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This work is a prelude to a phase-shift analysis of m W ~em X which we are presently performing. %e hede
review the partial-wave isobar formalism for the above process and introduce the notation being used in our
analysis. %'e compute the partial-wave projections of the one-pion-exchange diagrams because we hope to use
the high-partial-wave contributions of these diagrams, which are not modified by the interactions, to remove
phase ambiguities in the partial waves being varied. A study of the low partial waves, even though they
violate unitarity badly, gives modest insights into the results of previous partial-wave analyses.

I. INTRODUCTION

Single-pion production at intermediate energies
is an important source of information concerning
meson-baryon resonances. One can obtain from
its analysis partial widths of known resonances
and, perhaps, discover new resonances that might
be difficult to identify in an elastic phase-shift
analysis. Recent theoretical advances have gene-
rated considerable interest in this process. In
particular, a proposed connection between current
and constituent quarks' can be tested through the
magnitudes and signs of amplitudes for pionic
transitions between hadrons. ' Equivalently, modi-
fied versions of SU(6)~ classify baryon resonances
and at the same time predict amplitudes for reac-
tions of the type

pN- pN,

etc.' From the experimental side, gX- gplV data
in the region up to 1 QeV above threshold have
grown in abundance to the point where they may
be able to support detailed partial-wave decom-
position. Such an analysis has recently been per-
formed by a Berkeley-SI, AC collaboration (BSC}'
in the framework of the standard isobar model. '
Their fit began with the 60 partial waves with
final orbital angular momentum ~ 3 for the quasi-
two-body processes described by (1.1). The BSC
result was a fit with 28 of the 60 partial waves.

Our collaboration is preparing for an expanded
analysis of an enlarged data set. We hope to in-
clude two important nese features in our fitting
procedure. First, we shall incorporate unitarity

and analyticity into the isobar model. In general,
this modification results in subenergy dependence
of amplitudes assumed to be constant in the stand-
ard isobar model. " A simplified version of the
methods we shall use has already been applied to
an analysis of the three-pion system', we shall
discuss this subject in more detail in another
note. The second new feature, which we shall
discuss here, is the use of the one-pion-exchange
(OPE) diagram in the fitting procedure In 1.958
Chew and Low' suggested that OPE could dominate
gN- ggN in certain kinematic regions and many
other authors" have persued the idea since then.
We propose the inclusion of the higher partial
waves from OPE as background in the fitting am-
plitude as a method of removing the overall phase
ambiguity in the partial waves being varied, as
well as to account for the peripheral part of the
amplitude. The procedure recommended is, of
course, analogous to that used in obtaining the
pion-nucleon coupling constant and the low-partial-
wave amplitudes from low-energy nucleon-nucleon
scattering. " For example, if we were dealing with
spinless particles, we would expand an isobar am-
plitude E(p', q', cos8) in the form

7

(8', ',8)8= Pcos(s2 l)f((s', )8P,(8s )coo

+ B(P', q', cos8)

—g (21+ 1}b)(p2,q2)P, (cos8)
ted

(1.2)

In (1.2) above, 8 and b are the Born approxima-
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16 ISOBAR FORMALISM AND ONE-PION-EXCHANGE. . .

tions of P and f, respectively, and we have ex-
plicitly assumed that for /» l, the partial-wave
amplitudes f, are not modified by the interactions
and may be replaced by their Born approximations.
In the nucleon-nucleon case, l was one of the
fitting parameters; gN - gal% is a much larger
problem, and the parameters equivalent to l
cannot be varied. Instead, we shall use the meth-
ods of the Appendix to determine at which point
one may replace the partial-wave amplitudes f,
by 5

A detailed description of our version of the iso-

bar model is given in Sec. II. In Sec. III we give
expressions for the partial-wave OpE projections
and for the contributions of each partial wave to
the cross section. [See Eqs. (3.14) and (3.27).] In
Sec. IV we calculate numerically the contribution
of each separate OPE partial wave and compare
the results with the contributions BSC find from
their fit to the data. An interesting discrepancy
is observed in the case of the PPIJ p waves. Some
preliminary results showing the effects of includ-
ing analyticity and unitarity are discussed in the
Appendix.

