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Linearly rising soliton trajectories without parity partners are obtained from the nonlinear field equations of a
Dirac field in four dimensions with universal Fermi self-interaction. The model is Lorentz and global-gauge

invariant.

I. INTRODUCTION

It has been known for a long time' that nonlinear
field equations of Lagrangian field theory possess
localized solutions with particlelike properties at
the classical level. These particlelike solutions,
solitons or solitary waves, have received renewed
interest recently, ' which stems from the expecta-
tion that these soliton solutions will also emerge
in quantum chromodynamics (QCD) and may be the
key to the understanding of quark confinement and

the spectrum of the composite and extended had-
rons.

In this paper we take the first step to study Regge
trajectories in relativistic field theories through
such soliton solutions. As a preparation for the
full complexity of QQD, which we hope to examine
in the future, we consider the nonlinear field equa-
tions in four dimensions of a Dirac field with uni-
versal Fermi self- interaction. These calculations
should be considered mainly methodological, since
this model is much simpler than @CD. However,
it is fully relativistic, global-gauge (but not local-
gauge) invariant, and readily adaptable to incorpor-
ate color symmetry. The MacDowell symmetry is
satisfied, so that the model can address the ques-
tion of parity partners. The "Regge trajectories"
for this nonlinear spinor field for strong self-
coupling will turn out to be linear in s =F. ' without

parity doubling.
The plan of the rest of the paper is as follows.

In Sec. II we write down the nonlinear spinor field
equations. By comparing with the results of an
earlier paper, ' we establish the MacDowell sym-
metry and explain why linearly rising Regge tra-
jectories are expected. In Sec. III we obtain num-

erical soliton solutions with definite angular mo-
mentum. The leading rising soliton trajectories
of both parities are displayed as well as the first
daughter trajectories, especially in the limit of
strong coupling and deep binding. We discuss the

features of the soliton solutions which will be used
in Sec. IV to construct approximate solutions in
closed form for deep binding and large angular
momentum. Section V contains some concluding
remarks.

II. NONLINEAR FIELD AS A RELATIVISTIC MODEL

FOR SOLITON TRAJ ECTORIES

Consider the Lagrangian density of a Dirac field
with universal Fermi self-interaction4:

p=--,'(4y„s„4—s„4y„4)—p44+2, , (2 1)

&,= y, (44)'+ y, (4y, 4)', (2 2)

ys = Cs+Cv+C~+C„,

&p=Ca- Cv+Cr- C~.

The Euler-Lagrange equations of the Lagrangian
density (2.1) are in general not separable. We
therefore look for solutions of the variational equa-
tion

Z d'x=0 (2 3)

within a, class of variational functions of the form

4', =
2 [E(r)(1+y~)Q, +i G(r)(1 —y, )A,]e '"', (2.4)

where 0, are eigenfunctions of the operator

~=y, (-io (rxV)+1] (2 5)

with eigenvalues v=+(j+ 2), K&0, and v&0 corre-
sponding to states of opposite parity. Substituting
the comparison functions (2.4) into the Lagrangian
density (2.1) and performing the va. ristion (2.3),
the angular functions 0, are fixed and only the

Z, = P C.(41,4)(41",4)
a =1

where p, is the bare mass, C, are the coupling con-
stants for the invariants 8, V, T, A, P, and 1"',

are the corresponding Dirac matrices. With the
introduction of the color degrees of freedom the
problem of color-singlet states formed from three
quarks reduces to solving the nonlinear field equa-
tions for a single quark field, because all three
quarks can have the same wave function. 'The only

change is that the coupling constant is changed by
a factor X= 3.' With a11 four spinors in ZI identi-
cal, the most general form of ~ is
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radial functions F and 6 are to be varied independ-
ently. We obtain

dF—+ F+ (g —&u)Gdr r
+ [2ysd s(K)(G' —E ') —4y~1~(K)F 'JG = 0,

(2.6)
dG 1+ v—+ G+(p, +v}Fdr r

—[2ys ds(K)(E ' —G') —4y~d~(K)G']F = 0 .

