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Nonlinear chiral models and many-dimensional solitons
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The problem of obtaining exact, finite-energy, static solutions to the equations of motion of nonlinear

chiral SU{2)X SU{2) Lagrangians is investigated in a framework which is independent of the coordinate

system for the pion fields. This approach considerably simplifies the derivation of the equations and exhibits

clearly the topological nature of the solutions where these are known. Two promising unsolved models are
considered and shown to contain {in appropriate limits) previously considered models for which properties of
the static solutions have been established.

I. INTRODUCTION

Recently the problem of finding classical, static,
finite-energy solutions for field theories in more
than one dimension has been considered. ' From
the virial theorem, ' such theories must include
nonzero-spin particles or high powers of deriva-
tives of the type encountered' in nonlinear pion
Lagrangians. It has been further argued' that a
realistic three-dimensional field theory with local-
ized soliton solutions should contain a nonlinear
chiral field. The equations of motion for such field
theories turn out to be complicated linked nonlinear
differential equations with Christoffel symbols
computed from the internal-symmetry metric. In
conventional approaches" these expressions are
evaluated in a specific coordinate system for the
pion fields, and the consequent equations are con-
sidered directly. However, the resulting equa-
tions (when not completely intractable} have been
found always to have solutions given effectively
by the one-dimensional sine-Gordon equation. In
the present work a (previously described') formal
and general treatment of nonlinear realizations of
chiral algebras will be shown to simplify the ap-
proach to such nonlinear field theories and to re-
move the complications of representation depend-
ence. This simplification is important since many
of the attempts"' to find confined solutions within
a nonlinear realization have invoked unconventional
Lagrangians involving four derivative terms or
fractional powers of more conventional Lagrange
densities. Moreover, the topological nature of the
solutions seems to be directly exhibited in the pro-
posed framework, whereas it is frequently ob-
scured by the use' of a specific coordinate system
for the pion fields.

The exotic Lagrangians which have been intro-
duced arise naturally in certain cases if the (many-
dimensional) solitons are to have finite-energy
static solutions which remain stable under the seal-
ing transformation v'(x) —v'(Ax). The types of non-

II. NONLINEAR PION LAGRANGIANS

The specification of chiral SU(2) x SU(2)-invari-
ant Lagrangians in a representation-independent
manner has been treated in detail in Ref. 6, and re-
produced here are only the basic results needed. If
the pion fields are parametrized in the form

where

n'n, =1, (2)

linear equations which give rise to the soliton can
be characterized by the behavior of the energy E
under such scale changes. If E is neutral, that is
if E is unaltered under the transformation, then (in
all cases known to us) the equations of motion can
be transformed by changes of variables until the
final effective nonlinear equation is the one-dimen-
sional sine-Gordon equation for which exact solu-
tions exist. Naturally the resulting solutions con-
tain an arbitrary length parameter which does not
appear in the energy of the soliton. After appro-
priate Lagrangians have been established, these
solutions are retrieved in the new framework in
Sec. IG, and this treatment reveals infinite classes
of similar models (with exact solutions} in any
number of dimensions. If E is not neutral but is
stationary with respect to &, that is sE/s& ~, , =0,
only static solutions with a certain size which de-
termines the energy may be expected. Such mod-
els are easily found' by taking for the Lagrangian
density a sum of a term which scales with a higher
power of X than the number of space dimensions
and a term which scales with a lower power. No
exact solutions to such models have yet been found.
In Secs. IV and V the two most natural such models
proposed are treated in the new framework. Al-
though neither has been solved exactly, they are
shown to contain, in appropriate limits, previous-
ly considered models with either exact solutions or
upper and lower bounds on the energies.
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then the QQrsey matrix' may be written as

where

]0U=exp -in v'—
2

y„U=U 'y„ (5)

shows that these explicit Dirac matrices may be
moved together in any trace considered, and that
the remaining part of the traced expression has U

(or derivatives) and its inverse appearing altern-
ately. But the matrices

and 8 is any arbitrary function of Q subject only to
w eak-field limits. Then any Lagrangian constructed
from y„U will be chiral SU(2} x SU(2) invariant if
SU(2) and Lorentz invariance are imposed. More-
over any number of derivatives may be used, and
in this way all the invariant Lagrangians are pro-
duced. The important feature for the present work
is that these Lagrangians do not contain Q explicit-
ly, so that any soliton behavior found will be dis-
played independently of the specific pion realiza-
tion. In practice this also simplifies the working
considerably.

