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The time evolution of quantum states for unstable particles can be conveniently divided into three domains:
the very short time where Xeno's paradox is relevant, the intermediate interval where the exponential decay
holds more or less, and the very long time where the decay is governed by a power law. In this work, we
reexamine several questions relating to the deviations from the simple exponential decay law. On the basis of
general considerations, we demonstrate that deviations from exponential decay near t = 0 are inevitable. We
formulate general resonance models for the decay. From analytic solutions to specific narrow-width models,
we estimate the time parameters T, and T2 separating the three domains. The parameter T, is found to be
much much less than the lifetime I ', while T, is much greater than the lifetime. For instance, for the
charged pion decay, T, -10 ' /I and T, —190/I . A resolution of Xeno's paradox provided by the present
consideration and its limitations are discussed.

I. INTRODUCTION

Quantum mechanics enables us to calculate the
time evolution of a dynamical system provided the
Hamiltonian is defined and the initial state suitably
specified. The Hamiltonian must include all the
interactions to which the system is subjected;
and, in a sense, it deals mith a closed system,
since even when external fields or forces are con-
sidered there is no reaction on them by the sys-
tem.

A particularly interesting class of systems for
which time evolution may be studied are the so-
called 'constable-particle" systems. By definition
an unstable particle is a nonstationary state mhich
undergoes substantial changes in a time much
larger than the natural time periods associated
with the energy of the system. In this case the
"natural" evolution in time and the "decay transi-
tion" may be viewed as two separate kinds of time
development; and it mould be profitable to think
of the natural evolution as if it were accounted for
by an unperturbed Hamiltonian and the decay
transition being brought about by an additional per-
turbation. Conversely, given a Hamiltonian with
a point spectrum and a continuous spectrum, we

may introduce perturbations which lead to "de-
cay" of the states mhich belonged to the point
spectrum and which were therefore stationary.
In this we can determine the precise time de-
velopment of the system.

On the basis of classical probability theory me
mould expect a simple decay process to exhibit a
purely exponential behavior with the "lifetime"

being given as a fixed parameter. By and large
quantum decay processes all exhibit such a be-
havior; and it seems almost essential if we are
to think of the "unstable particle" as an auto-
nomous entity. Such an exponential 1am may be
derived as an approximation to the actual time
development. While many careful studies have
been devoted to this question, the approximation
is essentially the one introduced by Dirac' in the
calculation of the rate of atomic radiative transi-
tions and treats the continuum of final states of
the decay as being unbounded above and below.

In this paper we reexamine the questions re-
lating to the deviation from the exponential decay
law of particle decay processes. Although many
studies have been devoted to this question, "we
feel such a reexamination is still useful for the
following reasons. Most of the works devoted to
this question focus on the deviation from expo-
nential decay law at large time, whereas the de-
viation in the region of very small time is com-
paratively neglected. For instance, though the
knomn works of Khalfin' and others provide a very
general argument for the necessity of deviation at
large times, there seems to be no such general
argument in the literature pointing to the neces-
sity of deviation from exponential law in the region
of very small times. One of the objects of this
paper is to fill this gap by providing a similarly
general argument which shows the necessity of de-
viation from expo@,ential decay law at small time.

A second motivation for this reexamination stems
from a recently formulated conclusion' in quantum
theory, the quantum Zeno's paradox. It says that
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an unstable particle when monitored (for its ex-
istence) at sufficiently small intervals of time will
be found to bve longer than the particle monitored
infrequently and in the limit of continuous monitor-
ing it will be found not to decay at all. It is evi-
dent as explained in some detail in Sec. II that the
quantum Zeno's effect is intimately related to the
deviation from the exponential decay law at small
time, and a study of the latter will provide a better
understanding and a possible resolution of the
former seemingly paradoxical conclusion.

A third related object of this paper is to formu-
late general resonance models and to estimate the
time parameters T, and 7; which separate the in-
termediate region of time, where the exponential
decay law holds to a chosen degree of approxima-
tion, from the regions of small time and larger
time where deviation from the exponential law is
important. Finally, we also briefly discuss the
resolution of the quantum Zeno's paradox provided
by the present discussionand the limitations of
such a resolution.

