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In parts I and II of this series, a system of partial-wave equations for construction of a crossing-symmetric
unitary Regge theory of meson-meson scattering was described. Here we show that the sum of the partial
waves of a solution has a representation in which crossing symmetry is apparent, all integrals converge
without subtractions, double-spectral funcions have the correct support„and the contributions of Regge poles
in all three channels are displayed simultaneously. We obtain the Regge asymptotic limit for s ~ oo at
arbitrary fixed t by a method which avoids a difficulty in the usual heuristic argument. We also discuss the
consequences at high energy of a new method of avoiding ghost poles at l = 0 on even-signature trajectories.

I. INTRODUCTION

The scheme for the construction of a relativis-
tic Regge theory, ' described in parts I and II,
works with N/D equations for partial-wave quan-
tities. Although crossing symmetry and proper
support of double-spectral functions were essen-
tia1 ingredients in the derivation of the equations,
it is not obvious that the total amplitude, formed
by summing the partial waves of the given solu-
tion, will in fact have those properties. Here we
show that the total amplitude does have the proper
symmetry and support properties. Moreover,
we find that the amplitude has an elegant crossing-
symmetric representation, which may be of in-
terest beyond the domain of our particular theory.
Except for modifications to incorporate the ghost-
elimination scheme of part II, and a trivial re-
arrangement of terms, the representation is the
same as that given in Ref. 2, Eqs. (2.20)-(2.27).
The representation is similar in spirit to those
of Khuri' and Chew and Jones, ' except that it comes
about rather more naturally and incorporates
correct support of double-spectral functions.

In Sec. II we state the crossing-symmetric re-
presentation, and then show that its partial waves
are identical to those obtained from the N/D
system. In the course of the argument we show
that the N/D partial wave, a(l. s), is given by a
Froissart-Gribov formula. We also obtain bounds
on a(l, s) at large s, uniformly for all directions
in the cut s plane.

In Sec. III we obtain the Regge asymptote of the
total amplitude A(s, f) for large s and fixed f. Ar-
bitrary complex values of t are allowed. We point
out that the usual derivation of the Regge asymp-
tote fromthe I, channel Watson-Sommerfeld repre-
sentation is not justified in the main case of in-

terest, namely, for s and t in the s-channel phy-
sical region. There is the difficulty that the back-
ground integral is not known to converge uniform-
ly, so there is no basis for the everyday contention
that the integral behaves in the same way as its
integrand (namely, as s""}at large s. In spite
of the failure of the standard argument, we find
that the usual Regge asymptote is valid in the the-
ory under consideration.

In part II, a plan for elimination of ghost poles
at l =0 on even-signature trajectories was pro-
posed. It involved making the physical s-wave
a, (s) different from the l-analytic amplitude a(f, s)
at 1=0. We show in Sec. II that the proposal is
consistent with crossing symmetry arid that A(s, t)
has single-spectral terms and possibly a constant
term as well. In Sec. IV we consider the Iluestion
of how the ghost-elimination scheme could be test-
ed experimentally. We also make some specula-
tive remarks about the role of negative values of
l in Regge phenomenology.

In the theory as developed in part II, there are
no Regge poles in the inelastic function

1 —n'(I, s) (1.1)4r(f, s)
as defined in (12.36}. It should be possible to allow
Regge poles in this function, but certain technical
problems stand in the way at present. In Sec. V
of this paper, we argue that such poles do not
change the form of the crossing-symmetric repre-
sentation of A(s, t). The Appendix contains details
about the work of Sec. II.

We suppose that the reader is acquainted with
the notation and general approach of parts I and II,
but full familiarity with those papers is hardly
necessary. The most important background is in
part I, Sec. II, in part II, Sec. D, and in the first
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few equations of part D, Sec. ID. A summary of
notation is to be found in part II, Sec. V.

II. CROSSING-SYMMETRIC REPRESENTATION OF TOTAL
AMPLITUDE

To be definite, we shall employ the ghost-elim-
ination scheme of part II, Sec. IV. Then a solu-

tion of the equations for neutral meson-meson
scattering which were proposed in II consists of
the partial wave a(l, s) meromorphic for Ref) -c,
--,' &e &0, and the physical s-wave a,(s). From
a(l, s} and a,(s), for 4» s&~, we may construct
the total amplitude

(2.1)

1 " " 1 1 1 1 1 1
A(s, t) =V ss s3's(ss) , + + ) + ('(s, () ~ g(t, )+ ('(, s) ~ ('(s, s)

1 1 1
+ (t)(u, t)+ (i)(s, u)+ — dxp(x) + + + a, (~) .