II. ISOBAR MODEL

Before discussing the isobar model we first give a brief review of the conventions. Following pilkuhn»
(or Bjorken and Drell"} we define the transition (T) matrix in terms of the S matrix by

St( = 5t(+ (2v)'t5 (P~ —P()T~, ,

where the unitarity statement is

sst=s's= &.

%e are using the normalization convention

and thus the n-body phase-space element is given by

SA 1
qq'"'=(q }'q'(}'z— q, 11 „}q]I}(q}'qq'qq q'(q, ' —,.'},

A, f=j. ],=1

where NA is the number of identical particles of type A,

5'(q, ' - m, ') = 8(q,o)5(q, ' —m, '),

(2 1)

(2 2)

(2 3)

(2 4)

and for bosons q, =1, while for fermions q, =2m, .
Working in the overall center-of-mass (c.m. ) system, the total cross section o(t„t„t, ; t„t„) for the

reaction v(-p, t,}+X(p,s, t„)- v(p„ t, )+ v(p„ t,)+ N(p„r, t,) may be written

(2.6)(„q.q, .}; qq}}=M(qo}q}'g f qq"'}(p, „qq., }q«.lqlq, q, q}}*,
Ss f'

where M is the nucleon mass and W is the c.m. energy. In Eq. (2.6) s and r are the s components of the
nucleon spins and the t's are the third components of particle isospins. The usual Feynman rules" are
used in constructing matrix elements such as (T&. Integrals over phase space are evaluated using E}I.
(2.4) with no additional factors.

The isobar model is defined by choosing a, particular form for the T-matrix element in Eq. (2.6). It is
assumed to factor into a part describing production of a particle and correlated pair (isobar) from the
initial pion-nucleon state, and another part describing the propagation and subsequent decay of the isobar.
For example, considering only the q, p, and 6(1236) isobars and for a given total isotopic spin I we write

( tp„p, t„p,t,
I
T'I p, st„t,&= T', + T'o+ Tl~(1}+T~(2),

with the arguments 1 and 2 of T~~ referring to the spectator pion:

(2.7}

(2.8)

In Eq. (2.8) above and from this point on we adopt the convention of BSC that in any Clebsch-Gordan" co-
efficient the fermion always appears first. Continuing, we have

e"~«»' sin
Tq= Q (p3rt}1fq1ps& W, , , ' " V„(p„p,)(i~i, t, tq1IT&(i i, t, t, 1i~t,&(isi, t„t, lIT&, (2 8)
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e"'"»'sin5 qr', (l)=g &p, qlfQps) w, , ' " ~„(p,pr)&t, t,t,t, lfr)&t, t,t t, lt, t,)&t„t,t„t, lfr&,
~23

T'(2) = TI~(1) with 1=2,
where

W = W'-2W(d, +m

(u; =(p,.'+m, '}'t'.

(2.10)

(2.11)

(2.12)

In Eqs. (2.8)-(2.11) q, , is the magnitude of the three-momentum of particle t or j in their own c.m. system;
5, is the I=O, J=O p-7E phase shift, 0, is the 5=1, J= 1 „-~phase shift, and 5~ is the I= 2, J= 2 EE-N phase
shift. The functions V„and h„are spin wave functions of the p and d mesons, respectively, "where p, is
the z component of spin —the function V„shall be discussed in more detail below.

We now expand Eqs. (2.8)-(2.11) in partial-wave amplitudes which will contain the fitting parameters of
the analysis:

(P ~l filPs) = g [(v, , )'"/Z, , ]ff(J, I, I)&I —,'m'rlJM& ~. ..(t,)y,.(P)&I —,'~sl JM),
cd gl', m, E, m

(2.13)

[(' &'"».~]f (Jj I' I&& 'I"l-f~i&&I'f~'~, IJM»~;(t'. »~-(J'&«'~slJ~&
Z, u, E', m'

E~ m~ J'pm'

(2.14)

& pelf', l
ps)= g [(v„)"'/z,, , jy', (J, l', I)&I' ,'m'ql J-M&y, ,~(p)r,.(j)(l-,'msl JM&,