Here ds ~(K) are the results of the integration
over angles and are given by

2r 4

ds(K) = Y (["„j~~ sin8d8dft)
0 0

r'(K+-,')r(2»- 1)
2x ' ~' r '(K) r(2» ——,')

E,(j, -M)=G (j,M),

G,(j, -M) =E (j,M) .
(2.10)

Equation (2.6) can be scaled to dimensionless
form:

df 1 —K—+ f+(1+P)g+ g + f g=—0,dx x 2

dg 1+K
dx x
—+ g+(1 —P}f f'+-g' f =o—.

2

(2.11)

Hence the continuation of M - -M corresponds to
ys--ys, y~- y~-, and &u--ur. From (2.6) we
see that the MacDowell symmetry is explicitly
satisifed. To every positive-parity solution K=j+-,
there corresponds a negative-parity solution x
=-(j+-,') with M- —M; specifically,

t 2r 4

d~(K) = cos'8 sin8d 8dfIP. )

0 0

1 r '(K+ -,') I'(2» - 1)
4s'~' I'(K) r (2»+ ~)

1
d (K).

(2.7)

F(r) =[P/2ys ds(K))'~'f(x)

G(r) =[V/2y, ds(K))'"g(x), (2.12}

This is the result of making the following substitu-
tions:

r =x/iJ, ,

+=-PP
y

We note that as
~

K
~

= j+—,
' becomes greater than

unity ds(K) rapidly approaches Wic/(2w)' ' and
d p(K) - I/4(2v)'~'~ic

The invariance of the Lagrangian implies the
following conserved quantities:

Q = 4*4 d'x,

A. =- 2+4—~P
yq 4lzl —1 . '

We then have for the angular momentum, mass,
and coupling constant, ys, in terms of f(x) and
g(x),

ad'x =-,'[e*S,4 - (s,e')@]d'x,

Ij = 4'* -& —+20 4d'x.I

(2 6)
M = p(p+I2/Ii),

ys =I,/2 g 'ds (K),

where

(2.13)

Localized solutions of Eq. (2.6) are interpreted as
particles of mass M and angular momentum j,.

The MacDowell symmetry equates partial-wave
S-matrix elements of opposite parity: S.(j, -E)
=S (j,E), when E is the total energy. In a previous
paper we have discussed the MacDowell symmetry
in the context of the Dirac equation with a confin-
ing "scalar" potential. We find that the MacDowell
symmetry can be expressed as relations between
opposite-parity solutions of the Dirac equation. In
thepresent relativistic model the total energy M
for solutions of (2.6) is given by

M = [ys ds(K}(G2 —F ')2 —4ypd p(K)F 2G2J r~dr

I, = +g x dx,

I2= f + g +g)x dx ~

In Ref. 3 we also find that in order for the tra-

jectoryy

to be linear in s = V2, the potential V(r)
should have a y j dependence. It is interesting to
note that the effective scalar coupling in (2.6),
namely ys ds(K), will indeed have this behavior,
since

~ I ]/2

+ &u (E'+G ')r'dr . (2.9)

We therefore expect the Regge trajectories to be
linear in s =M', at least for large angular momen-
tum. For large ~ the pseudoscalar coupling
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considered exact. '
For these reasons we have chosen @~=0 and

X=-2 for the investigations in this paper. We also
note that the ansatz (2.4) is, of course, exact for
the free Dirac equation. For states with the higher
angular momentum, the mass, M, of the soliton
solution approaches the bare mass, p. . The solu-
tions resemble increasingly the free solutions, and
the nonlinear term becomes less dominant. We
then expect, heuristically, that the solutions of
(2.11), based on the variational ansatz (2.4), be-
come "good" solutions with increasing spin.
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III. NUMERICAL SOLUTIONS

The scaled equations for f and g with X =-2 and

y = 0 are then

—+ f+ (1+P)g+ (g
' f')g = o-,df 1-x

dx x

—+ g+(1 —P)f+(g' f')f=o-.dg 1+ v

dx x

FIG. 1. Typical solutions of the radial equation.
Plotted are f(x) (—) and g(x) (—-) vs x —=p~. The
right panels give f vs g. The upper panels corresyond
to f(;