For our present purposes it will be sufficient to
find all invariant Lagrangians with either two or
four derivatives. In order to impose SU(2) and
Lorentz invariances it is simply necessary to trace
out over all Dirac and Pauli matrices and to satur-
ate all four-vector indices. The identity

2f, 'L, = (8 „8)(a"8) + sin'8(a, n')(8 "n, ) (8)

and to eliminate all possibilities except

Tr[(a'U')U-'(a'U')U-'+ (e ——8)],
Tr[(a'U')U '+(8 —-8)]Tr[(a'U')U '+(8 —-8)],
Tr [{a„a„U')U '+ (8—8)]-

xTr[(a "8"U')U '+ (8 —-8)]-,

Tr[(a'U')(B. U ')(a U') U '+ (e -e)]—, —

separate matrices. However, the identity

U'(B„U )+(B„U')U '=0

shows that no more than a single undifferentiated
matrix need be considered in any trace involving
otherwise only first derivatives, and indeed none
need be considered unless an odd number of dif-
ferentiated matrices appear in the trace. Thus,
since total divergences may be discarded, the term

Tr[(a „U')U-']

must appear once at least in any such expression.
This term can at once be seen to vanish. Hence
only the unit matrix results in the products and the
problem thus becomes simply one of constructing
SU(2) invariants from expressions in which U' and
its inverse (each differentiated as appropriate) ap-
pear alternately, which are, by Eq. (3), even in
6), and in which the vector indices on the deriva-
tives are saturated.

It is now straightforward, if a little tedious, to
establish that the only invariant involving two de-
rivatives is

(8)

appearing in U act as projection operators in the
Dirac space, so that there is a nonzero trace only
when the product of the other Dirac matrices (pre-
viously grouped together) is proportional to either
y, or the unit matrix. If y, appears, then so must
the Levi-Civita tensor &„„,„and these indices can
only be saturated against ones on derivatives. In
this case, not only must four derivatives appear,
but (to give antisymmetry} they must each act on

Tr[(B„B.U'}(8"U ')(8"U')U '+(~ ~)+(—8 —-8)]
as candidates for independent invariants involving
four derivatives. To establish the interdependence
of the last five candidates, it is necessary to use
either completeness of the Pauli matrices or to
work directly with the explicit forms given in Eq.
(4); in fact this latter approach seems slightly
quicker for this simple SU(2) case. The last two
are directly shown to be linearly dependent on the
first three, and the expressions

-f,'I-, = {I-.)',

-4f, 'L, = (8„8)(a"8)(a„e)(8"8)+ sin'8(a „n'}(8"n,)(a "n&)(a~~) + 2 sin 8(a „8)(8 n, )(a"8)(a„n'), (10)

-4f, ' L,, = 4f, '(L,)' —(a'8)'+ sin'8[(a "n,)(a„n')]'+ sin28(a'8)(a „n')(8"n, )

-4 cos'8(a „8)(a"n, )(a"8}(a„n')—sin28(a' n, ) (a~n, ) —2 sin28(a' n, }(a"e}(a„n')
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are established as the only independent forms,
where the normalization factors have been arrang-
ed for future convenience. Here the final expres-
sion, I.„intrinsically involves fields with at least
two derivatives. It is recorded simply for the con-
venience of future workers in the field, and will
not be further investigated in the present work.

alone. In two dimensions, the scaling argument
suggests the use of L,; the less restrictive ansatz

il = (cong, sing/, 0),
where $ is the angular variable defined by

(18)

91
(&,q

—n, nq)
' v' q=0,8(v~ j,

(12)

III. EXACT STATIC SOLUTIONS

Once an appropriate invariant Lagrangian has
been picked, the task of finding exact solutions to
the static limit of the equations of motion may be
undertaken. In the present notation, a Lagrange
multiplier q is introduced and a term ~0(n&n, —1) is
added to ensure the normalization of n, and this
leads to

and Q is an integer to ensure single valuedness of
n', is also possible. However, these exhaust the
ideas which have been put forward. Moreover, in
the cases where solutions have been found, the
Lagrangians have been taken to be neutral under
scaling. This means that, in the appropriate co-
ordinates, all spatial dependence is effectively in-
trinsic so that an immediate first integral of the
equations is known. Since these solutions are now

very simple in the present notation they are repro-
duced briefly bel.ow.