II, DEVIATION FROM THE EXPONENTIAL
DECAY LAVE AT SMALL TIME

To discuss this question it is necessary to start
with a brief recapitulation of the quantum-theo-
retical formalism for describing unstable states.
I et 3C denote the Hilbert space formed by the un-
stable (undecayed) states of the system as well as
the states of decay products. The time evolution
of this total system is then described by the uni-
tary group u, =e '~', where H denotes the self-
adjoint Hamiltonian operator of the system. For
simplicity, we shall assume that there is exactly
one unstable state represented by the vector (M}
of X. The state ~M&, being an unstable state, must
be orthogonal to all bound stationary states of the
Hamiltonian H Hence jM} .is associated with the
continuous spectrum of' H. On physical grounds
we also suppose that the Hamiltonian H has no
singular continuous spectrum. (In contrast to this
simplifying situation in quantum mechanics, the
spectrum of the Liouvine operator of a classical
dynamical system which is weakly mixing but not
mixing must have a singular continuous part. }
Thus if g}, denotes the spectral projections of the
Hamiltonian

H= AdI'g=- X X x dx,

then the function (M)F„(M& is absolutely continu-
ous, and its derivative

q(I ) = —„„(M[Z, )M& =(M)~}(X(M&
d

can be interpreted as the energy distribution func-

tion of the state ~M&; i.e. , the quantity

is the probability that the energy of the state (M&

lies in the interval [E,E+ dE].
The distribution function g() ) has the following

general properties:
(i) g(~)~ o;
(ii) fg(A)dX = 1 corresponding to the normaliza-

tion condition(M~M& =1;
(iii) g(X) =0 for X outside the spectrum of H. It

may be noted that, in defining the energy distribu-
tion function &(&(X) a.s we have done above, we have
absorbed the customary density-of-states factor
or the phase-space factor cr(X) in &I&(X).

The above-mentioned conditions are quite gen-
eral and hold for any state which is orthogonal to
the bound states of H. In order that the state may
be identified as an unstable particle state with a
characteristic lifetime, its energy distribution
function should satisfy certain additional condi-
tions. We sha, ll discuss these conditions in Sec.
III. But the discussion of the present section will
use only properties (i)—(iii) of the energy distribu-
tion function.

the nondecay probability Q(t) (or the probability
for survival) at the instant f for the unstable state
~M& is given by

q(&&) = J(M f(e '"'JM& I' (3)

e ' '|I}(A. dX . (4)

The celebrated Paley-Wiener theorem' then shows
that if the spectrum of H is bounded below so that
g(X) = 0 for Xc 0 then ~a(t) ) and hence Q(t) = (a(t) f
decreases to 0 as t- ~ less rapidly than any ex-
ponential function e ~'. This is essentially
Khalfin's argument proving the necessity of de-
viation from the exponential decay law at large
time.

The following proposition shows that g(t) must
deviate from the exponential decay at sufficiently
small time too. I et the spectrum of H be bounded
below and assume further that the energy expecta-
tion value for the state [M} is finite,

(5)

Accordingly, the decay probability P(i) at i is 1
—Q(t). The nondecay amplitude a(t) =(M(e '"'~M}
may be easily seen to be the Fourier transform of
the energy distribution function g(}&.),

ai&&=iMle '"'IM&= J~ '"rf(&&lz, &&&&
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Then Q(t) & e r' for sufficiently small t.
It may be emphasized that semiboundedness of

0 is essential for the proof. For otherwise we
may consider the energy distribution function
(}(a)= I/(1+a'), for which

(6)

and Q(t) coincides with the exponential function
e '~'~ for all t & 0. %'e shall assume, without loss
of generality, that the spectrum of H is confined
in the positive semiaxis [0, ~j.

