral of a smooth function to be done by Gaussian
quadrature. To this end we add and substract a
term in the numerator of the integration over
cos8». The Faddeev equation (2.18) can be written
in the form

&:"(e) & gx, i=(9.(+$f, 4" ~.,(('.,(',w""(p.),

where the kernel K „(p„p,) is given by

r„(a,}p~ ' dcos8» 3'~(1,2)V, (q, )V~(q, )

(3 6)

(S.I}

This kernel can be expressed as the sum of three terms:

Kgb(plop/) ~ Kyoto (p&&pe) + K,'&'(pgyp2) + K~ (pyyp2) (3.8)

The term K&'(p„p,}is the contribution from the 5-function term when we substitute (2.1}for the energy

denominator in (S.V} and use dcos8» = (v, /pp, )dW from (2.4), (2.5):

I/', (q, )Vq(q~)K, ~(1,2}, W „(E&W ~
Koi(P P )

I 0, otherwise .
(3.9)

Here the barred variables in V„V„and 3:~ indicate that cos8g2 has the value cosa» such that O'=E and

that other variables which depend on cos8„are evaluated accordingly. If only the contribution K ~&"(p„p,)
is kept, the calculations in the present work reduce to those in AW, albeit done in a somewhat different

way.
To eliminate the principal-value integral in the remainder of (3.7) we add and subtract a term, so as to

cancel the pole:

r o p' ' dcos8
K~"(p„p2) = Sy'

' "& [3:g, (1,2)I',(q,)I',(qg) -3:,5(1,2)I',(q, )I/, (qg)],8g co2, (o
(3.10)

(S.ll)

For 8' „~E» W ~ the subtraction point which de-
fines the barred variables is %'=E, the same as
used in (3.9}. For W „&E we use a subtraction
point 8'= 8' „and for 8' ~&E, %'=S' . With
this choice K ~" is a continuous function, and K~"
contains the logarithmic sh~ularities at S' ~ =E
and S' ~ =E. Study of the geometry yields the
values given in Table I for the angles which enter
the crossing matrix X~(1,2 }for the cases W „

p& &2p2

P2 ~2P~
1
a P2 ~P

&
~ 2P~

cosa&2 ——-1
COSXl = ig

COSX] = —1,
Cosx1 = —1,
cos8(2 = 1

COSQ) = 1,

Cos)(2 = —1

COSQ2 = 1

COS)Q = —1

cosy~ = 1

TABLE I. Angles in crossing matrix at subtraction
points for Eqs. (3.9)-(3.11).
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8- S, L= Ol —Ol

0

I

S,L = Ol —IO-
%'e chose a, =0.2„n,=1.0. The shape of the
Dalitz plot in terms of these variables is shown
in Fig. 3 for E =1.14 GeV.

The integral equation to be solved is thus of the
form

CU
CL

CL

O

b

I

CU

CO

S,L = IO-Ol
1

S,L = IO —IO

0.08 0 28 048
pl (GeV)

O.IS 0.38
pl (GeV)

0.58

FIG. 2. The kernel of Eq. (3.6). The quantities
plotted are [8x /7 &

(0.2)] K ~ (p &,p2) as functions of
p &

at fixed p2= 0.300 GeV, E=1.05 GeV for the two
coupled J+=1' channels 1'p(ex), 1' $'(p71). The dotted,
dashed, and solid curves give, respectively, K~ ~~,

2~, K [see Eqs. (3.8)-(3.11)].

&E and 8' &E.
It is easy enough to evaluate K~(P„P,) numeri-

cally. For K,",'(P„P,) we used 12-point Gaussian
quadrature. The logarithmic singularity in

g,"~'(p„p,) is explicit. We present in Fig. 2 plots
of the three quantities [8v'/r, (o,)] K~'(p„p, ), i
=1,2, 3, as functions of p, at a fixed P, =0.300
GeV, E=1.05 GeV for the two coupled J~=1' chan-
nels 1'P(e v), I'8(px). The logarithmic singulari-
ties at the edges of the Dalitz plot are evident.
For those states with the final S,=1, threshold
factors q, + suppress the logarithmic singularities
at the upper edge of the Dalitz plot for the particu-
lar P, chosen. Some impression can be formed
from the graphs of the relative size of the three
components. Recall that the E-matrix calculation
of AW is duplicated by keeping only K ~', which
vanishes outside the Dalitz plot.