1T 4 X —S X —t X —Q

The function p xs constructed from the externally
assigned central spectral function v(x, y) and the
parts of the elastic spectral functions that arise
from Watson-Sommerfeld background integrals:

p(x, y) = p" (x, y)+ p" (y, x)+ v(x, y),
where, as in (112.32),

p" (x, y) = 4. dl(2l+ 1}q(x}h(x}
8(x —4)

(2.2)

p(x) = 1m[a, (x,) —a(0, x,)] . (2.5)

x a(t, x,)a(I, x )&,(z„„).
(2 3)

'The integral follows the line Rel = -e, 0&&(&. The
trajectory a(s) and residue (6(s) are determined
from the partial-wave amplitude a(l, s}. The func-
tion g is defined in terms of ot and P:

dx [2a(x)+ 1]P(x)
x —s sinxa (x)

(2.4)

For notational convenience we suppose that there
is only one trajectory a(s); it leaves the right
half plane Rel &-a at s = s,. The symbol & denotes
the discontinuity over the real x axis, as in
(II2.25). The last two terms in (2.1) are present
only when the ghost-extinction scheme of part II,
Sec. IV is invoked. The constant a,(~) is the value
of the physical s wave at infinity (which may be
zero), and the single-spectral function p(x) is the
absorptive part of the difference between the phy-
sical s wave and the l-analytic wave at l = 0:

of (2.1) are identical with the partial waves ob-
tained from the N/D equations of II; i.e.,

1

a(I, s)+ 6,Ja,(s) —a(0, s)]= —,
' dz P, (z)A(s, t),

1

t= (4 —s)(1 z)/2—, l=0, 2, 4, . . . . (2.6)

Since these partial waves are unitary (in the sense
described in I), and since (2.1) is clearly cross-
ing-symmetric, we see that a solution of the
dynamical scheme does indeed give a crossing-
symmetric, unitary amplitude. Furthermore,
a(l, s) has the proper exponential decrease at large
Rel, so that the Legendre series converges in the
Lehmann-Martin ellipse, and the double-spectral
functions of A(s, t) have the proper support. The
function p(x, y) does not have the support appro-
priate to the complete double-spectral function
p(x, y); notice that the integrals over p begin at
zero. There is an additional spectral function
from the six g functions. It combines with p to
give the complete double-spectral function with
proper support, as is shown at the end of this
section.

The representation (2.1) may be rewritten in
standard Mandelstam form with a finite number of
subtractions. The form (2.1) never requires ex-
plicit subtractions, thanks to the extraction of the
asymptotically dominant Regge terms through the
g functions.

We shall argue that a(l, s), the solution of the
K/D system, has the following Froissart-Gribov
representation:

We shall prove that the Legendre projections
4O

(), s)=
( s) J ssQ, (*.„)s,(s, s), (2.7)

(2.8)

4

A, (s, t) = Q A', "(s, t)

= )m(s, (s) — ((), ()]8(s —4) + — ss s(s, () ~ }— s(s, —s) s (s —4)ss(s*),1 " „1 1

0

I d g g
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The functions f and g are determined by a and P
[see (II2.24), (II2.26)]:

f(s, t) = [2a(s) + 1]P(s)P „,(z„),
[2a(t)+ I]P(t) P(.)

sinwa(t)

(2.9)

(2.10)

Let us postpone the proof that the i)t/D amplitude
does have the form (2.7), and proceed to show that
the Froissart-Gribov integral (2.7) is identical with
the Legendre projection (2.6) of A(s, t) He. nce-
forth, we shall take the lower limit in the integral
(2.7) to be zero. Since A, (s, y}=0 for y &4, the
change is innocuous; the point of the change is
that the separate terms in A, are not all zero for
y(4

The integral (2.7) is absolutely convergent and
defines an analytic function of l if Rel is sufficient-

ly large. That function has an analytic continuation
to the half-plane Hel&-a, if s is sufficiently large.
(Recall that there is no Regge pole in the half-
plane at large s). We can find an explicit expres-
sion for the continued function, by the method of
part II, Sec. III. The first three terms in (2.8)
give absolutely convergent contributions to the
y integral (2.7) for Rel & -e. We may dispose of
these terms immediately, casting them into the
form of I.egendre projections. For l a non-nega-
tive even integer,

(2.11)

When this formula is substituted in (2.7), one
easily finds that the first three A'," give contribu-
tions to a(l, s) as follows:

