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Based upon the invariance of SU{2) SU(2) and SU{3) SU(3) for asymptotic momenta, we first derive

constraints on certain strong and electromagnetic exclusive scattering processes, where all the hadrons are
viewed as fundamental fields. Then we consider asymptotic SU(3) SU(3) for meson-meson and baryon-baryon
fixed-angle, elastic scattering in the Landshoff model, wherein the hadrons are viewed as bound states of
quarks and antiquarks. We find that that part of the pseudoscalar-pseudoscalar scattering amplitude which is

a function of the center-of-mass scattering angle only is just the average of the analogous functions of the

scattering angle for the independent nonzero helicity amplitudes for vector-vector scattering. Finally, in the
case of baryon-baryon scattering we find that total baryon helicity is conserved.

I. INTRODUCTION

Approximate chiral symmetry has been used
extensively in previous years to study a wide class
of hadronic processes. For a comprehensive dis-
cussion of departures from chiral symmetry at fi-
nite momenta we refer the reader to Ref. 1. In the
present article we move into the realm of asymp-
totic momenta and explore the consequences of
exact SU(2) SSU(2) and SU(3) 8 SU(3) invariance.

In article I' we used the homogeneous renor-
malization-group equations to discuss the condi-
tions under which chiral symmetries become ex-
act at asymptotic momenta. We considered as our
prototype the chiral SU(2) SSU(2) o model and al-
lowed for both spontaneous symmetry breaking and

explicit breaking of the symmetry by a term in the
Lagrangian linear in the cr field. Further, we
checked our results to two-loop order in pertur-
bation theory.

The lesson which we learned is that if the ex-
perimentally observed hadrons are viewed as
fundamental entities, then under suitable condi-
tions at asymptotic momenta all mass parameters
scale to zero and hence all ehiral-symmetry
breaking vanishes. We also noted that this does
not necessarily hold for the observed hadrons
viewed as bound states of more fundamental had-
rons (perhaps quarks and antiquarks). Experi-
mental data seem to favor the description of the
observed hadrons as bound states as opposed to
being fundamental; therefore, all subsequent dis-
cussions based upon the description of the hadrons
by fundamental fields should be considered more
instructive than a statement of physical law.

As we saw in article I, under certain conditions
at asymptotic momenta, the one-particle-irredu-
cible amplitudes of the c model (aside from over-
all scaling factors) approach those of a finite-

(o, T)-G(o, fr}G '=-(c, v), '

where N, 0, p are the nucleon, 0, and pion fields,
respectively, and G is the G-parity operator, one
can show that nucleon helicity is conserved in elas-
tic pion-nucleon scattering; also, in elastic elec-
tron-nucleon scattering,

FB( ')
F,(~')
' ~, —O as ~q'~- (1.2)

where F, and F, are the Dirac and Pauli electro-
magnetic form factors, respectively, for the nu-
cleon and q is the momentum transfer to the nu-
cleon. 4 Though these are interesting observations,
we are more interested in extracting information
from the full chiral group structure of SU(2) ISISU(2)
and SU(3) SSU(3).

For the case in which all the hadrons are de-
scribed by fundamental fields, we derive con-

momentum, massless theory. We explicitly
showed this for the case of SU(2) 8SU(2) but the
arguments should also hold for SU(3) SSU(3).
Therefore, we must demand the existence of the
massless limit of such amplitudes. As such, for
two-body elastic scattering we shall limit our-
selves to fixed-angle scattering. Hence, our pro-
cedure for determining the consequences of asymp-
totic chiral invariance shall be simply to study ex-
act chiral invariance for a finite-momentum,
massless theory.