To prove the proposition it is sufficient to show
that Q(t) is differentiable and

sufficiently small intervals of time, it would ap-
pear to be longer lived than if it were monitored
at intermediate intervals where the decay law is
exponential. The quantum Zeno's paradox states
that in the limit of continuous monitoring the par-
ticle will be found not to decay at all. This conclu-
sion in the present special case of a one-dimen-
sional subspace of undecayed (unstable) states
follows in fact as an immediate corollary of the
preceding proposition. Following the discussion
of Ref. 4, it can be easily seen that if the system
prepared initially in the unstable state ~M) is (se-
lectively} monitored on its survival at the instants
0, t/n, . . . , (n —1)f/n, f, then the probability for its
survival is given by

%e shall in fact show that

{)}(0)= o (8)
Since Q(t) is continuously differentiable and g(0)
=0, it can be easily shown that

In view of the positivity of the operator H, the en-
ergy distribution function (})(X)= 0, for X & 0. Thus
the condition (5) implies that this function P. (()(X) is
absolutely integrable,

A. A, dA, &~.

From this it follows that

at()=fe "(tZ)dX'

is differentiable for all t, and the derivative

b(()=fe "( iz)((x')dz-

(10)

is continuous. Now

a'(f) = a(-f),
so that

(12)

a'(t) =—— a(f)—d ddt, , dt
= -a(-s) . (13)

Since Q(t) = a(t)a~(t),

—Q(t) = a(-s)a(s) —a(s)a(-s) .
dt

In particular,

Q(0) =a(0, ) —a(0 }=0, (16)

since a(0) = 1 and a(t) is continuous so that a(0,)
=a(0 ).

The preceding proposition shows that at suffici-
ently small time the nondecay probability Q(t)
falls off less rapidly than would be expected on the
basis of the exponential decay law. Thus if the
unstable system is monitored for its existence at

lim Q
— =1 (16)

independent of t. It is evident that the survival
probability under discrete but frequent monitoring
will be close to 1 provided that t//n is sufficiently
small, so that the departure from the exponential
decay law remains significant. It is thus im-
portant to estimate the time scale for which the
small-time deviation from the exponential decay
law is prominent.

III. RESONANCE MODELS FOR DECAY AMPLITUDES

To estimate the parameters T, and T, which

separate the intermediate-time domain where the
exponential decay law holds from small- and
large-time domains where deviations are promi-
nent, we need to make a more specific assumption
about the energy distribution function g(X) of the
unstable state (M). In fact, so far we have as-
sumed only very general properties of (})(X) that
are not sufficient to warrant the identification that

(M) represents an unstable state which behaves as
a more or less autonomous entity with a charac-
teristic lifetime.

To formulate this resonance requirement we
shall rewrite the nondecay amplitude as a contour
integral. To this end, we consider the resolvents
R(z)= (H zI) ' of the Hamil-tonian H. They form
a (bounded) operator-valued analytic function of z
on the whole of the complex plane except for the
cut along the spectrum of H, which we take to be
the real half axis [0,~]. Under mild restrictions
on the state ~M), for instance, under the condition
that ~M) lies in the domain of H', we have the
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e '"'IM) = . e '"R(z)IM)dz,1
2K2

(17)

a(t) =(Mle-'"'IM) = . e '"P-(z) dz,
1

2w2 c
where

(18)

(19)

where C is the contour shown in Fig. 1.' The non-
decay probability then has the representation

an investigation of the background integral in (23).
This approach to studying the deviation from the
exponential decay law has been adopted in the
past. ' Here we investigate the detailed properties
of the background integral by making a specific
choice for y(z).

To facilitate the choice and to relate our results
to investigations on the Lee model' and the related
Friedriehs model, ' we note that one can write
(suitably subtracted) dispersion relations for y(z).

For instance, if y(z) has the asymptotic behavior

The function P(z) is uniquely determined by the en-
ergy distribution function g{X}of IM) through the
formula

(20}

ly(z) -zl
I I-

with n~0, then

y(z) =z -X, + — dX,"lf(&)I'

with

(24)

(25)

and in turn determines the distribution function
g(X) through the formula

g(X)= lim . [P(X+ je) —p(y -te)] .
g~p+ 2W2

(21)

The function P(z) is analytic in the cut plane and is
free of zeros there. We may thus introduce

y(z) = Iltt(z), (22)

~-i gt

a(t) = — dz .
2z c y(z)

(23)

The above representation for a{t) is quite gen-
eral and does not yet incorporate the important
resonance condition alluded to earlier. The reso-
nance condition may be formulated as the require-
ment that the analytic continuation of y(z) in the
second sheet possesses a zero at z = Ep —~ iF with
Ep» l" & 0. Under this condition the above repre-
sentation for a(t) shows that it will have a domi-
nant contribution e ' 'e '~' from the zero of y(z)
in the second sheet and certain correction terms
to the exponential decay law arising from a "back-
ground" integral. An investigation of the correc-
tions to the exponential decay law then amounts to

which is analytic and free of zeros in the cut plane.
The nondecay probability is that given by

(26)If(&)l'= —. hm [y(&+ te) -y(x te}]—.
22 g ~p

On the other hand, if y(z) satisfies (24) with 0 &n
& 1, then y(z) satisfies the once-subtracted dis-
persion relation. With the subtraction at z = E, ,

y(z) =z -R, +y(&.)