E', ne, E, m

(2.15)

where we have suppressed momenta momenta in the partial-wave amplitudes. The functions v, . are bar-
rier-penetration factors defined by Blatt and %'eisskopf"; these factors have rapid dependence on the iso-
bar mass (subenergy). Having explicitly removed them, one may hope that the remaining factors in the
partial-wave amplitudes, f~„ fr„ f~~, etc. , are slowly varying functions of subenergy and may, perhaps, be
approximated by constants for fixed total center-of-mass energy W. In the BSC analysis it is the f's
which are taken as the constant fitting parameters at fixed W. The normalization factors R in Eqs. (2.13)-
(2.15}are given by

O'-AI s1n'5z, , =t(w), w, 'dw, (2.16}

h(w} ~", sin'6, (q»)R p3 ~ 3 z VE
2t &12

a(W) ~-" , sin'6, (q»)~h! 3 ~l l l 3
u+I

(2.17)

(2.18)

1 m ' p"'W'=32 W (2,)
. (2.19)

With this choice of normalization, in a given isospin channel I, the cross section of Eq. (2.6) in terms of
the partial-wave coefficients takes the form

&m h& W& S1n25
a = — P (J+ —') ' ' w'dw ' " lf (J I', l)l'u

+ pw'dw ' ' lf (J' jf', l)l'v ~

p, E' 2p ~12

+ 3, p, W, 'dW, ~, "
l
fr~(J, I', l)l'v, .+overlap integrals

b, , E' N+„~23 (2.20)

In the above equation the overlap integrals contain phase-space integrations over products of amplitudes

f,* f~, etc. ; these are discussed in detail elsewhere. " The normalization factors p pp and pQ havebeen
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chosen so that in the zero-width limit Eq. (2.6) yields

+ (~+~}&lf'.(~ I' t)l'+lf!(~ I I' I}l'+2lf.(~ I' I)1}
J, J, L, 1

(2.21)

and the partial-wave amplitudes f„ f„and f~ can thus be identified as those amplitudes which BSC plot on
their Argand diagrams. In general, for finite-width resonances the f's are complicated functions of the
isobar mass [W, of Eq. (2.12)].

III. ONE-PION EXCHANGE

We now calculate the contributions of the one-pion-exchange diagram (shown schematically in Fig. 1) to
the partial-wave amplitudes fr and ft of Sec. II. This contribution is given by standard Feynman rules as"

g+ (p3)Art +(P )3II1,2 1,2 t l tl )2 (3.1)

with g'/4m=-15 and

., „=—g tp, ,(2I+ l)[32v(s„/(s,.—4p, '))'~' exp(i5,',") sin5,' ]P,(z„),
gl g

(3.2)

where s„ is the square of the c.m. energy of the pp system, z„ is the cosine of the c.m. scattering angle,
and the 6,. are vv isospin projection operators. We keep here only the i'=1=0 (e) and i'=I= 1 (p) contri-
butions to the sum in Eq. (3.2). The isospin content of Eq. (3.1) is expressed by the matrix element

&I,'I,'t.
I
r„~;II"I,) = &I,'I,'I ~; It, t,&«, lr „lt"&. (3.3)

which may be expanded in terms of states of definite total isospin I and third component M. The expansion
coefficients form a unitary matrix whose elements are Clebsch-Gordan coefficients. We thus write

&tltlt Ir, d I'"' &= p &' lt"I IIiif&&iltltlli'I'&(li" 'II Itif&s&if'iIr, IIMI) (3.4)

Using the Wigner-Eckart theorem, "
(t,

l
r, It")=&3exp(it, y)(-,' lt, t, I-', t"),

and expanding in states of total isospin we obtain

& I'I:
I
s ' It t.&

= &»I'I'I I'I'&&»I t. It'I'& '

substituting (3.5} and (3.6) in the right-hand side of Eq. (3.3), with the choice y = 0, we now obtain

(3.5)

(3.6)

(3. t)«'I'I
I
r ~, ~r

I

I"t.&
= ~3 &-' It.t.

l
-'I"&&»I'I'li'I'&&»t. t.

l

t'I'&

Comparing (3.4} and (3.7), multiplying by the appropriate Clebsch-Gordan coefficients, and summing over
third components, we have the result

&IMt lr~, lIMI&=~~ g &l it t. l
2'"&&ll' I I&"&&l »"I II~)(l""III&=

Vga 3

y~(, = (-1}'[2(2i'+ 1)]' 'W(1 I 1 ~; 2 i'),
(3.8)

where 8' is a Racah coefficient and the notation has been chosen for its consistency with that of Rose." We
shall hereafter refer to X,, as an isospin recoupling coefficient. We have been careful to use a Baryon-first
convention in our Clebsch-Gordan coefficients and thus our result for the recoupling coefficient is identical
to that of BSC. For I=-,', X, =-I/W3 and X, =-v'2/3; for I=-,', y, =+ I/W6.