In two dimensions, with the Lagrange density I,
and the ansatz given in Eq. (17), the form

I I
s(v, e) se (13} Q' sin'8

r8 + dr,r
as the static equations to be solved. All attempts at
solution, of which we are aware, introduce at this
point some ansatz effectively designed to satisfy
Eg. (12) by making the quantity within the large
square bracket proportional to n& and to reduce Eq.
(13) to one involving a single space variable only.
This latter equation is then the one genuine non-
linear equation yielding the soliton behavior. Nat-
urally these features are not easily identified in the
original papers, but emerge only after appropriate
changes of variable; the main advantage of the
present notation is probably that it exhibits the es-
sence of the idea directly.

The strategy may then be regarded as the search
for a simple ansatz for n, which will (through n' = 1)
remove the n' dependence from the Lagrangian. In
all cases the n' have been taken to be functions of
angular variables, while 8 is a function of a radial
variable so that terms involving (V,e)(V'n&) are el-
iminated at once. A further ansatz of

xn'= —,n'=0, i~d&j (14)r '

d88I
dr (20)

emerges as the effective energy. The equation of
motion is simply

r V'(28}=Q'sin28 (21)

Y =lnr,

with

~ d88=-
de

gives the energy as

E = mf 8 + Q sin 8) dy (24)

and expresses Eg. (21) as

in the static limit, where 8 is a function of the ra-
dial variable, r, only. But then a change of vari-
able to

implies that
28= Q~ sin28, (25)

(16}

where d is the number of space dimensions, and
thus ensures that any of the Lagrangians considered
becomes dependent on 8 and the radial variable

which is recognizable as the one-dimensional sine-
Gordon equation. The first integral of this equa-
tion is immediately

8' = Q' sin'8, (26)

where the additive constant of integration. has been
equal to zero so that the energy takes on the value
4mf, 'Q and remains finite. Of course, the solution
may then be taken as
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8 =2'tan '~

where the scaling freedom r —Xr allows the arbi-
trary constant of integration, r„ to be picked free-
ly. Finally it should be noted that the current

e'n e"n ~'~'
vo& (28)

is divergence free irrespective of the equations of
motion. The associated charge

d %No =Q (29)

may therefore be regarded as topologically con-
served; the integrand does, of course, vanish
everywhere except at the origin.

In three dimensions the exotic Lagrange density

3f, f, =-(-2f,,)'~2, (30)

suggested in Ref. 4, yields the effective energy

4+,' }' (
2 sin'8)'i' (31)

when the ansatz in Eq. (14) is inserted. This may

be rewritten as

4m' 2

E = '' (8 +2 sin 8)'~2dy
3

(32)

e=+2tan '

by using the change of variable in Eq. (22), and
once again there is no explicit y dependence be-
cause of the scaling neutrality. Thus the first inte-
gral is immediately

(P+2 sin'8)' '(8'- sin'8) =0, (33)

where the constant of integration has been set equal
to zero to ensure finite energy. Once again,
therefore, the one dimensional sine-Gordon equa-
tion is retrieved and

IV. A NATURAL THREE-DIMENSIONAL MODEL

The authors of Ref. 3 point out that the theory
taking (in the present notation)

I I o+ &LE+ pJ2 (39)

as a Lagrangian density has both the virtues that
scaling allows for static solutions in three space
dimensions and that naive power counting suggests
that the theory is renormalizable. Obviously the
scaling behavior of the first term differs from that
of the latter two, so that there will be no transla-
tional invariance to give the first equation of mo-
tion. Nevertheless, the ansatz of Eq. (14) may be
used to give

for the pion fields is retrieved. However, where-
as 8 changes by n between infinity and the origin,
the pion fields vanish in both regions, so that the
topological nature' of the solution is obscured by
such a choice of coordinates.