If(&)I'v, (~ -z)(~ -Z, )
(27)

It may be noted that the form (25) for y(z) is the
one obtained in various model-theoretic descrip-
tions of unstable states. "' All such descriptions
picture the unstable state IM) as a normalized
stationary state of an unperturbed Hamiltonian H,
associated with a point spectrum of H, embedded
in the continuous spectrum. The decay transition
is caused solely by a perturbation H, , under suit-
able assumptions about HI, for instance that the
transition amplitude of H~ from the states as-
sociated with the continuous spectrum of H, into
themselves may be neglected in the evaluation of
a(t). The nondecay amplitude can be shown to be
given by (23) and (25) or (27), where

If(~) I' = l&~ I&, IM& I',
with IX& being the continuum eigenkets of H,

Next define

0

FIG. 1. The contour for the a (t) integrsl in (23).

1/2 g 7i/zl

and write

y(z) =y(k) = e "~'(k —k, )(k —k )((k),
with resonance poles as stated earlier at

z=sp--,'ir and z=e'"'zp+-. 2

In the k plane they are at

k~=+kp+ 5,

(29}

(30}

(31)
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where k =F. ' 'e" ' 5 =b, '~'e "~' with 6' '
= I'/4E, '/'. (See Fig. 2.) Substituting (30) into
(23) and deforming the contour we may write

=i e '2kdk
2v c (k —k, )(k —k )({k)

= a, (i) + a, (i) + a,(i},
with

{33) SI

0

Sp

C-S=S,+S, +S,

illustrated in Fig. 2. Note that we do not have to
include any contribution from k .

To proceed further one has to make the specific
choices for ({k). We may now restate our problem
in the following fashion. Given an amplitude of
the form (33) with a suitable choice for t', how

does the decay probability behave as a function of
time? What are the characteristic times T, and

T, for the system? How sensitive are these con-
clusions in relation to the specific forms assumed
for $? In the following section, we take up a study
of these questions.

IV. SPECIFIC DECAY MODELS AND A RESOLUTION
OF XENO'S PARADOX

In the Appendix, two specific choices of $ are
considered. For model I,

5(&) = I . (Al)

This leads to a dispersion relation of the form of
Eq. (2V). For model II,

&so-1& r1 /-21 k,
(34)$(k, ) k,

e '"2kdk
2v „(k—k, )(k- k )$(k)

i " e '2kdk 25k2n(k' '—k ')$ (k) k' —k,'

and a, (i) a contribution which can be dropped ow-
ing to a suitable cancellation. These three parts
are associated with the deformed contour

FIG. 2. Contours defining the integrals (34) and (35).

dE o(E)e
1
W 0

(36)

for very large times, because of the rapid varia-
tion of the phase factor, provided the functions
f (E) and y(E+is) behave gently near zero The.
phase-space factor o(E) has a power-law behavior
in the neighborhood of the origin. For a nonrela-
tivistic system E = k'/2m,

A slower than exponential decay, as mentioned in
Sec. II is expected from the general argument of
Khalfin though it could be like exp(-i' '). On the
other hand, the specific t ' ' law is not only a par-
ticular property of these special models, but a
reflection of the kinematics of the decay process.
We may see this as follows. We write ) f(E}~'
=-

~
f(E)~'o(E), where o(E) is the phase-space weight

factor. Then from {23)and (26),

a(i}= — dE ', ', o(E)e ' '1
"

~ f(E)P
vr, )y(E+ ie) f'

I f{E)I', (E), ;s,v, fy(E+ i~) f'

lg
dEo(E)e 'z'

7T 0

@ /
'f (z) ~ (El/2+ 2A1/2) o(E) = 4~k' —-W, dk

dE (39)

This leads to the dispersion relation of the form
of Eg. (25}. The details of both solutions are given
in the Appendix. %e proceed to look at several
aspects of these solutions.