Comparing Eqs. (2.8) and (3.1) we have

&p,~ling ps&=~3x', 16vg~, (p,)r,~,(p)(p'- t) ' (3.9)

where we have replaced ff of Eq. (2.8) by its Born approximation b~ We now c.alculate v1V -eN "cross
sections" for each partial wave using Eq. (2.20) without the overlap integrals, together with the partial-
wave expansion Eq. (2.13). The partial-wave functions b~(J, I', I) normalized to the BSC Argand diagrams
are obtained by projecting



RONALD AARON et nl. i6

&&, , '&u, ,&'~'&', &s, &', &&= I d&&&, f a &&&&& m'''rlJ &&&&&. , &&",&&yr&l, &ps&&', &&»& '&ws&z I&.
m, m'

(3.10)

Using the relation

&r~v k~s}=Q W3& —,'1sp~ —,'~}b„*, (3.11)

the integrals over solid angles and sums over Clebsch-Qordan coefficients can be evaluated to yield

I % I

R '(v )'~'b~(Z l', l) = C~, [6(21+ I}]'~'&/100
~

i'0) W( —' IJI; —' l') P
p

where

(3.12)

b(P„P, z) =(~' f) '-
z=p'p„a=(2E&E& + p,

2 —2M2)/2pp3,

(3.13a)

(3.13b)C~ ..=16vR. ..[3(E&+M)(E~ +M)/8M']'~'y, g.
The dependence of CI .. on 8', through E+ is sufficiently mild that we may consider it constant. From Eq.
(2.20) we identify the OPE partial cross section o ~ (J, l', l) for the reaction vN-e N as

(7'(J I' l) = (Z -') [ W 'dw ' " ~b'(Z, l', l)~'5 (3.14)

We now derive equations similar to the above for the vN- pN case: The equation analogous to (2.9}is

r ~~ z s7 (p )you, (p) [ 8vW3e"&'"»&sinb, (q»)] (3.15)

where y~ is obtained from Eq. (3.8). We have cho-
sen to go off-shell by replacing P,(z„)/q„ in Eq.
(3.1) by V V'/q»', where V( V') is the relative mo-
mentum of the two pions in their own c.m. system.
Thus, in Eq. (3.15) V, becomes the spin wave
function of the p and A becomes the z component
of spin. Aaron, Amadp, and. Young~ have shown

that in an arbitrary j orentz frame

b K ([k —(b' K/K ') K] ' K)
K Ko(KO+ W)

E=k, +k, ,

2k=k, —k, ,

W =K

E' —E =K0

(3.IV)

In Eq. (3.17) b, and b, are the pion momenta as-
sociated with the p-2p vertex. For the OPE dia-
gram described by Eq. (3.15), V and V' are

(3.16} p'p3
m p m, ((op+ m p)

m, '=(f -P,)',
&d, = ( p, '+ m, ')' ',

(3.18)

pll s tll

I

I

I~
I

I

p, r, t

1 '& (pl p2 )
V =2(P& —P2)-2

( ) P3 ~

(dp CO@+ AVE
(3.19)

By comparing Eqs. (3.15) and (2.9) we see that

& 48vg~„(p')r, u, (P) Vp, ~XI b,
I
ps

FIQ. l. Schematic representation of one-pion-exchange
Born term. (3.20)
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In terms of Pauli syinors the above equation may be cast in the form

& P3~X Ib. jps) = e»-p& X,o ' PX, + ~pp P)Xr o 'Psxs + &pzpps))xro 'pxs+ +p3pqpp)(X)' o 'PSX

with

(3.21)

Cr b(P. ,P, z)
PP P Ep+

Cr b(P, P, z)
P3P P g

Cr b(ps)p) z}
E +M

P3

P P3 +0 — Cr b(P3)p, z) P p, (dp

Pl p

(3.22)

where b(p„p, z) is given by E(I. (3.13) and

C,'= 48r([3(E,+ M)(E, + M)/4M']"'Xr g

The partial-wave amplitudes are now given by

R, , '(mv, )'~ ((z)j')', ()=, I Jd()) ' d() ()')' &lz)(')( —')ra)) &)

m& m', mg

x y) „(p,)&pp&jbr, jps}I', (p)&4mz 1&M).