In any discussion of massless theories one im-
mediately thinks of exact y, invariance which just
reflects the zero massness of the theory. Using
the y, transformations on the massless SU(2)
SSU(2} o model
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straints for certain strong and electromagnetic
exclusive scattering processes. These constraints
are mostly statements about allowable helicities,
and we are especially interested in noting any dif-
ferences between the predictions of exact SU(2)
I2ISU(2) and SU(3}SSU(3}on the s Ns-ector of the
hadrons. A prion we would not expect to find such
disagreements between the two chiral groups since
SU(2) SSU(2) is a subgroup of SU(3) I21 SU(3), but as
we shall see such disagreements can and do occur
and we shall comment as to why this happens.

Then for the case in which the hadrons are viewed
as bound states, we consider asymptotic SU(3)
3SU(3) in the Landshoff model for meson-meson
and baryon-baryon fixed-angle, elastic scattering.
In particular, we show that that part of the pseudo-
scalar-psuedoscalar scattering amplitude which is
a function of the center-of-mass (c.m.}scattering
angle only is just the average of the analogous
functions for the independent nonzero helicity am-
plitudes for vector-vector scattering. Also, we
show that total baryon helicity is conserved in

baryon-baryon scatter ing.
In Secs. II and III we discuss the consequences

of exact SU(2) SSU(2) and SU(3) SSU(3), respec-
tively, for the hadrons viewed as fundamental
fields. In Sec. IV we turn our attention to asymp-
totic SU(3) SSU(3) for the hadrons viewed as bound

states in the Landshoff model for meson-meson
and baryon-baryon scattering. Finally, in Sec.
V we make concluding remarks.

,)
u„s)

)v, = I(
" =-(1—~,) ]( '

Eu„, Eu„

(2.2)

where the u's are the Dirac spinors. Under the

SU(2) 8SU(2) transformations we have

II-V,rr P~,
rr~ -V„rr~/

N~- U~Nz

N~- U~N~,

(2 3)

(see Ref. 5) where

(2 4)

where a and p are constant parameters. In zero-
mass theories (such as the case here), fermions
have only two helicity states: plus and minus,
which correspond to N„and N» respectively, in

the above. Therefore, our constraints on the arn-

plitudes will involve statements about nucleon
helicities.

We write the chiral structure of the amplitude
% in the form

II. EXACT SU(2) (3I SU(2)

3(t- g W, O, , (2.5}

In this section we explore the consequences of

exact SU(2) 8 SU(2) invariance treating the had-

rons as fundamental in a finite-momentum, zero-
mass theory (since this is the asymptotic limit
under certain conditions of the standard hadronic
theory'). Our consequences take the form of con-
straints as to what kinds of exclusive processes
are allowed and what are the corresponding SU(2}
I21 SU(2) structures of the allowed amplitudes.

Since the scalar o meson has not been confirmed
experimentally, we exclude it from the external
legs of the amplitudes and take as our meson wave-
function matrices the following:

(2.1)

where A, are SU(2) 8SU(2)-invariant amplitudes
depending only upon kinematic variables and Dirac
matrices, 0, for nonelectromagnetic processes
are SU(2) 8SU(2)-invariant products of the ex-
ternal particles' wave functions, and 0, for elec-
tromagnetic processes (such as pion photopro-
duction) are products of wave functions transform-
ing as isotopic scalars or the third components of
left-handed or right-handed vectors.

With this reasoning applied to pion-nucleon scat-
tering we arrive at results no different from those
obtained previously from y, invariance, namely
that nucleon helicity is conserved. For pion
photoproduction we consider two cases: (i) an odd
number of pions photoproduced and (ii) an even
number photoproduced.