In order to eliminate the square-root singular-
ities at the upper limits of the Dalitz plot at

1

f(x) =g(x) + dx'K(x, x')f(x'), (3.15)

where the kernel K(x, x') has logarithmic singular-
ities at the edges of a Dalitz plot such as indicated
in Fig. 3. For a multichannel problem f and g are
vectors and E is a matrix; we suppress this neces-
sary but irrelevant complication for the moment.
Although the kernel K(x, x') has singularities, the
solution f(x) of the integral equation (3.15) is a
smooth function except at x =0, where it is con-
tinuous. It is quite adequately represented by its
values on an evenly spaced grid of points. In prac-
tice we used 25 evenly spaced points in the region
-1»x~ 0 and 12 evenly spaced points in the region
0~ x~ 1. Some adjustments were made to avoid
the special values x =0, +1. Since the kernel
K(x, x ) contains singularities, the integral in

(3.15) must be done carefully, especially near the
singular points. Thus we use many more than 25
+12 points to do the integral in (3.15), and to ac-
complish this we had to interpolate f(x) between
the points on which it is defined. Suppose the val-
ues of f(x) on the 25+12 points x, are f, :

fg =f(x;) . (3.16)
Then with suitable interpolation functions p, (x) we
take as approximation to f(x)

f(x) =QfP((x) . (3.1V)

0

-0.2

Xp

Vfe used a standard interpolation scheme: For a
given x find the three nearest x,- and use quadratic
interpolation between the three corresponding val-
ues f; It is impor. tant to note that with this defini-
tion P;(x) is a rather curious discontinuous function:

P =Pc = ((un' —m, ')'~', (3.12)
-0.6

where u&~ is given by (3.5), we made a change of
variable,

-0.8

0~p~p~, -1~x~0, p pn 1—
1

(3.13)

Q2x
p~ p ~ 0 x 1, p —p~ 1+

1 . (314)

—I.O -0.8 -0.6 -0.4 -0.2 0
XI

FIG. 3. The boundaries of the Dalitz plot in terms of
the variables x&, x2 for E=1.14 GeV, @&=0.2 [see Eq.
(3.13)].
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30, x&x] —~4

1 x xj x x) 3 1+2 + 1 p xg p++x+xf 2+

x ~ xg 2
1 1p((x)=( 1 —(, xq ——6&x&xq+ —6 (3.17)

' —2 ' —1 x, + ~h, &x&x.+-',b,

0, x&x]+ ~h, ,

where 4=x, -x, , is the spacing for the x grid.
There are further complications near the ends of
the interval. If the program is properly construct-
ed one can avoid thinking very much about these
discontinuous functions, but it is important to note
their existence for the subsequent integration.

Substituting (3.1'I) into (3.15) we find

(3.18)

where A, &
is given by

1

A, q
= dx'K(x), x') pq(x') .

~1
(3.19)

For the x' integration we used a large number of
Gaussian-quadrature points so as to get a good
approximation to the integrals over the singular
kernel X(x,x'). Now it is well known that Gaussian
quadrature loses its tremendous power if one in-
tegrates across discontinuities. Theref ore, to
avoid the discontinuities in P~(x ) in the integral
(3.19) we used Gaussian quadrature on intervals
with end points midway between the x„namely
x, —&/2 to x, +4/2. For each such interval we
used 12-point Gaussian quadrature.

For the special intervals which straddled the
edges of the Dalitz plot and which contain the log-
arithmic singularities in Z(x, x') we put in more
points. For each x, in (3.19) the program locates
the x& such that an edge x~ of the Dalitz plot lies
between x&- 4/2 and x&+d/2. We then used 24-
point (ordinary, not logarithmic) Gaussian quad-
rature for the interval x&- b /2 to xn and a separ-
ate 24-point Gaussian quadrature for the interval
xn to x&+&/2. In this way the 37&&3V matrixA,

&

of (3.19) is calculated with (25+13 —2) x 12+4 x 24
=528 points for the x' integration.

The rest of the solution of the integral equation
(3.15) involves just the standard inversion of the
matrix (6&& —A&&) which appears in (3.18). The
numbers of integration points mentioned in the
description above seemed adequate to give good
numerical accuracy. Doubling the number of in-
tegration points produced no significant changes
in the answers.