=—j + ~ =10; the lower panels correspond to f(. =20.
The energy parameter P = —v/p =0.014 for both cases.

y dAx) y ly
yz d~(x) 41x I

because of (2.V}. Thus, unless yz actually van-
ishes, the effective coupling is always scalar for
large spins and we expect the linear behavior of
these c-number Regge trajectories to assert itself.
The scalar case, @~=0 or X=-2, also has the

property that the variational ansatz (2.4) actually
"separates" the Lagrangian for the case

i
x

i
=1,

and the differential equations (2.11}may then be

This is just the radial Dirac equation with a
scalar "potential, " V(x), given by -(f' —g'). In
this section we discuss various features of the
numerical solutions which lead to linearly rising
trajectories.

ln Fig. 1 we show f and g as functions of x and f
vs g, for a typical small P (deep binding), for two

values of ~ =j+—,'. We notice that there are two

peaks, both occurring very close to x„which is
defined by g(x, ) = 0. From the f vs g "phase" plot,
we see clearly that near each peak the magnitudes
of f and g are very nearly equal. The difference,
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FIG. 2. The zero of g, i.e., xp (—~—), and the
quantity h, —=xp -z/P, {—-0—-), a,s functions of ~/P,
for a random selection of solutions with various (large)
fr. and various (small) P. Note that b, is around 5% of xp

for these solutions.

x:- pr

FIG. 3. The self-consistent "well, " —(f —g ), and
the solutions f, g as functions of the dimensionless
radius x—=px. The case shown here is K = j +2 =4 and

P = —v/p =0.093.
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however, is important. In Fig. 2, weplot -(f'-gs)
as a function of x. It is seen to be a narrow well
of depth of order 2 near the radius xD. The import-
ant difference between a self-consistent and a po-
tential well is that the former's position moves
with the spin quantum number K as well as the en-
ergy parameter P. The depth and width of the well,
however, are essentially independent of these
parameters.

Since the solutions in question here are very
localized in x= p,r, we may consider xD, defined by

g(xc) =0, as the radius of the solution. Figure 3
shows x, as a function of «/P for eight random sol-
utions. The quantity 6=x, —«/P is also shown.
That K~xDp is not really surprising, once the ex-
treme radial localization is established. In dimen-
sional units it means that j~(»)&ujf, and with
e ~Mc/jf we have j~(r)Mc. Considering that in
the region of localization f=g, which implies
g = g, then we see that the relationship in question,
i.e., K~X:xDp, only expresses the fact that we have
a thin ring of mass —~, rotating with a "velocity"
near c to produce an angular momentum j. How-
ever, that the equality K=xDp seems so closely sat-
isfied (n—=xc- «/P is only around 5% of «/P for the
solutions tested) is considerably more obscure.
Afterall, pp, -=- ~, the rotatingmass, is not equal to
the mass, and the contribution from the nonlinear
part, (I,/I, ) p in (2.11), is not negligible. In fact,
for large «and small P we have Py, = (I,/I, ) )t, that
is, the total mass of the soliton is shared equally
by the "particle" itself and the "potential. " This
is reminiscent of a virial theorem, but we do not
claim to understand it. The high degree of locali-
zation of the solutions, which is another ingredient
of the K=xDp argument, is much better understood
and will be discussed in the next section. We also
observed that f is linearly proportional to 1/v P.

In order to interpret these numerical soliton
solutions of the scaled equations (3.1), we repeat
what the mass and (scalar) coupling is in terms of
the solutions f and g. W'ith the definitions

I, ~ (I/P)(«lt3)' (3 5)

I2 («/p}

and from (3.4)

(3 5)I, =2yit'ds(«) ~ Wx,

since ds(«) is proportional to Wic We .find then for
solutions corresponding to the same y that

(3.7)

Solutions for one "theory, " i.e., for the same

y, thus have the property

—(XK
K

0
p

1 1
ax ~p «t/4 '

(3 3)

We show in Fig. 4 numerical solutions for f and g

in each case for a variety of P, under the boundary
conditions at the origin and infinity which make the
integrals I, and I, finite. The coupling y p,

' and the
mass M/p, were obtained for the solutions after
the fact. In other words, in order to get Regge
trajectories corresponding to one theory (one
coupling y), interpolation from the runs actually
obtained was used.