(f) Odd number of pitons pbotoproduced. As an
example consider p„+N»- &+N», where h is the
photon helicity. We denote the amplitude by

where p is the pion wave-function isotopic vec-
tor and 7 ' are the Pauli matrices. The nucleon
spinor wave functions are denoted

(2.6}

where q„ is the photon polarization vector, and
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~„~h» = N„AsrI'N„,

E1f,~h = N RALII ~ N L+N2RAVp V V t

so that we are led to

(2.8)

R-N, RA II N, L+N, BALI' 7',

+N, BAR&,~ Ni. L

L N2I A II NI. R+ N~LAR I1~3N1R

+N2LAL T TIN, R,

where parity conservation implies

or
B F h~R~L

L(R) R(L)
S iS V iV

(2.9)

(2.10)

(2.11)

Now consider an amplitude that does not involve
a helicity flip of the nucleon: y„+N»- g+N».
Since for all such amplitudes we cannot form an
SU(2) Ig SU(2)-invariant combination of the available
nucleon and pion wave-function matrices, nor can
we construct something transforming as the sum
of the third components of left and right isotopic
vectors, we have

(2.12)rh R R Wh L L-O.

For three or more odd numbers of pions photo-
produced the results are essentially the same,
i.e. , nonzero nucleon helicity-flip amplitudes and
zero nucleon helicity-nonf lip amplitudes.

(ii) Even number of pions photoproduced As an.
example consider y„+N, L- z, + z, +N, R, where &,
refers to a charged or uncharged pion. The above
line of reasoning leads us to immediately conclude
that

l'h L R yh R L (2.13)

Now consider the analogous helicity-nonf lip am-
plitude: y„+N,„-~, + p, +N, R. The amplitude for
this process is given by

g„M„" ( N ig„Z"iN, )

= (v N, „((e„J"+q „Zr")[N, ~)

=e„Mf"+g„M„"", (2.7)

where g denotes a charged or uncharged pion and
Js" and Jv" are the decomposition of the electro-
magnetic current into its scalar and vector com-
ponents, respectively, where Jv" transforms un-
der SU(2) 8SU(2) according to (1,0) 8 (0, 1) in the
standard (left, right) notation. Consequently e„M~s"
and q„M„" must be constructed out of N», N, L,
and II or II~ and transform under SU(2) SSU(2) as
a scalar and as the sum of the third components
of right-handed and left-handed isotopic vectors,
respectively. The results are

m„, s= N»A, N»tr(11, 112)

+ N, „AsN„tr (11,11,'}

2R 3 1 2 1R N2R 4 2 1N1R

+ N, „A,',N, „tr (Il', r, ll, )

+N, A» N, tr(lltr, ll, )

+N RA LH, T II N, R
V

+ N2RA4L 027'3 II, N, R

+ N, „A~ra r, N, etr (Ii,lit}

+ N, sA2s r, N, s tr (II,II~~)

+ N2RA3R H, II2 T~ N, R
V

+ N, „A,„II,II,7, N, R.V (2.14)

In general for even numbers of pions photopro-
duced there are nonzero nucleon helicity-nonf lip
amplitudes and zero nucleon helicity-flip ampli-
tudes. Thus, considering cases (i) and (ii) above
we arrive at the following constraint for pion pho-
toproduction:

Constraint II-1. (A) Nucleon helicity flips in

y+ N, -N, + v, + v, + ~ ~ .+ v,„„;(B) nucleon helicity
is conserved in y+N, -N, + p, + p, + ~ ~ ~ + p,„,where n
is a positive integer.

Since our program is clear, to avoid a lengthy
discussion we simply list the other constraints
which we have derived.

Constraint I1-Z. Nucleon helicity is conserved in
nucleon Compton scattering (y+N y+N)-

Constraint II-3. For off-mass-shell photons,
the amplitudes for y- p, + g, + ~ ~ + ~,„„vanish
while those for y-7t, + p, + ~ ~ + g,„do not vanish,
where n is a positive integer.

Const~aint II-4. For nucleon-nucleon scattering,
the number of right-handed nucleons (incoming
plus outgoing) must be even and the number of
left-handed nucleons must be even. Furthermore,
the amplitudes for the following processes vanish:

PR(L) L(R) PI(R) R(L) &

PR(L)+PR(L) PL(R)+PL(R) &

R(I ) R(L) L(R) L(R) ~

where we indicate parity conjugate processes by
the subscripts in parentheses.