It will be apparent from the above discussion that
there are available whole families of Lagrangians
in any number of dimensions which are neutral
under scaling (and for which first integrals of the
equations of motion are immediately known) pro-
vided that exotic constructions are allowed. For
example, each of the independent Lagrangian pieces
of Sec. II can be raised to appropriate powers and
added in linear combinations. So far no suggestion
has been put forward as to the possible physical
significance of such models, and a preliminary in-
vestigation of several similar Lagrangians reveals
no features not exhibited in the prototypes above.
A more promising approach seems to be the in-
vestigation of more realistic models (i.e. , ones
which have Lagrangians with a more conventional
interpretation in terms of the fields from which the
they are constructed) which are not neutral under
scaling but for which the virial theorem allows sol-
utions. Two such models are discussed in the
following sections.

emerges as the only nontrivial solution with

E =2v'~f ' (35) f 2(g
2$lll 8} (

2 Hill
8)

as the energy. This time the topologically diver-
gence-free current is given by

N„= 6 c„„q(8"n,}(B'n&)(s"n,}~"',1
(36)

Q ~f, sin8 (3V)

and the conserved charge takes on the value unity.
It is worth noting that when

+p 9' + y~dy

as the effective energy, so that

2 sin'8'8' 1+( +P)8"+

= sin28 1+ (2m+ p), + e8"st 8
r'

(40)

(41)

the original result'

m'= 2f, — 1+ (38}

emerges as the equation of motion. This agrees
with the correct method of proceeding from the
equations of motions Eqs. (12) and (13) and the an-
satz of Eq. (14). This nonlinear equation has not
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yet been solved; it seems to be closely related to
the equation governing synchronous electric mo-
tors. s The weak-coupling limit of this equation

(r'8') =K' sin28,dr

r K"=e 'f,'r K sin 8+K(K —1)

(49)

(50)
d

dr
(r'8') = sin28 (42)

is identifiable at once as that of a damped pendul-
um if the change of variable in Eq. (22) is used.
Clearly this leads always to an infinite-energy
solution, in agreement with the observation that
neither weak- nor strong-coupling limits by them-
selves can satisfy the virial theorem.

However, the case with & =J3 has been previously
considered by others, "and the energy has been
shown to lie between 6v'f, '~q and Qv 'f,'~c, so
that the soliton mass can be made arbitrarily
small by choice of z. It seems to the present
authors that the full model deserves further consid-
eration, but that numerical investigation of solu-
tions seems an almost inevitable next step.

f =La(8, D„n') —4F~F~(",

where

D n'= a n'+e&"" V n

(44)

(45)

therefore takes over the role previously played by
the four derivative terms. In the static case, with
the ansatz"

g y
l K(r}

er
V'=00

(46)

(47)

the energy is effectively

4m " e2& 2

Z = —, " (r'e" + 2K' suPe)

V. GAUGE-FIELD INTERACTIONS

One possible alternative to introducing higher
numbers of derivatives is to modify the basic
chiral Lagrangian by the inclusion of vector non-
Abelian gauge fields. In this way, the complication
of powers of derivatives in the equations of motion
may be traded for the penalty of having linked dif-
ferential equations for an increased number of
fields. The existence of the nonlinear term in the
covariant curl of the gauge fields P„',

(43)

indicates the scaling properties of these extra
fields and the second term in the invariant Lag-
rangian density

as equations of motion.
No exact solution to the above equations of mo-

tion has been found. However, in the weak-field
limit (sine- 8), comparison with the work of Pra-
sad and Sommerfield" gives the solutions

K=
sinhar '

ar cothar —18=
ej,r

(5l)

(52)

where a is an arbitrary constant. That a whole
family of solutions, parametrized by a, appears is
a consequence of this weak-field limit. The energy
is easily computed to be a/a so that, since the
vacuum sector is reached as a-0, this is dynam-
ically unstable. Naturally the topological behavior
of 8 is not now that of Sec. III; indeed, the solution
is continuously deformable to zero. However,
the presence of two mass parameters in the theory
gives some encouragement that a dynamically stable
solution may exist.
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