We now combine the features that f o-1/WP and

x, c- «/P and the fact that the localization of the sol-
utions is practically constant. We have from (3.2)
and Figs. 2 and 3

I -=+g x dx

-g' x2dx

we have

M/p, = p+I2/I,

(3.2)

(3.3}

f,g
2

0 80 BIO

y p' =I,/2d («)s (3.4)

(we drop the subscript of ys since y~= 0).
The equations (3.1) were integrated numerically

for various (positive and negative) values of «and

FIG. 4. Solutions f, g which correspond to the di-
mensionless coupling constant {yp2 =105) for various
K =j +$ as functions of x S». The curves (a) f =4.7/«"
and {b)p, r =11K are given for guidance. See text for
significance of {a) and {b) as approximations for height
and "radius" of solutions.
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FIG. 5. Soliton Regge trajectories. Shown are the
0-node solutions for both parities (+) and the first
daughter trajectory for + parity. The mass u is not
significant, but was chosen only to give the usual slope
for the top trajectory for this particular coupling (yp,

2

=10').

which correspond closely to one coupling constant,
yp, =10, for v=j+~ ranging from K=1 to K=16.
Since these are actual numerical solutions of the
scaled equations (3.1), they do not agree exactly
with yp,

' =10', for the reasons discussed above
following Eq. (3.4). However, all the solutions
depicted give this coupling to within 5%. Curves
corresponding to (a}f«4.7/~'~» and (b) x = pr
= lie'~' are shown as a test of the relations (3.8}.
For these solutions P was taken very close to
0.09~i' .

The linearity of the trajectories now follows.
From (3.3) and (3.5)

small and large. However, the stronger the coup-
ling„yp.', the larger the range of spins, a, for
which I6 or M/p is small. We therefore expect tra-
jectories rising linearly to larger spin values the
bigger we make yp.', corresponding to stronger
binding.

The trajectories resulting from numerical inte-
gration are shown in Figs. 5 and 6. In both figures
trajectories up to x=16 are shown, with the actual
ly computed points indicated. The bare mass p,

was chosen in each case, so as to produce the usu-
al slope of o' =1 GeV ' for small angular momenta. -

In Fig. 5 we see the top positive-parity trajectory,
the top negative-parity trajectory, and the first
positive-parity daughter. Note that for the coupling
yp. '=10' the trajectories start curving up at the
higher v values, but also note that for K =16 the
ratio of soliton mass to bare mass for the top tra-
jectory is of order —,', which is not sufficiently
bound for the arguments for linearity to hold. The
negative-parity top trajectory has generally the
same slope, but lags some 1-,' units of angular
momentum behind. This trajectory cannot be con-
strued to be an analytic continuation (or parity
partner) of the top traj ectory, a fact which is not
surprising considering the ~ic nature of the effec-
tive coupling and the discussion of our previous
paper. '

The straightening out of the trajectories for large
coupling is demonstrated in Fig. 6. When y p.

' is of
order 10', the trajectories are linear at least up
to &=16. Notice that in the yp,

' =10' case the soli-
ton-to-bare-mass ratio for ~ =16 is only about
1/6, so that the soliton is still very deeply bound
and the arguments for linearity apply.

M/ p = p+I2/I, = (1+C)p,
and from (3.7)

(3.9)

l5—

or

j=-y+n M
~ & I 2 (3.10)

la—
Thus, the trajectories are expected to be linear.

We have already discussed the fact that C =1, or
that the mass contribution to the soliton from the
nonlinear part, i.e. , p(I, /I, }, is about equal to the
mass contribution from the energy parameter,
i.e., p,p=-~. This does not directly affect the
linearity of the trajectories, as can be seen from
(3.9}, but it is a suggestive curiosity.