From constraint II-4 we see that the only N„
+ NR -NL+ NL type process allowed is p„+nR- pL
+ nL, which has zero total incoming and zero total
outgoing right and left chiral quantum numbers.

This concludes our discussion of the conse-
tluences of exact SU(2}SSU(2) invariance for cer
tain exclusive processes where the hadrons are
described by fundamental fields. In the next sec-
tion we discuss consequences of exact chiral
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SU(3) SSU(3) and see to what extent they agree
with previously derived results.

~0 ~0
W2+ We

III. EXACT SU(3) SSU{3)

In this section we explore the implications of
exact SU(3) SSU(3) invariance, again assuming
that the hadrons can be described by fundamental
fields as opposed to bound states. The discussion
here parallels that for the SU(2) SSU(2) case.

Neglecting scalar mesons, we take the meson
wave-function matrices M and Mt to be

(3.l)

with M and Mt transforming as the representations
(3,$) and (F, 3), respectively, under SU(3) 121 SU(3).
The baryon wave-function matrices are given by

BL(R)

0
L(R) + I(R)

We

I (R)

L(R)

~L(R)

0 0
L(R) + L(R)
v2 We

~0
L(R)

PL(R)

+L(R)

(3}' '~'c&s

(3 2)

with

B„=-,'(I+ y,}B,
By=2(l —v~)B ~

(3.3)

where B is the SU(3}baryon octet. In the standard
(L,R) notation, we let B~,B~,Bs,Bs transform as
(F, 3), (3,3), (3, '8), ('$, 3), respectively. So our
SU(3) SSU(3) transformations are

BR-ULB UR

BL"URBL ~L

m'- U„m'V'„

&-5 (e-g) ~ 7},/ 2

(3.5)
U' —~ j(Ip) o )t / 2

L

where at and p are constant parameters. Also,
we again note that B„and BL correspond to + and
—helicities, respectively.

Since we consider all the observed hadrons to be
fundamental, their respective fields must interact
via SU(3) SSU(3)-invariant couplings among them-
selves in the Lagrangian. This is why we choose
the baryons to lie in (3, 'P} e(3, 3) instead of (I, 8)

(8, I) representation so that they can couple to
the mesons in an SU(3) Cg SU(3)-invariant manner.
If by (B„)-we mean that the right-handed baryon
matrix transforms on the left index a (with -de-
noting left-handedness} according to 3~ and on the
right index p according to 3R, then the baryon-
meson couplings in the Lagrangian are given by

—
g gl gl

z g(g gas,g BlaMs. B
BB'8" I te' fg"+e-- - & BJsMg" B~s). (3.6)

Now we turn our attention to constraints on cer-
tain exclusive scattering processes which result
from exact SU(3) SSU(3} in a zero-mass, finite-
momentum theory. Just as was done for SU(2)
8 SU(2), we select which nonelectromagnetic pro-
cesses are allowed according to whether we can
construct appropriate SU(3) 8SU(3)- invariant
products of the external particles' wave-function
matrices. For electromagnetic processes such
as meson photoproduction, the product of wave-
function matrices must transform as the third or
eighth members of left-handed or right-handed
octets. %e shall be particularly interested in
seeing to what extent chiral SU(3) SSU(3) yields
entirely new and different results from those ob-
tained from SU(2) SSU(2) as a consequence of
opening up the "strange" hadronic sector.

The first process which we consider is baryon-
meson scattering: B,+ m, -B,+ m, . For this pro-
cess there are two cases: (i) helicity flip and (ii)
helicity nonf lip.