S,L = Ol —Ol S,L = Ol —IO

4-

S, L = lO-Ol S, L = IO —lO

2P

-2--

FIG. 4. The real parts of 8w g ~ ~ and Sx X& as
functions of the dipion kinetic energy T« =v s&-2m~ at
E=1.18 GeV for the two coupled =1 channels 1 P(em),
1'S(pm'). The solid curves give the solutions Sm~W~~~ of
Eq. (3.6); the dotted curves give the inhomogeneous
terms 871 2X;. The dashed curvey give the solutions
Sx2W,~~ when the contributions K ~ and K 3 in
(3.8) are dropped; this is equivalent to the Jj'-matrix
calculation of Ref. 3.

In order to carry out the fitting procedure de-
scribed in Sec. IV we have solved the equations
described above for the coupled channels J~L(S)
= 0 S(cw) and 0 P(pw) and also for the coupled chan-
nels 1'P(cw) and 1"S(pw) at energies E =0.86 Geg to
1.50 GeV in steps of 0.04 GeV. This required some
23 hours of computer time on a PDP-10 with a
KA10 processor, which has a computing speed ap-
proximately & that of a CDC 6600.

In Figs. 4 and 5 we present some results from
the computer calculation at one energy E =1.18
GeV, for the coupled channels 1'P(ew), 1'S(pw).
Figure 4 gives real parts, Fig. 5 imaginary parts.
The four graphs in each figure give the coupling of
each channel to itself and to its partner. Three
calculations are compared on the graphs; the
solid curves are the results from the calculation
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described in this paper, the dotted curves are the
inhomogeneous terms X, [see Eq. (3.6)] (these
real functions vanish for the off-diagonal ele-
ments), the dashed curves give the results from
the E-matrix calculations of A%', equivalent to
dropping K"' and K"' in (3.8). The curves are
plotted vs the variable vs, =(Z —2Z&u, +m,')'~',
and only the physical region, m, & ru, & u&n [see Eq.
(3.5)] is shown. This is the part actually used in
the fitting to be described in Sec. IV. In the un-
physical region P &P~ the solutions fall off with in-
creasing P in a way which depends somewhat on
the cutoff procedure [see Eq. (2.10)].

The most noteworthy feature of Figs. 4 and 5 is
that the full Faddeev calculation described in this
paper yields answers much closer to the inhomo-
geneous term than does the E-matrix calculation
of A%'. This is particularly so in the resonance
region vs, -O.V8 GeV, and we note that this por-
tion of our solutions will be strongly enhanced
when they are multiplied by the Breit-signer
forms describing the p and s resonances [see Eq.
(2.8) and Fig. 1].

Thus it appears that the E-matrix calculation of
A%' produces spurious large effects, as explained
by several authors, ""and that in the solution of
the full Faddeev equations the rescattering cor-
rections are much smaller. To the extent that
these rescattering effects are small we may expect
a fitting analysis based on our functions S'~~' to

SL = 0!—Ql -- SL = Ol —IQ

yield results similar to those obtained by using
just the inhomogeneous terms X;, as effectively
done in the original analyses using the Ascoli pro-
gram." The graphs in Figs. 4 and 5 indicate that
the effects we have calculated are not completely
negligible, so their influence on the fits has to be
checked.

As a final point, before going on to a discussion
of these fits, we consider the possibility that the
forces incorporated in our Faddeev equation are
strong enough to generate or strongly modify three-
pion resonances. Ne considered two facets of this
question. First, in the course of solving Eq. (3.18)
we evaluated the determinant of the matrix (8,&

—A, z). For the J'~ =1' state this has a small imag-
inary part ~0.06 and the real part varies smoothly
in the range 0.94 to 1.00 as E varies from 0.86 GeV
to 1.50 GeV. There is no hint of resonant behavior
in the 1' state. (One would expect the determinant
to vanish at a resonance position in the complex
plane and to vary rapidly as one moves along the
real axis past the resonance pole. )

On the other hand, suppose an A, resonance is
produced by some mechanism other than the pion-
exchange forces considered in this paper, e.g. ,
colored-gluon exchange between quarks. The pion-
exchange processes considered here would still
occur and might conceivably strongly change the
character of the resonance, e.g. , suppress the
phase variation associated with a Breit-signer
formula. %'e could suppose, for example, that
gluon-exchange forces lead to a "bare" resonance
described by a Breit-%igner formula