Using E(I. (3.11) and

(3.23}

(3.24)

P.p. = —, PP. g ~.(P)I;.(P.), (3.25)

we finally obtain for the partial-wave amplitude

// '(2r), )' 'br(Z j, /')/)=Cr[6(2/+I)(2/'+1)(2j+1)]'r'(-I)' ' '
2

x g &/'100 jAO)&/100 jAO} b, .(p„p) — p' ' b~(p„p)
A

+ ' g ((1AOO
j
XO))'b„(P„P)E,+M m, (d, +m,

2

E +M

Q (&1/00
j
XO))'b,(P„P)

E~ +M m, v+m,

A1l'
x W(2 ld/', iA)W(2 1~4 a A)- ' b))(p, P) 12j (3.26)

where

is a 9-j symbol. " In terms of E(I. (3.26) above the OPE partial cross section (rr(J, j, l', l) identified from
E(/. (2.20) is

O' N

,'(Z, j, /', /}= —', Z+ — ",t,W, 'dW,
' ', " jb', (Z, j, /', /)j' (3.2 /)P'

p, S
'

~2g

In calculations of (rr, and o r [E(/s. (3.14} and (3.27), respectively] the normalization factors // appear in the
Born terms bl and br and thus cancel from the equations.

1V. CALCULATIONS AND DISCUSSION

We have programmed E(/s. (3.14) and (3.2/) and

evaluated the partial-wave cross sections in the

energy range 1300 to 2200 MeV. The above cal-
culations include as input the 1=0, J= 0 (z} and
I=1, J'= 1 (p) 7(7(phase-shift analysis given by re
cent data analyses. " Because of uncertainties in
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30
E

b

l7 l8 l9 20 2l 22
}N {Gev)

FIG. 6. Partial-wave "p" cross sections vs total
center-of-mass energy W.

tiplying the I= —,
' ones by &. For the three pro-

cesses

7T P 7T 7T

7T P 7T 7T P

7T'P -
7 '7T'P

the p cross-section contributions are found from
the figures by multiplying by —,', 8, and 8. The
q contributions to 7T p-7T'7T n are found by mul-
tiplying the curves in Figs. 2 and 3 by 9

The unitarity limit at W= 2.0 GeV is about (J+ —,')
& 2 mb. One sees that the three largest pX partial
waves SSll»„PP11,&„and DS13,&, violate the
limit badly. Pion-nucleon dynamics must modify
those partial waves substantially, but one expects
them to remain important. The first and last are
indeed important in the BSC fit, but the second is

not kePt. The PP13,„partial wave, large in I'ig.
6, is also omitted in the BSC fit I.nstead, of these
partial waves, they include in their final fit the
channel-spin--, ' partial waves PP11

y
and PP13

which are small in Fig. 6. It should be noted that
another (Saclay) &hi'- zvIV analysis" disagrees with
the absence of channel spin j=

& p found in the BSC
fit. The absence of the j=-', P-wave coupling in the
BSC fit motivated speculation by Faiman" of sup-
pression of the longitudinal p-N coupling, later
abandoned" in view of the Saclay result. One
would expect the OPE calculations to be definitive
on the cha, nnel-spin —,

' vs & question since it is dif-
ficult to imagine any known dynamical mechanism
inverting such large ra,tios as those in Figs. 5 and
~. The major QPE partial wave not included by
BSC is the GD173]2, its cross section reaching
40%0 of the unitarity limit at - 2 GeV, and thus ac-
counting for about 80% of o' —o„. The partial-
wave cross sections of Figs. 5 and 6 may be com-
pared with the results of Amaldi and Selleri. "
These authors compute the sum over pN states
for given 8 (up to and including G waves) both for
the one-pion-exchange diagram considered here
and for a unitarized modification. Their sums
agree with ours when comparable.