The amplitude for BII+my B2R+P7l2 is given by

„=tr (M, B»)A, tr (M, B,~)

+ tr ( MX, B,z)A, tr ( MA., ~B)

+ tr (B„X,M,}A,tr (B„X.M, }

+ tr (X,B,„A~M, )A4 tr (X,B,~X„M,),
(3 7)

and that for its parity-conjugate process SRR L is
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gotten by the following substitutions into the above:

B1.L B1R& ~1™1s

B2~ B2~, M2-M2.f'

In the p-N sector of the theory, we get nucleon
helicity conservation because there%~ ~=0.
An example of a nonzero helicity-flip amplitude
is Z«»+ ~'- Z'„«)+ p'. So we see that in the
full SU(3) SSU(3) theory there are usually more
allowable possibilities for amplitudes than in the
p-N sector. After a similar analysis for the heli-
city-nonf lip case we arrive at the following con-
straint for baryon-meson scattering:

Constraint III-1. For the process By+ my B2
+ m„ there are both helicity-flip and helicity-non-
flip amplitudes; however, in the p-N sector of the
theory nucleon helicity is conserved.

To avoid a lengthy discussion we do as we did
for the SU(2) 8 SU(2) results and simply list the
other constraints which we have derived.

Constraint III Z. (A) Ba-ryon helicity flips in

y„+B,-m+B, ; (8) for y„B+,-m, m+, +B„ there
are nonzero amplitudes involving baryon helicity
flip and helicity nonf lip; however, in the p-N sec-
tor of the theory nucleon helicity is conserved.
An example of a nonvanishing baryon helicity-flip
amplitude for two mesons photoproduced is y„
+p~-q'+ q'+ p„. We also note that constraint
III-2 is consistent with constraint II-&.

Constraint III-3. Baryon helicity is conserved
in baryon Compton scattering (y+ 8, —y+B,)
This is consistent with constraint II-2.

Constraint III-4. For off-mass-shell photons,
the amplitudes for y„-m and y„-m, + m, + m,
vanish while those for y„-m, +m, + ~ ~ +m,„do
not vanish, where n is a positive integer. This is
consistent with constraint II-3. Also, for five or
more odd numbers of mesons produced we get
nonvanishing amplitudes except if all the mesons
are pions in which case they vanish, again in
agreement with the SU(2) &3&SU(2) prediction.

Constraint III-5. For baryon-baryon scattering,
the number of right-handed baryons (incoming
plus outgoing) must be even and the number of
left-handed baryons must be even. Furthermore,
the amplitude for B,„«l+B»«, -B, &»+B «»
vanishes, and for the nucleons the amplitude for
p&&&) + n«» p«»+ n&«) vanishes.

Unlike what we found for SU(2) SSU(2) invariance
for nucleon-nucleon scattering, for the baryons
it is not necessary that the incoming and outgoing
left (right-) handed baryons be the same for B,~
+ B2 &&

B3g +Bg &&
e ' g' ~(Pg &&

+&&g +
&&) ~ 0 '

the nucleon sector, however, we still have SR(p„«&
«»& -Pz&z &+ n~&a&)»0 while %(pa&~&+ n~&s&

IV. HADRONS AS BOUND STATES

So far we have confined ourselves to a descrip-
tion of the physically observed hadrons as being
actual quanta of fundamental fields. As mentioned
earlier, the physical evidence seems to favor their
description as bound states of more fundamental
field quanta. %'hat happens to chiral-symmetry
breaking as we go to asymptotic momenta for had-
rons viewed as bound states is quite different from
what we have so far considered. In this section
we consider the bound-state case within the con-
text of a specific model for meson-meson (both
pseudoscalar-pseudoscalar and vector-vector)
and baryon-baryon high-energy, f ized-angle,
elastic scattering. The model we choose is due
to Landshoff. e

To begin, let us consider the elastic scattering
of two pseudoscalar or vector mesons. In the
fixed-angle, asymptotic momentum limit, we
adopt the Landshoff notation. The dominant dia-
gram is shown in Fig. 1, where the momenta are
labeled so that

p e=p" a =0,

p =p = —g +m

p ~p'= A. 7'

s-2T(l+ &&),

t- -47,
u-2r (l —&&),

(4.1)

where m is the meson mass and w-~ with A. fixed.
Figure j. is the diagram for both the elastic scat-