1
E~ —E- iT' (3.20)

x -2I

E
6I- S,L = IO —OI S, L = IO —IO

Then self-energy bubbles of the sort indicated in

Fig, 6 would lead to a self-energy correction which
would change (3.20) to

1z„z fr z(z) (3.21)

For a coupled chan-nel problem Z(Z) has the form

(3.22)
I

E-5m 0
T = Js( ZITl

FIG. 5. The imaginary parts of S~ W,~+~ and Sx2X&

as functions of the dipion kinetic energy T~=v s] —2m,
at E 1.18 GeV for the two coupled J~ = 1' channels
1 P(ex), 1 8 (pm). The solid curves give the solutions
8~28'~~+~ of Eq. (3.6); the dotted curves give the inhomo-
geneous terms Sx2X&. The dashed curves give the solu-
tions Sx 8'~~~ when the cogtributions K 2~ and K

in (3.8) are dropped; this is equivalent to the K-matrix
calculation of Ref. 3.

where the y, are couplings of the bare A., to the
two chaxmels 1'S(pv), 1 P(ev), and Z,~(Z) is a
matrix given as an integral over the solution
W, ~'(p, ) of the integral equation (2.18):

C(p) =[1+(p&4p,)'7 '. (3.24)

(3.23)

Here C(p, ) is a cutoff function, which we chose
quite arbitrarily to have the form
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FIG. 9. The 0 I'(p&) vs 0 S(c~) relative phase angle obtained in fits to the Serpukhov data (Befs. 1 and 2). The solid
points correspond to the rightmost peaks in Figs. 8(a) and S(b), the hollow points to the leftmost peaks in Figs. 8(a) and
8(b). Comparison of (a) the unitarized, analytic fits of the present work with (b) the nonunitary fits of Ref. 3.
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FIG. i0. The i'S{p~) phase relative to 2 P(pg),
i'P(e7r), and 0"$(&~) obtained in fits to the Serpukhov
data (Refs. 1 and 2). The solid points correspond to the
rightmost peaks in Figs. 8(a) and 8(b), the hollow points
to the leftmost peaks in Figs. 8(a) and 8(b). Comparison
of (a) the unitarized, analytic fits of the present work
with (b) the nonunitary fits of Ref. 3.

amounts to keeping only the term fKI"(p„p,}on
the right-hand side of (3.8). This seemed to be a
step backward in some respects since the fits were
now significantly worse, as measured by X'. How-

ever, the conclusion about the lack of phase varia-
tion for the A, state seemed to remain.

Recently the lack of success of the E-matrix
formalism has been criticized and explained as due
to the generation of spurious first-sheet singular-
ities."" In order to answer this second level of
criticism, we have solved the full Faddeev equa-
tions, as described in Secs. II and III. In this sec-
tion we discuss our results when we used these
new, properly unitary and analytic, functions in
Ascoli's program FIT.

In AW a large number of coupled states was kept
in the calculation (see Table II of AW). In the
present work we solved the coupled Faddeev equa-
tions for the 0 S( )w,w0 P(pw) states and the coupled
equations for the I'P(ew} and I'S(pw) states. For
the 2 P(pw) and 2'D(pw) states we used just the in-
homogeneous terms of the integral equations.
Thus the initial states are the same as in A%, but
we drop all effects due to the f meson, neglect re-
seat'tering effects for 2 and 2' states, and neglect
the coupling to the I'D(pw) state. Some auxiliary
checking indicated that the inclusion of this latter
coupling in the integral equations had a negligible
effect on the I'S(pw), I'P(ew') coupled states and
that rescattering makes little change in the 2
and 2' states. %'e made the same assumptions
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FIG. 11. The number of events per 0.05 GeV for the 0

states as obtained in fits to the Serpukhov data (Refs. 1

and 2). The notation is the same as in Figs. 9 and 10.

about isospin as AW. Finally, the CERN-IHEP
data'" fit was the same as used in AW.