Since Ell. (3.26) is rather complicated we checked
it for the four PPIJ,. p waves in the helicity forma-
lism using the QPE formulas of Qasiorowicz" in
the parity- conserving, partial-wave helicity am-
plitudes of GGLMZ, "and then coupling these to-
gether to form L-S amplitudes by the, prescrip-
tion of Herndon et al. %'e obtain directly the re-
sult (k is the vN relative momentum; q is the piV

relative momentum)

E)=E C~,Q, ~ + E . C, ,@,a,k+ g E,+M

(4.1)
a = (2 M' —p' —2 E,E + k'+ q')/2kq,

l2—

l

14 15 l7 l8 l9 20 2l 22
w {Gev)

FIG. 7. "p" cross-section differences vs total center-
of-mass energy W.

where C» and C, , are given in Table I. Equation
(4.1) agrees with Eq. (3.26) when the Clebsch-Gor
dan coefficients, Racah coefficients, and 9-j sym-
bols are replaced by their algebraic forms in the
latter equation.

Qur results have important implications for 7T7T/

analyses. The cross sections of Figs. 2-7 may be
compared with the experimental cross sections.
These are shown in Ref. 5, and in the energy re-
gion 1.5 to 2.0 QeV, the n7T g', P7T 7T', and n7T+7T'

cross sections are roughly 8 mb, 5 mb, and 9 mb,
respectively. One can see from the above figures
that o' —o, and o' —cr„contribute 10 to 15% of
these cross sections at the high end of the range.
In view of these results we suggest that a sensible
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TABLE I. Coefficients of the Legendre functions of the second kind in the helicity decom-
position of the I=2, /=1, /'=1 partial waves.
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procedure in fitting gX- pe would be to add to the
partial waves whose amplitudes are being varied a
background term made up of the remainder of the
two one-pion-exchange diagrams (vN-gN and vN- pN). The GD17 wave is so large that we would

probably include it among the waves being varied.
(Alternatively, one could estimate absorptive cor-
rections by the methods of the Appendix. ) Be-
cause the phase of this background is known, one
can determine in terms of it the phases of the qN,

pN, p4, etc. , partial-wave isobar amplitudes.
Since even without the GD17 were the OPE back-
ground contributes 2 to 2% of the cross section,
it can easily contribute a considerably higher per-
centage of the amplitude, and thus could provide
a reliable standard against which to measure par-
tial-wave isobar amplitude phases. By compari-
son, the BSC analysis determined the same phases
by following energy-independent partial-wave iso-
bar-model gN - pgN fits with simultaneously-cou-
pled-channel, energy-dependent E-matrix fits to
the elastic and isobar amplitudes. In addition to
the BSC analysis discussed above, there are also
detailed partial-wave analyses by a 3aclay group
mentioned earlier" and an Imperial College"
group. The results of all three analyses were re-
cently summarized by Barnhum" and their pN re-
sults were compared to a preliminary calculation"
of our six most important pW partial waves. Vfe

reproduce here in Table II Barnhum's pN wave
comparison ~

Another important reason for including peri-

TABLE II. Comparison between QPE (pN) cross-sec-
tion predictions and the corresponding results of phase-
shift analyses. For each I, we list the six largest par-
tial waves. The symbols used and their meanings are:
X, not found to be necessary; F, found at a number of
energies; S, strong enough to determine signs.

Theory Experiment
This paper Berkeley-SLAC Saclay Imperial College

I=—12
(1) DS133(2
(2) ssi i,~,
(3}PP113/2
(4) EPPES, &,
(5) PP133)2
(6}SD113g2

s

X
s
X

s

s
s

s

I=—32
(1) DS333(2
(2) SS3i((2
(3) PP313gg
(4} FP353&,
(5) pp33»,
(6) SD31„,

F

X
s
X
X

F

X
F

F
s
E
F

pheral OPE in fitting is the sizable angular depen-
dence it is capable of generating. Even when it is
responsible for a small fraction of the cross sec-
tion we have found that in some regions of phase space
it can dominate the amplitude. Also, recent work
has indicated that QPE with I=2 pg contributions



16 ISOBAR FOR MALISM AND ONE-PION-E XCHANGE. . .
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FIG. 8. (a) Coupled integral equations for mN xV and mN 7rh. {b) Integral relation for obtaining pN xN amplitude
from solutions of integral equations shown in (a).

may be important. "'" We believe that fits neglect-
ing peripheral QpE are suspect. The procedure
recommended of including peripheral QPE is, of
course, analogous to that used in fitting nucleon-
nucleon scattering. We are in the process of try-
ing it in the pN- pe problem and hope to report
on the results in due course.