-p«»+ n„«&) = 0 in agreement with our SU(2) &3&SU(2)

results. On the other hand, the vanishing of Bjg(g)
+ B2g( L ) B3«» + B4+(» is in direct disagreement
with the SU(2) SSU(2) prediction for the nucleons.
This seeming paradox can be understood if one con-
siders that in the case of SU(2) SSU(2) the nucleons
transform as a fundamental representation of the
chiral group, whereas in the case of SU(3) SSU(3)
they do not, but transform as members of a pro-
duct representation. It is precisely these different
transformation properties which give rise to dif-
ferent predictions for the nucleons in the two chi-
ral groups. We believe the SU(3) &3&SU(3) results
are more compatible with reality since this chiral
group with its inherent strangeness sector is an
experimental reality.

This concludes our discussion of the conse-
&luences of exact SU(3) 8 SU(3) invariance if the
hadrons are described by fundamental fields. In
the next section we take a brief look at what to
expect if the hadrons are described as bound
states of more fundamental constituents.
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g -vs g (b, ', b", ), (4.6)

at the fixed point g, of the quark field, 8 is the
center-of-mass (c.m. ) scattering angle of the
problem, and f(8) describes the angular depen-
dence of the zero-mass quark-quark or quark-
antiquark scattering amplitude at the fixed point.
As for the meson bound-state wave functions y,
Callan and Qross show that they scale as

f,(8) =(1,3) S(3, 1)-(1,3) S(3, 1)

=(3,3}-(3,3),

f,(8) =(1,3) S(3, 1)-(3,1)S(1,3)

= 6...[(3,3) —(3, 3}]
= b„„f.(8),

f,(8) =(1,3) S(1,3) —(1,3) S(3, 1) = 0,

(4.8c)

(4.8d)

(4.8e)

f,(e)=++-++ =RR RR,

f,(8)=++-—-=RR -II,
f,(8) =+ —-+ —=RL -RL,

f,(8) =+ —--+=RL-LR,

f,(8) =++ -+ —= RR -RL,

(4.V)

where + and —quark helicities correspond to their
respective right (R) and left (I } representations of
SU(3)„SSU(3}~. To exploit the chiral group sym-
metry, we decompose the f, into their respective
chiral invariant subamplitudes:

f (8)=(1,3) S(1,3) -(1,3) S(1,3)

=a(i, j)[(l,S) -(1,$)]+b(i, j)[(1,6) -(1,6}]

a(i, j)f, s s(-8) + b(i, j)f. . .(8), (4.8a)

f2(8) = (1,3) S (1,3) —(3, 1)S(3,1)= 0, (4.8b)

where g„(k,', bI2) are determined by the constraint
of conformal invariance and provide the needed
I.andshoff damping.

First we consider pseudoscalar-pseudoscalar
scattering and we turn our attention to the I"s in
Landshoff diagram. Either one I" is a quark-
quark and the other an antiquark-antiquark ampli-
tude or they are both quark-antiquark amplitudes.
For the first case, where one I' is a quark-quark
and the other an antiquark-antiquark amplitude,
we list all possible independent helicity amplitudes
subject to the constraint of exact SU(3) SSU(3) in-
variance. Equation (4.5) tells us that instead of
talking in terms of I'(s, 8), we should talk in terms
of f(8). Also, we need only consider the quark-
quark amplitudes since they and the antiquark-
antiquark amplitudes are equivalent by charge
conjugation invariance. Qoldberger et a/. , have
shown that the independent helicity amplitudes are
as follows'.

(4.9c}

(4.9e)

(4.10b)

Equation (4.10a) is the only new result since Eq.
(4.10b) is equivalent to Eq. (4.9c).