The features of the solutions discussed here
[Eqs. (3.5)-(3.8)j, which lead to linear trajector-
ies, are not exact, of course. They hold in par-
ticular in the region where p is small and x is
large. These are seemingly contradictory de-
mands, since they imply that M/p should be both

I i i i ) I » i t l

I 5 IO l5
M' (Gev')

FIG. 6. The leading trajectory with the self-coupling
y as parameter. In each case the "mass" p was chosen
to give a slope of o.' ~1 GeV 2 for small spins.
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IV. APPROXIMATE SOLUTIONS IN CLOSED FORM FOR
DEEP BINDING AND LARGE ANGULAR MOMENTUM

The numerical solutions obtained in the preceed-
ing section for deep binding (small P) and large
angular momentum (large x) have the important
feature that f and g are appreciably different from
zero only in a small range of x around x„the ra-
dius at whichg vanishes. From Sec. III x, =x/P
»1 in that regime. This feature allows us to con-
struct approximate solutions in closed form char-
acterized by K, p, and x, .

We begin by approximating the scaled differential
equation (3.1) for f and g by

f—+—(I+P)g+(g -f )g=o,df K 2 2

dX Xp

—+—g+(I - P)f+(g -f )f=o,dg K 2 2

dX Xp

(4.1)

with the condition g(x, ) =0. The error made in this
approximation is of the order of 1/x and de/x„
where hx is the range of x where f and g are ap-
preciably different from zero.

Equation (4.1}can be put in the suggestive form'

d BH

dX eg (4.2)

~=(f'- g'},
8=tanh '(g/f).

We have
I

H=-,' - —Zsinh28- (1 —Pcosh28)J+ —'g'
Xp

For H = 0, we express J' in terms of 8:

2K8=—sinh28+2(1- Pcosh28),
Xp

f '+g 2 =J cosh28

(4 4)

(4 5)

+—(cosh228 —1)' ~~ —2P cosh28+ 2

where
1

H = fg—+(—1+—P}g' (1 —P)f-'+-'(f'- g')' .
Xp

(4.3)

It follows that H is independent of x for a solution
of Eq. (4.1). Solutions of (4.1) which are integrable
must correspond to the H =0 contour in the f-g
"phase plane. "

It is convenient for the present to define

It is clear from (4.3) that the maximum f'+g'
for H =0 must occur when f'=g'. This means that
cosh'8= sinh'8 and 8 = tanh '(g/f} is large. In order
to get a feeling for the nature of the solution of the
approximate equation (4.1), we identify the max-
imum of the density f'+g'.

Kf '+g ' = 2 cosh28 —2 P +—cosh'28,
Xp

which clearly has a maximum when

1
2 cosh28 =

P V K/Xp

at these two values:

I/2n'f'+g'=
pox x

I/2(2P+ 6')= 4 P,

(4.7)

(4.8)

(4.9)

4 = [1—p(cosh28 —sinh28)- n'sinh28]

+ {[I—p(cosh28 —sinh28)- n 'sinh28p+ 4H 'j' ~

where 6'—= P —x/x, = h(P/x, ) (see Fig. 2). Since
n' =- p- x/x„for x positive, the larger (-,' n') peak
occurs when x& x, (sinh28& 0). For x negative,
x& x, (sinh28& 0) gives the larger peak.