A. The large-t power law and its geometric interpretation

while for a relativistic system E = (k'+m '}'/' m, -
as E-O,

cr(E) = 4mk{E+m}-~ . (40)

Hence, in both cases we may recognize (38}to be-
have like

From (A12) and (A33), the large-t behavior of
the survival amplitude for both models is given by r dE~e 'E~ = t 3f~ dg~ue '"

0 0
(41)

g(t) i- const x 1
t3//2 ~ (36) Thus the inverse-cube dependence of the probabil-
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ity of nondecay Q(t) may be related to the struc-
ture of the phase-space factor, provided the form
factorf(E} is gently varying.

This power-law dependence has a simple geo-
metrical meaning: The "unstable particle" as
such is not a new state, but a certain superposition
of the decay products. These latter states have a
continuum of energy eigenvalues. The precise
manner in which the superposition is constituted
depends on our definition of the unstable particle,
and the development of this wave packet as a func-
tion of time depends on the dynamics of the sys-
tem. But eventually the packet spreads so that the
decay products separate sufficiently far to be out-
side each other's influence. Once this state is
reached the further expansion is purely kinematic,
the amplitude decreasing inversely as the square
root of the cube of time. Consequently, the overlap
amplitude a(t) also behaves thus. The requirement
of gentle variation of the form factor is precisely
that the corresponding interaction becomes negli-
gible beyond some large but finite distance.

In view of this geometric interpretation we ex-
pect that any unstable system with well-behaved in-
teractions would exhibit such a power law rather
than an exponential law.

a(t)-1 —const xe'" 't' '
which leads to the decay rate as t-0,

1
Q(t)cc

(42)

For model II, from (A34) and (A36),

a(t)-1 —t x constxt —constxe '"'t'' (44)

B. Two ty pes of t dependence near t =0

The short-time behavior of the probability Q(t)
given by two models are quite different. For mod-
el I, from (A17) and (A18),

C. Repeated measurements in short-time and long-time limits

From the above discussions, we are led to two
possibilities regarding the leading-term behavior
of Q(t) as t-0:

Q(t)-1 ——ts and Q(t)- its -', p~1.
p

(46)

Since 0&Q(t) &Q(0), n&0and p&0 [we are not con-
sidering nonpolynomial dependences such as
t (logtP], the ranges P & 1 and P& 1 behave quite
differently. In one case the rate is becoming larger
as t 0, and in the other case it is vanishing.

Now consider as in Sec. 0, the n measurements
at times t/n, 2t/n, . . . , t. Inthelimitofn ~,-the
time interval t/n tends to zero. Hence, for arbi-
trarily small t as n- ~,

1 p&18-n
Q.(t)-

P n
0 P&1.

(47)

The first ease corresponds to Zeno's paradox in
quantum theory. In the second case the limit as
n- ~ does not exist and the paradox does not ob-
tain: continuous observation is forbidden.

It is also interesting to ask what happens in the
long-time limit. We have seen that with reasonable
dynamics, the asymptotic form is purely kine-
matic. What about repeated measurement? The
wave packet has expanded beyond the range of in-
teraction in accordance with the t ' ' amplitude
law: The measurement collapses this packet to the
size of the original packet we call the unstable par-
ticle, and the time evolution begins again. We then
have the behavior (t/n) '" '. We attenuate the un-
stable-particle amplitude by repeated observation.
Naturally there is now no question of continuous ob-
servation.

Q(t) ~ -t"'-0. (45) D. Laboratory observations on unstable particles
and a possible resolution of Zeno's paradox

Model II is an example of the proposition consid-
ered in Sec. II, where the energy expectation value
for the resonance state &M[H~M) is finite. From
general arguments, we already concluded that as
t- 0, the decay rate should approach 0. Equation
(45) is in agreement with this conclusion. On the
other hand, if (M~H)M) does not exist, such as in
model I, as t- 0, the rate of decay is undefined.
So the exponential law again does not hold. We see
that in no case could the exponential law hold to
arbitrarily small values of t. The conclusion that
we have arrived at only depends on the basic no-
tions of quantum mechanics; it is therefore quite
general.