Using Eqs. (4.8), (4.9), and (4.10}together with
the results of Callan and Qross' we get the follow-
ing expression for the pseudoscalar-pseudoscalar
scattering amplitude:

where a(i, j) and b(i, j) are squares of Clebsch-
Qordan coefficients depending upon the particular
quarks q, and q~ involved and f,(8}vanishes unless
both quarks are the same, in which case f,(8)
= f.(8).

The independent quark-antiquark helicity am-
plitudes are similarly evaluated giving

f,(8) = (1,3) S(1,3) —(1,3) S(1,3)

= a(i, j)[(1,1)—(1, 1)]+b(i, j)[(1,8) —(1,8)]

-=a(i, j)f. . .(8)+ b(i, j)f, ,(8), (4.9a}

f (8) =a(i j)[(1 1}-(11}]
= a(i, j)f. . .(8), (4.9b)

f,(8) = (3, 3) - (3, 3) = f,(8),

f,(8)=(3,3)-(3,3) =o (4.9d)

f,(8}= (1, 16 8}—(3, 3) = 0,
where again a(i, j) and b(i, j}are squares of
Clebsch-Qordan coefficients.

So the constraint of chiral invariance implies
there are only six surviving helicity amplitudes:
f,(8), f,(8), f,(8), f,(8), f,(8), f,(8). There is an ad-
ditional symmetry if we confine ourselves to theo-
ries such as the o model wherein the quarks are
bound via couplings to scalar and pseudoscalar
mesons. The additional symmetry can be observed
in the perturbation expansions and states

fi(8) = fi(8) (4.10a)

f,(e) = f,(e).

s"'-"+
%(m, + m, —m, + m, ) = „„Il(e)stN)"'

4

d$ g 1 —$ dgjdZjdKj5 Kg Kjg~(j) kj, kj
j=l

(4.11)

where for pseudoscalar-pseudoscalar scattering, if the quark qj and antiquark qz compositions of the me-
sons are
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(qi+qh- —K-qhi) ~

=1-
(qh q~ —qh q4 },

(4.12)

where i and j are as shown and do not refer to tensor indices and with the+ subscripts denoting helicities,
then the above discussion gives the following for the function F(8) of c.m. scattering angle:

F(8) = —,
' f [a(2, 4)a(l, 3)+2a(2, 3)a(1,4)]f», '(8)+ [b(2, 4)b(1, 3)+b(2, 3}b(l,4)]f» h'(8)

+ [a(2, 4)K(l, 3)+ a(1, 3)5(2, 4) + a(2, 3)$(1,4) + a(l, 4)b(2, 3)]f. . .(8)f. . .(8)

+ (2+ 5, , 5;,; )f,'(8)] ~ (4.13)

Qfe can find out more about these functions of scattering angle by considering high-energy fixed-angle
elastic vector-meson scattering: v, + v, -v, + v, . In the asymptotic limit the vector mesons have negligible
mass end thus only + and —helicities are allowed. Some examine the various helicity amplitudes. As men-
tioned earlier, this process proceeds through the same Landshoff diagram shown in Fig. 1 as does the
pseudoscalar amplitude.

First we consider

vt. ++ v2+ vz++ v2+,

where

Vl+ = g1+ g2+ vp+ =
W3+ 9'4+ (4.14)

for the quark compositions. The function of the scattering angle analogous to Eq. (4.13) is

F„„(8)= [a(2, 4)a(1, 3)+ a(2, 3)a(l, 4)]f», '(8)+ [b(2, 4)b(1, 3)+ b(2, 3)b(l, 4)]f. . .'(8)

+ [a(2, 4)b(l, 3)+a(1, 3)b(2, 4)+ a(2, 3)b(l, 4)+ a(l, 4)b(2, 3)]f. . .(8)f, (8) . (4.15a)

Similar analyses lead us to the following results
for the other helicity amplitudes:

F„„.(8) = a(2, 3)a(1,4)f. . .'(8),

F„„..= 2f, '(8),

F„,(8) =0,

(4.15b)

(4.15c)

(4.15d)