A good example of the two peaks is seen in Fig.
1. The ratio of the two peaks is seen to be about

3 The square of this ratio is about 40. This,
according to (4.9), should be equal to 2p/n'. Now
in Fig. 2, we established the numerical fact that
~'=0.05P for all solutions, which also gives the
ratio 2P/n'= 40. Furthermore, when f=g,
f = I/&8P from (4.9). For the cases of Fig. 1,
I/$8P =3, since P=0.14 for these solutions. So
we see that the solutions of (4.1), which are the
full equations (3.1) with (x +1)/x replaced by K/xo,
are an excellent approximation to the solutions of
the full equations (3.1), at least in the regime of
small p and large K. The important parameters in
the solutions of (4.1) are seen to be P, x, and
n'=—P- x/x, . Of course, in the full equations (3.1)
P and x are input, but x„defined by g(x, ) =0, i.s
output for integrable solutions. Therefore, 6'is
not a parameter in the full equation. The dis-
cussion in Sec. III makes it very plausible that P
= x/x, and that n'should be small and positive,
since it is related to 1 —v/c. What is not clear is
how we might predict its numerical value (=0.05P},
and that is why we are treating 6'as an independent
(small) parameter in the approximate equations
(4.1).

We finish this section by giving the explicit solu-
tion of (4.1), that is of f and g as functions of x = pr
with P and b' parameters.

From (4.2) and (4.3) we have {for x&0)

x cosh28 . (4.6) (4.10)
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—=-2p J(sinh28- cosh28}- 2n'4 cosh28.
dJ'

dx

(4.11)

Eliminating 8 from (4.10) and (4.11) and inverting
the differentia, tion gives

tanh8 =—

x tanh(1 —P')' ~'(x —x,), (4.13)

where

The densities f' —g'=7 and f'+g' =J cosh28 can
now be obtained using (4.5) and (4.6). The "kink"
in g/f is then given by (1»p»n)

tanh8= (1-n'}tanh(x —x,)

so that
1+tanh'8cosh28=, = I/n'.

(4.14)

We see that g/f should differ significantly from
+1 only when ~x- x,

~

is of order unity or smaller.
Again, the typical solutions of Fig. 1 show this ex-
treme localization of 1 —

~ g/f
~

very clearly.

V. DISCUSSION

The picture which has emerged from these clas-
sical solutions of the nonlinear spinor field is that
of a thin ring, with thickness of the order of I/p,
the bare mass of the fermion field. The mass is
of the order 2+, where ro represents the rotating
mass. The radius of the ring is slightly larger
than j/u, where j is the orbital angular momentum.
Thus the orbital velocity is of the order of v/c = 1.

d8

([I —I3(cosh28 —sinh28) —n, 'sinh28]'+ 4H ']' ~' .
0

(4.12)

This integral can be inverted' in terms of elliptic
functions. For the case with integrable solutions,
H =0, the result is simple. We have

For large self-coupling cv/p can be made arbitrar-
ily small, but it increases as Wj. Since the mass
of the "bag" stemming from the nonlinear term
remains proportional to the rotating mass, we find
that the total mass increases proportionally to
vj. We then obtain Regge trajectories, linear in

the mass squared, at least up to angular momenta
which keep ur/p~ Wj small. These soliton solu-
tions are absolutely stable and represent classical
concentrations of field, with some particle prop-
erties. Confined solutions in two-dimensional
space-time of the four-fermion interaction have

been presented in the literature lately, "and the
question was raised of whether the four-dimension-
al version has similar solutions. In the two-di-
mensional problem, there is only one solution.
What we have found here, however, is a much
richer spectrum, consisting of linearly rising
Regge trajectories of both parities, as well as
daughters. This has considerable implications on
what states should be considered "classical" and
what states should be considered quantum excita-
tions.

The relevance of classical solutions of nonlinear
field equations to the quantum system have been
studied extensively by various techniques. ' In
general, for renormalizable theories, the classi-
cal solutions can be considered a good starting
point in considering quantum effects, at least in
the weak-coupling limit. ' For the nonlinear spinor
field, some two-dimensional models have been con-
sidered semiclassically. In one case, where only
one positive-energy state is allowed, there seems
to be no correspondence between classical solutions
and the mass spectrum found by the semiclassical
method. " On the other hand, for the case which
allows both positive- and negative-energy solu-
tions, '" the connection is complete. In four (3+1)
dimensions, the MacDowell symmetry relates
solutions continued to negative energy with posi-
tive-energy solutions of opposite parity, and
thus may have bearing on the question of the rele-
vance of classical solutions to quantum systems.
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