In these discussions we have dealt with the unin-
terrupted time development of an unstable particle.
What can we conclude from this about laboratory
observations on unstable particles'P Is it proper to
apply these considerations for particles that cause
a track in a bubble chamber?

The uninterrupted time evolution was, we saw
above, characterizedby three regions: (i) 0&t&T„
the small-time region where Q(t) =1 —(n/p}t8,
P&0; (ii) T, &t& T, the intermediate-time region
where an exponential law holds; (iii) t& T, the large-
time region where there is an inverse-power-law
behavior. Out of these the intermediate-time re-



C. B. CHIU, E. C. G. SUDARSHAN, AND 8. MISRA 16

gion alone satisfies the simple composition law

Q(t, )Q(t.) = Q(t, + t,) (48)

T, - —ln ~ + —ln 5ln ~ (A15)

Take the example of the decay of a charged pion,
X~@,V

I' = (3 x 10 ' sec) '
and

E,=m„-m„=34 MeV= (2x10 "sec) '.
This leads to T, -190/I . So, by the time the pow-

In this domain, therefore, a classical probability
law operates, and the results for the two-step
measurement are the same as for the one-step
measurement.

On the other hand, if the particle is making a
track or otherwise interacting with a surrounding
medium and is thus an open system, the consider-
ations we have made do not apply. Instead we
would have to account for the interpretation of the
evolution by the interaction and a consequent re-
duction of the wave packet. The nondecay proba-
bility is now defined by the composition law:

Q(t, t„,t.)=Q(t, )Q(t, )Q(t, ) Q(t„) (49)

Hence, if t, = t, = ~ ~ = t„=r, we can write

(50)

so that for times large compared with 7 the de-
pendence is essentially exponential, independent of
the law of quantum evolution Q(t)." If the inter-
ruptions do not occur at equal intervals but are
randomly distributed, the behavior would be more
complex but this has been considered by Ekstein
and Siegert" and furthered by Fonda etal, ." The
pure exponential behavior is somewhat altered
but the power-law dependence of the long-time be-
havior of the uninterrupted time evolution is no
longer obtained.

We wish to call particular attention to this re-
sult: The long-time behavior of the closed and
open systems are essentially different. Classical
probabilistic notions do not apply to the closed
system. The reason is not far to seek: Classical
intuition is related to probabilities which are the
directly "observed" quantities. But probabilities
do not propagate: Propagation is for the amplitude.
Despite this, it is difficult if not impossible to ob-
serve the differences between the two. To be able
to see the difference we must reach the third do-
main t & T„but since T, is much much larger than
the mean lifetime, by the time this domain is
reached the survival probability is already many
orders of magnitude smaller than unity. For both
models considered, we found

er law is operative, Q(t) & 10 ". Clearly this is
outside of the realm of detection.

In the small-time domain we have other physical
considerations that may prevent the conditions for
Zeno's paradox from manifesting. This is ulti-
mately to be traced to the atomic structure of
matter and therefore to our inability to monitor
the unstable system continuously. For example,
in our model II, where Zeno's paradox is opera-
tive, in the Appendix one finds T, -10 "/I"-10 "
sec for charged-pion decay. On the other hand, we

have check points at interatomic distances, a time
of the order of 10 '/(3x10") =3x10 "sec. We
have no way of monitoring the natural evolution of
a system for times finer than this.

This resolution of Zeno's paradox is quite satis-
factory as resolutions go in modern physics, but
it raises a more disturbing question: Is the con-
tinued existence of a quantum world unverifiable?
Is the sum total of experience (of the quantum
world) a sequence of still frames that we insist on

endowing with a continuity?" Is this then the re-
solution of Zeno's paradox?