The fits with the new functions are much better
than those obtained in A%. They are still not
quite as good as the original fits obtained with
just the inhomogeneous terms of the integral equa-
tions. ~ The X' differences between the present
unitary, analytic fits and the original nonunitarized
fits are ~40 as compared to differences ranging
up to almost 500 for the unitarized vs nonunitarized
fits (see Fig. 'I of AW). These differences of -40
could presumably be reduced further by keeping
more states in the coupled equations. %'e feel
that the unphysical features of the unitarized func-
tions have been eliminated in the new solutions of
the i'addeev equations. However, it does seem
noteworthy that despite all the effort to date we
have not succeeded in doing better than was ob-
tained with the simple isobar functions which form
the inhomogeneous terms of our integral equations.
The moral for future fitters would seem to be that
it is not worth the effort to try to do better than
the isobar model.

Since the main issue of physical interest would
seem to be the phase change or lack thereof for the
A, state, we shaQ confine the discussion of our

400-

400—!

0
-400 '

y y

I S/ I+ P Interference
I I I I I

I.O I. I l, 2 I.3 l.4 0.9
(GeV)

((j )

I+S / I+ P Inter ference
I I j I I

I.o I. I 1.2 l.3 1,4 I.5
Mp (GeV)

(b)

FIG. 12. The number of events per 0.05 GeV for the 1

states as obtained in fits to the Serpukhov data {gefs. 1

and 2). The notation is the same as in Figs. 9 and 10.

new fits to that point.
The first thing one finds when making a large

number of fits is that there is an ambiguity in the
0 P(pw) vs 0 S(aw) phase angle, i.e., the likelihood
obtained by the fitting program is a double-humped
function of this angle, the two peaks differing in
likelihood by s10 units. An example of this is pro-
vided in Fig. 8, where we show plots of the likeli-
hood vs this phase angle for the bin 1.10 QeV&M„
& 1.15 GeV. In this figure and those that follow
the results obtained with the new unitary, analytic
(UA) solutions of the Faddeevequationare compared
with results obtained with the nonunitary (NU) in-
homogeneous terms in the integral equations (the
isobar model). In Fig. 9 we show plots of the two
solutions for this phase angle as a function of 3m

mass. For some 3m-mass bins there is a double-
humped distribution and hence two solutions; for
some bins there is a single-humped distribution
and hence only one solution. At the higher 3~
masses the solution seems to be unique. In most
former reports on fits a principle of continuity
has been invoked to pick out the upper branch in
Fig. 9(b), i.e. , other quantities, e.g. , other phase
angles, quoted are those corresponding to the local
maximum associated with the upper branch of Fig.
9(b). For the bins (0.95-1.00) GeV, (1.00-l. .05)
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TABLE II. The results of the unitary, analytic {UA) fits compared to the nonunitary (NU) fits. Some of this informa-
tion was presented in Figs. 9-12. The incomplete columns to the left in the table correspond to the lower branches
{with hollow points) in Fig. 9, i.e., the leftmost peaks in Fig. 8. The data fitted was from the 25 and 40-GeV/c joint
CERN-IHEP Serpukhov experiment {Refs. 1, 2).

Bin
Mg~(GeV) UA NU

0.90-0.95
0.95-1 .00
1 .00-1.05
1 .05-1.10
1.10-1.15
1 .15-1.20
1.20-1.25
1.25-1.30
1.30-1.35
1.35-f .40
1.40-1.45

123+37
f75436
177 +39

285+53
242+ 54

357 + 81
542+ 85
372 +91
476 +97
504 +99
581 + 110
758 + 106
796+100

465+72
379 ~72

0 S(eg) events

2 f 6+ 54 187+44
281 + 59 272+49

350 + 61

172 + 64
251 +62
351 +65
360 +78
504 + 82
407+ 85
481 + 87
528 +95
660 + 105
783 + 103
790+92

33+31
82+38

185 +45

266 + 52
208+ 52

26+ if
83+31
63 +22
72+24

110+31
156 +33
152 +32
205 +37

240 + 49
204 + 51

&(pm) events

19+ f6 12 +20
35+22 91+32

172 +42

31+21
73+31
45 +20
34+ 16

162+ 51
84+28

121+37
146 +40
142 +31
124 +28
195+37

o &/0 & interference events 0 P vs 0 S phase (deg)