(4.15e)

where again the 5 functions mean that F, ,(8)
vanishes unless q, =q, and q, =q, . The overall
amplitude for any one of the above vector-vector
processes is given by Eq. (4.11) without the factor
of 2 and with the appropriate

Fhghh h gh h(8)

substituted for F(8) .
If we choose pseudoscalars m, and vector mesons

v, (a = 1,2) with the same quark content q f and q&,
then we arrive at the relation

F(8) = ,' [F. ..(8)+ F—,. (8)+ F. .(8)+F„.(8)],
(4.15)

so that the angle-dependent part of the amplitude
for pseudoscalar scattering is just the average of
the analogous functions for the independent non-
zero helicity amplitudes for vector scattering.
Furthermore, there are only three independent

chiral-invariant functions of 8: f. . .(8), f. . .(8),
and f,(8}, and they are readily obtained from
F.. ..(8), F., (8), and F, (8) via Eqs. (4.15).

Landshoff's model readily gives information
about the helicity amplitudes for baryon-baryon
elastic, fixed-angle scattering at asymptotic en-
ergies. The baryons 8, and 8, are considered to
be bound states of three quarks which scatter as
shown in Fig. 2. The internal momenta and the
I"s are handled analogously as for meson-meson
scattering. Even though the baryon bound- state
wave functions are more difficult to handle than
those for the mesons, we can exploit the exact
chiral SU(3) 8SU(3) invariance for the I"s to make
statements about helicity amplitudes. Simply note
that for each I' the only allowable helicity ampli-
tudes are f,(8), f,(8), and f,(8) of Eq. (4.'f), and
for these amplitudes total quark helicity is con-
served. This implies

SR(B„B„+-B„B,+) = 0, (4.17)
5K(B„+B„-B, + Bh ) = 0,

so that total baryon helicity must be conserved.
%'e find that this is in agreement with constraint
III-5, which was derived in the last section by
considering the baryons as fundamental particles.

Even though we have worked in this section with
a specific model for the scattering of hadrons
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p-q p+g

'-q

viewed as bound states, we hope that our proce-
dure for exploiting chiral invariance to extract
useful information about the scattering amplitudes
has been sufficiently broad and instructive to be
readily applied to other such models.

V. CONCLUSION AND DISCUSSION

Article I was a discussion of the conditions un-
der which certain field theories become exactly
chiral invariant at asymptotic momenta. In this
article we went further and discussed what the
consequences are for certain strong and electro-
magnetic scattering amplitudes in the asymptotic,

FIG. 2. Landshoff diagram for baryon-baryon scatter-
ing.

zero-mass limit of such theories. First we con-
sidered the hadrons as quanta of fundamental fields
and found general agreement between the results
obtained from exact SU(2) SSU(2) and exact SU(3)
8 SU(3}; however, there was an exception which
arose because of the unanalogous transformation
properties of the nucleon doublet in SU(2) SSU(2)
and the nucleons as part of an octet in SU(3)
8SU(3). Finally, we looked at what must be done
to extract information about scattering processes
if the hadrons are viewed as bound states of more
fundamental constituents.

Experimental data suggest that among the results
we have discussed in previous sections, the most
reliable are probably those based upon the de-
scription of hadrons as bound states and based
upon chiral SU(3) SSU(3}as the underlying sym-
metry. However, me must bear in mind that re-
cent experimental breakthroughs surrounding the
discovery of g (Ref. 9) and P' (Ref. 10} seem to
indicate even larger asymptotic symmetry groups
such as SU(4}SSU(4), but these questions have
not yet been settled.

Finally, we note that at present there are no ex-
perimental data to check the results obtained in

this paper. Most of our results involve statements
about asymptotic helicity amplitudes which at this
time are experimentally out of reach owing to the
difficulties involved in producing high-energy
polarized beams. But we remain hopeful that the
future will unfold the technical expertise needed to
test these ideas in the laboratory.
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