Note added in Proof. After this work was com-
pleted, we learned from L. Khalfin that he had pre-
viously considered in some detail the small-t be-
havior of an unstable quantum system. For in-
stance, he also had arguments similar to that
leading to Eq. (15). [See L. A. Khalfin, Zh. Eksp.
Teor. Fiz. Pis'maRed. 8, 106 (1968) [JETP Lett.
8, 65 (1968), and some earlier references quoted

therein. ] We thank A. Goldhaber, who first called
our attention to the small-t behavior work of
Khalfin. Both Khalfin's and our considerations ap-
ply to the case where the subspace of undecayed
state is one dimensional. Another argument show-
ing the necessity of the departure from the expo-
nential decay law for small time has been con-
sidered by us [see B. Misra and K. B. Sinha, Helv.
Phys. Acta 50, 99 (19VV)], which applies even
when the subspace of undecayed states is infinite
dimensional. We also want to mention a paper by
L. Fonda, in Proceedings of the XIII Winter School
of Theoretical Physics, Karpacz, Poland, 1976
(unpublished). In particular, assuming that the
interaction between the experimental apparatus and
the measured system is a Poisson process, De-
gasperis et al. have derived an integral expression
relating the measured lifetime to the nondecay
probability for the undisturbed system and the
mean frequency of the interactions. [See A. De-
gasperis, L. Fonda, and G. C. Ghirardi, Nuovo
Cimento 21A, 471 (19V4).] In the limit of infinitely
frequent interactions this leads to nondecay. On
the other hand, assuming the measuring interac-
tion takes place at regular intervals, J. Rau of
Ref. 10 derived another law for the measured life-
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time, which also leads to nondecay in the same
limit. The theorem on Keno's paradox given in
Ref. 4 proves the nondecay result quite generally,
which includes the above-mentioned results as
special cases. We also would like to mention a
paper closely related to our work by R. G. Winter,
Phys. Rev. 123, 1503 (1961). In this work, a sim-
ple barrier-penetration problem was studied to
elucidate the time development of quasistationary
states in the small, the intermediate, and the
large time regions. Some interference phenomena
are stressed. We thank Dr. Winter for calling
our attention to his interesting work.

APPENDIX

Model I

Consider the case

with

erfc(y) =—1 —erf(y}

and {A8)

erf(y)=- — e " dx.
1T o

After some algebra we get,

ze 1/2-

a, (t) = —(1+2p't)e~ ' erfc(p ~) —2p-
p r

(A9)

where p= e '~/ y = e '"/ g0 0
The complementary error function has the as-

ymptotic expansion"

e ' 1
e fcty)= 1 —,——, ). (A10)2 4 4

((k) =1 (Al)
Substituting (A10) into (A9), to leading order in
the inverse power of t, gives

(A2)

y(z)=z —{E,+r)+2g zs, . - (A3)

Now Eq. (30} reads

iy(k) =(k —k, )(k —k ),
or from (29), (31), and (32),

gE)=E —(Eo+n)+2WEA .
We assume the analytic continuation of y (E) is
given by

5i 1
1 ~p 4 t3/2 (All)

This approximation is reasonable typically for
~ pvV[ z y, = 5. Notice that the form of (All) is in
agreement with our general result in the text.
Dropping factors of the order of unity, (A11) gives

l 5/2 1
(F,).g,

One finds that y(z) satisfies the once-subtracted
dispersion relation,

y(z) =z —(~+~n)'

for
2

Xl.
1

0

(A12)

z+E0 " 2~
w o (E —z)(E —E,) (A4}

At T„ the ratio of this background contribution to
the pole contribution is given by

where the subtraction is at z = -Ep. This is in ac-
cord with (27).

From (34}, for the present case the pole term is
given by

E.y ' (A13)

where F «Ep was used. Take the example of a
charged pion. It decays into the pv state. Here

a (f) = —' e-& o'- « /'k~

kp
(A 5)

E,=m, m„=34 Me—V=-(2x10 "sec) ',
I'=(3x10 ' sec) ', and I'/E, -10 ".

From (35),

i "2Ae '' 25k
7T oo 0 0

To evaluate a, (t), we use the identity"

(A6)

e- x g~ x/2 z/a

dX = — —wv a e"erfc[{at)'~'] .
A. +a t

(AV)

So T, -y, ' j&0 - 2 x 10 "/F - 10 "sec. At this mo-
ment R-10-".