0.90-0.95
0.95-1.00
1 .00-1.05
1.05-1.10
1.10-1.15
1.15-1.20
1.20-1.25
1.25-1.30
1.30-1.35
1.35-1.40
1.40-1.45

27+ 17
63+ 17
84+ 17

87+ f3
62+ 11

-42 +26
4+ 28

6+ 17
-5+ 14

0+9
-11+8
-7+6

6+5
-1 +4

-15+4

-12 +11
-40 +8
-56+ 10

73+12
48+12

14 +7
38+8
35+8
31+9
79+ 15
50+ 12
66+13
68+ 13
43+13
43+12
58+12

112+ 23
128+ 19
133+12

135+9
157+9

3ff +23
258 + 24

246 + 23
254+ 10
245+12
255 + 10
244 +8
216+8
217 +7
227 +6

112~20
122 +9
133+7

141 +6
f 56+7

321 +20
285 + 11
285 + 14
279 +16
270+7
269+ 10
277 ~8
261 +8
233+ 8
234+ 8
238+6

f'S(pn) events f'P {ex) events

0.90-0.95
0.95-1.00
1.00-1.05
1.05-1.10
1.10-1.15
1.15-1.20
1.20-1.25
1.25- 1.30
1.30-1.35
1.35-1 .40
1.40-1.45

422+ 52
1379+ 94
1907+ 100

3105+ 111
3525 + 114

393 +57
1123+99

2724 + 123
2880 + 137
3396+ 129
3579 + 130
3184+ f24
2450+ f 13
1546 +94
879+80

407+111
1699+145
1881 + 155

2713+135
3108+135

590 + 93
f 163+146
1869+149
2643+ 146
2495 + 146
3039+136
3151+ 1.33
2658 + 124
1889+ 107
1076+86
507+ 64

174+ 107
14+18

230+76

330+ 59
290 + 52

119~45
143+74

272+55
364+ 58
348+55
353+54
523 +65
562 +73
6f3 +73
616+72

210~ff7
79+21

250 + 59

531+54
491 +50

44+ 31
158 +57
220+ 50
309 +45
432 + 57
420 + 55
434+ 56
563 +63
657+70
731+71
753 +70

f'S/f'P interference events f'S vs f'P phase (deg)

0.90-0.95
0.95-1 .00
1.00-1.05
1.05-1.10
1.10-1.15
1.15-1.20
1.20-1.25
1.25-1.30
1.30 1.35
1.35-1.40
1.40-1.45

233+80
153+70
309 + 54

169+47
185+41

301+43
278 +57

391+49
352 +40
315+32
244+ 26
210+19
f f0+ 14

55 +9
f 5+5

211 +42
-237 +123

259+ 103

356 +87
361 + 85

147+69
157 +95
407 + 82
405 + 83
536 ~77
542+71
517+68
629 +59
537+51
431+39
239 + 34

56+24
33+35

-66+5

-78+3
72+4

-24+16
59+ 10

-60+4
-62+3
-60+3
-62 +3
-62+3
-69+3
-72+ 3
-82 +4

59+8
f28+15
-SS+7

-9S+4
-99+4

-50~ f7
-83+9
-74+ 6
-87+5
-84 +4
-86+4
-89 +4
-81+4
-82+4
-80+4
-89+5
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Bfn
~„(oeV)

rABZ. E D. (C0 tinued)

NU

f'S vs 0 S phase (deg) 1'S vs 2 P phase (deg)

0.90-0.95
0.95-1.00
1.00-1.05
1.05-1.10
1.10-1.15
1.15-1.20
1.20-1.25
1.25-1.30
1.30-1.35
i.35-1.40
1.40-1 .45

-21f +14
-188+ 11
-183+9

-181+7
-f62+7

f23+ 13
-152+10

-134+5
-140+5
-130+4
-130+4
-125+4
—123 +3

126+3
-124+4

198+16
186+6

-176+5

-177 +5
-164+5

-122+ 15
-150+9
-130+ 6
-131+5
-142+6
-128+4
-128+4
—124 +4

121 ~4
-124 +4
-126+5

-9+10
21+6

7+9
16+7
27+ 5
36 +4
4I +4
36 +6
37 +7
22+10

44~27 18+19
53+ 17 -20+ 21

-42+ 14

15+22
-32 +21

3+ 1.0
30+6

37 ~19
10+ l9
23 +12
21+9
29+7
38+ 5
45+4
50 +4
43 +7
43 +8
26+11

2'D vs 1'S phase (deg) 2 D vs 1'P phase (deg)