Note added. After completion of this paper we
were informed of a. study (unpublished) by D.
Novoseller of the effects of QPE on the isobar
analysis of gN- pmN. He has made significant pro-
gress on the problem, and we are grateful to him
for enlightening conversations concerning his re-
search.

APPENDIX: UNITARIZED ISOBAR AMPLITUDES

We have performed preliminary studies of uni-
tarization and subenergy dependence of isobar
amplitudes using (unpublished) information con-
tained in earlier elastic pN calculations by Aaron
and Amado (AA}." In particular, we have examined
the isobar amplitudes for production of p and 6
states that connect to an initial pN D» state at
total c.m. energy W= 1520 MeV. (The qN state
which is produced in a P wave from the initial D„

state was found to be relatively unimportant at
this energy. ) These amplitudes were obtained
using a dynamical scheme that incorporates an-
alyticity and three-body unitarity, and the results
obtained for the elastic D» amplitudes were in
reasonable agreement with experiment for ener-
gies 1400 MeV & 8'& 2000 MeV." The coupled
integral equations shown schematically in Fig.
8(a) were solved numerically to obtain half off-
shell amplitudes for the processes gN- gN and

The gN- pN amplitudes were then ob-
tained by integrals over the previous amplitudes
as shown in Fig. 8(b}. The DS13,I, pN isobar am-
plitude is shown in Fig. 9 (see Ref. 32) along with
the corresponding Born term given by Eg. (3.26).
ln Fig. 10 (see Ref. 32}we show the AA vd, DS13
and DD13 amplitudes. There are several interest-
ing features to note in the above figures:

(1) The DS13,&, pII amplitude is remarkably
constant as a function of subenergy, much more
so than the Born term itself. It is essentially pure
imaginary as is the BSt solution, but smaller than
the latter. Note the linearity of the Born term as
a function of q' (where q is the relative momentum
in the isobar c.m. system).

(2) The DS13 vb amplitude is a rapidly varying
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FIG. 9. Isobar amplitudes for production of pÃ (chan-
nel spin z) through the D13 ~N partial wave vs q @ is
the three-momentum in the n-m c.m. system) at total
c.m. energy 8'=1520 MeV. The isobar mass is given
on the upper scale. The straight lines are interpola-
tions of the theoretical points shown as black dots. The
corresponding Berkeley-SLAC amplitude DS133y&= 0.114
+0.315 i =a+ib is indicated on the graph. The dashed
curve shows the Born term given by Eq. {3.26) of the
text.

function of subenergy. The linear dependence on

q is striking and was suggested in a previous pa-
per. '

(3) The DD13 vb, amplitude of AA is near zero
and is thus inconsistent with BSC. The AA result
seems reasonable in view of the ranges of the
forces involved, the nearness to pd threshold, and

the fact that all obvious Feynman diagrams en-
hance S-wave production relative to D-wave pro-
duction of g4 near threshold. It is possible that
strong, very-short-range (quark?) interactions
not included in the AA calculation make the DD13
&4 behave in the manner obtained by BSC, but it
is more likely that their large D-wave amplitude

-0.4—

I

3 4 5

q /rn&

FIG. 10. Isobar amplitudes for production of ~h
through the D13 mN partial wave vs q2 (q is the three-
momentum in the b, c.m. system) at total c.m. energy
%=1520 MeV. The isobar mass is given on the upper
scale. The straight lines are interpolations of the theo-
retical points shown as black dots. The corresponding
Berkeley-SLAC amplitudes {independent of q2) are
DS13 (6) = 0.026 —0.120 i =—a +ib, and DD13{4)= -0.042
—0.226 i —=c+id, and are indicated on the graph.

is an artifact of their model, particularly their
neglect of unitarity.

The above results indicate that the subenergy
dependence of isobar amplitudes may be studied
in available dynamical models. Furthermore,
even tlough the subenergy dependence of these
amplitudes may be considerable, it may also be
of a simple functional form (i.e. , linear in q') and
thus may be treated relatively easily in data
analyses.
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