Because of the exponential falloff of the pole term
and the t '/' falloff of the background, after a cer-
tain long time interval has elapsed, R will eventu-
ally be comparable to unity. Beyond this point,
say t = T„ the background contribution will quickly
dominate. Making use of I'«„E{5A)and (A12}
lead to

Quantities "erf" and "erfc" are, "respectively,
the error function and complementary function,

T, ——ln ~ + —ln 5ln~ (A14)
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For a charged pion,

7, -180/I' . (A15)

we arrive at

a(t) =- a,(t) + a, (t)
X/2 +1/2-1-4ib — =1 —4e"~' W. (A17}

m ~ir

In turn, as t-0,

At this T, the amplitude is down by e "-10 ".
For t«T„one can expand (AS) and (AQ} in pow-

ers of y =p/7 . Using the identity"

erf(y) = ~ (1 ——,'y'+ ~ .),

or
y(z) =y(k) =z —{E,+ a+24K)

2[E,+ 6+ (B+2$6B)]dF~'
zlgzi ff/2 (~B+2~A)

This expression can be rewritten as

y(z) =z —(Eo+ 62)/Btk)

1 "2[E,+ (k)h + )/3)'] (tkE)'~'dE
[E+(~+ 2W~)']{E z)—

in agreement with the general form of (25).
From (34}, for the present case the pole term is

given by

)
k, —(b 2+b) k,

k, -b k,

4(t) = —lal'- -2—
dt g

Model II

Consider the parametrization

5(k)=
k

(A18)

(A19)

To evaluate a, (t), we write

1 k —(b+ 2b) 2b 2bb
k —b k k(k —b)

and define

a, (t) =- a,'(t) + a,"(t) + a,"(t),
where

(A28)

This will lead to the form of the Lee model, pro-
vided

" 2ke 25k
a,'(t) = — „, , 1+, , dk,

0

c=b+25 and b= J3'/'e "/' (A20)

where B is a parameter chosen to be real and
positive. For the complex variable z, (A19) can
also be written as

~ 1/2

(Bf&2 2b, f&2)
{A19'}

The (k —b) factor so specified gives rise to a
"virtual state" at E = e " 'B. Since we are in-
terested in the resonance-decay problem, we will
push this virtual state far away from the real
axis. So whenever needed we will only specialize
to the case

and

-4 g

ff I k' k'(k(k —k))( k' —k')
From (A6) and (A9),

OQ
f 1/2-

a,'(t) = —(1+ 2' 't)e~ ' erfc(p)/T) —2P1
p r

(A27)

where p= e 0 0
For the a," term, we use the identity"

For present $, (30) leads to

y(k) =(k- k, )(k-k ) „'„-'„
=k +{2bb+k,k )

, dX = —e"erfc(~) .

To leading order in l5/k, l, it gives

a,"(t)= — e~ 'erfc(pfF) .
p

(A28)

(A29)

25[b (b + 25) + k, k ]
k —(b+ 25}

For a,"' term, again to leading order in lb/k, l, we
write

1 1
k —k k-b0

25b'i
a,"(t)= —

(k 2 b, )

, —e 'e fc(jff ) ——k 'k f (kJT)), ,
2b'5i 1 1 2

-b-P P
'

P1
{A30}
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where p, = e"/'tp= e"/4B'/'. Combining (A27), (A29), and (A30) gives

e(t),= —(fp t —'1)e ' rcf {c ptT) —fp — ~, , —e ' crf c(pic}——ee' 'crfc(pff ,)) . {Aft)i,5 t "' 2t'ez 1

p w b+P P P1

Substituting (A10) into (A31), to leading order in
1/t one finds

rive at

a(t) -1 —t(E, + 2+%+ a)t
1 1 1

1 ~p2 p2 y2 t 3/2 (A32) 8 e-i ft/4t 1/2(E B)t3/2
3~ir 0 (A34)

%e assume, as discussed earlier, B» E,. Drop-
ping a factor of the order of unity, (A32) gives

5/2

({3,)- — „/, , for tZ 1'2= ' . (A33)
E2 (Ft/ 0

This is identical to the result of model l. Again

T, -10 "sec. At this moment R-10 ".
For t«7„ from (A16), (A25), and (A31) we ar-

This leads to, as t-0,
~t2

Q(t)-1 ——— (E + B)t'/'
3 7r

2s '~'
Q(t) - -4 — (E + B)t'/' - 0 .

jr 0 (A36)
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