0.90-0.95
0.95-1.00
1.00-1.05
1.05-1.10
1.10-1.15
1.15-1.20
1.20-1.25
1.25-1.30
1.30-1.35
1.35-1.40
1.40-1.45

65+ 67
70+42
30+50

-31+6
31+5

-2 +18
-34+ 5

32 ~5
-3f +3
-14+2

23 +3
46+4
60+7

33+57
56 y44
19+57

-42 +6
39+5

-28 + 57
4+75

41~1S
-14+18
-45+5
-41 +5
-39+3
-22 +3

16+3
37+4
54~7

9~65
37 +50
36+49

109+7
-104 +6

-27,+ 62
-38+70

62 ~18
-96+6
-93+5
-93+4
-76+3

46+3
-27 +5

22+4

-27+ 56
-72 +47
-69+58

140+7
-138+6

78~ 57
-79 +76

-f15+19
-10f +19
—129+7
-127 +6
-128 + 5

102+4
66+4
42+5
35+7

2 P(pn') events 2'D(pn) events

0.90-0.95
0.95-1.00
1.00-1.05
1.05-1.10
1.10-1.15
1.15-1.20
1.20-1.25
1.25-1.30
1,30-1.35
1.35-1.40
1.40-1.45

114+39
144 +47
208 + 52

488 +79
745+ 84

123 +42
145+50

216+67
501 +Sf
747 ~84
635 ~87
805 ~ 89
824 +88
650 +78
672+71

f14+38
145 ~49
242 +55

490 +80
755+ S3

132+43
169+51
175+ 61
218+ 68
509 + 83
711+84
591+90
757 ~90
777 + 89
605+ 79
637+72

33+18
16 ~17
33 +26

208+41
303 +40

33+ 18
18+16

30+1S
16+18
35+27

f 57+32
219+39 213+41
306+40 306 +40
606 +53

1491+68
2064+72
1019+57
521 +46

33+ 19
20+17
31 +28

145+32
2f5+41
291 +41
590 + 53

1468 + 69
2048 +73
1002 + 57
515+47

GeV, and (1.10-1.15) GeV the likelihood of the
other solution is higher by ~10 units, but this
was thought to be overridden by the continuity
argument.

For the new UA fits the situation seems more
complicated. In addition to the lower branch in
Fig. 9(a) having a higher likelihood for the (0.95-
1.00)-GeV and (1.10-1.15)-GeV bins (by 16 units
for the latter bin), there is a single-humped dis-
tribution leading to only one solution corresponding
to the lower branch for the (1.00-1.05)-GeV bin.
Thus the continuity argument is less compelling
for the UA fits, and so we give phase angles cor-
responding to both branches in subsequent plots.

In Fig. 10 we present the relative phases of
I'S(pv) vs 2 P(pw), vs I'P(av), and vs 0 8(cv). In

Figs. 11 and 12 are shown the amounts of produc-
tion in each 0 and 1' state. The numerical values
of the fit parameters are given in Table II. The
question now is what is the evidence for or against
a phase variation in the A, state. The answer is
not unambiguous. If one erases from the plot all
hollow points, corresponding to lower-branch
solutions in Fig. 9, the UA fits yield the same
answer as obtained previously with NU fits: there
is no evidence for the sort of rapid yhase variation
that one expects from a resonant state. If one
draws curves connecting the hollow points (lower
branch of Fig. 9) for the three lowest energy bins
to the solid points (upper branch of Fig. 9) for the
higher-energy bins, one obtains what could be in-
terpreted as resonant behavior in the 1' state.
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This seems to us highly suspect since the same
exercise applied to Fig. 9 would appear to yield a
resonance in the 0 $ wave. The safest procedure
is of course to extend the error bars so that they
cover both solutions and the interval between for
those bins where there are two solutions. This
leads to error bars so large one cannot really tell
what is happening in the lom-energy region.

The only safe conclusion would appear to be that
with the present analysis of the present data there

is no compelling evidence for a rapidly varying
phase in the A, state. On the other hand, the pres-
ent data does not completely rule out such a pos-
sibility.
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