I
a"'(l, s}= - dzP, (z)A"'(s, t), i=1, 2, 3,

1

(2.12)

a"'(, )) Jd) r [,(=)'—.) — (D, y. )]( ~ },
1 " " „1 1 1 1 1 1A"'(s, t)= .„dx dyp(x, y) + +

(2.13}

(2.14)

A"'(s, )= ((ts()+ (, (s) ——,
'

, d 4 . ' —
) .f(x s) 1 1

sin)ra(x) x —t x —u
(2.15)

In the derivation of A"' we used the symmetry of p and separated terms through partial fractions.
The transformation of the remaining term (r")(I, s) into a Legendre projection is a more involved mat

ter. %e first deform the contour of the x integral, in the manner of part II, Sec. III. The deformed in-
tegral is

1
t dx + f(x, t)

1 1

~(p) x s x u

+ . dx +, [(x, —4) P (z, ,) —(x —4) P (z, ,)]
1 '() 1 1 (2a+ 1)(8(x) (2.16)

We have extracted the threshold factor (x —4) from 6(x) as in (II2.19), and have changed the contours of the
x, and g terms so that they go to the left from x=4 to x= -s„and then back to s, along complex paths
(d(1',) and (d(I' ), respectively; see Fig. (II4). Since the contours are finite, and t&0, we may choose s so
that the contours do not cross zeros of the denominators, x —s and x -u, in the course of the deformation.
Let us take s positive and large; then x —s and x —(4 —s —t) will never vanish. The discontinuity of
(x —4) P, may be evaluated through standard identities (II2.49):

2i(4 -x) sinva P (z„,), -s, &x &4 —t,
(x. -4)™P.(z„,) —(x -4) P.(z, ,)= (2.17}

—.(4 —x)' sin'va Q (-z„), 4 —t & x & 4 .

Because of the rapid decrease of Q (-z„,} at large t, the second term in A',"will vanish at large t; it is
O(t ' ""'), and the corresponding part of the integral (2.7) converges absolutely for Rel ~ -e. The first
term in A'," is O(t ' '0'), so it will give a convergent contribution to (2.7) for l=0 if a(-s, ) &0. We pro-
ceed under the condition a(-s,) &0, although this entails a restriction on a which may not be desirable.
In the Appendix we show that the condition a(-s, ) &1 is sufficient for the work of this section, even if this
weaker condition is not necessarily sufficient for the developments of part II. We next introduce (2.17) in
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(2.16), and use (2.11) and (2.V). By reversing the order of z and y integrals we obtain

1 1 1 1a")(I, s) = —,
' dzP, (z} — dyA(, "(s,y) +t &

y g y g

i1 - 1 1 1 1 1
dzP, (z) — dy + —. dx + [(2a+ 1)P(x)P,(z,„)] . („,

)
w () y —t y —s 4'j ~(r) x —s x —4 —s-y

1 ~so -" 1 1 1 1
cfp dx ' + +mw, ) —( ) —u x —s x —(4 —s —)))

X
(2a+ 1)P (x)

(4 —x)' sinxa P (z,„)px

X—1 (2a + 1)P(x)
(4 — )'sin'wm(), (-* )) (2.18)

To reduce this unpleasant expression, we first make all the denominators linear in y by partial fractions,
and then reverse the order of the x and y integrals. In the integral over &o(I') on the right-hand side of
(2.18) we may then recognize Cauchy representations of P; for instance,

z)=- . P z).1 1
x y —t ' "" sinxa0

(2.19)

The equation (2.19) is valid at complex x. It is obtained by rotating the contour of the usual Cauchy repre-
sentation of P, in which the argument of the integrated Legendre function is real. In rotating the contour
one encounters no zero of the Cauchy denominator y —t, except on the part of &(I') where x is real. For x
real an "iz limit" arises: The contour just touches the pole as it comes to its final position. The result
for the integral on v(1") in (2.18}is then

dzP((z) — dx . --- [P,( z„)+P ( -z,„)]+ -P (-z„)+ P, (-z„„)z (2a+ 1)P(x) 1 1 1

(z, ) sly'7A Qx —s "" g —g " g

1 1
+ P (z„) (2.20)

The integrand of (2.20) does not have poles at x= t and x = u, since the separate terms with poles cancel.
In the sum of the remaining terms in (2.18) one recognizes the Cauchy representation of Q„. namely,

1 cia
tII (z„)=-,' P (z„,) -— sinxaQ (-z ). (2.21)

The remaining terms in (2.18) then yield

—z dzP) (z)— dx ~ (4 —x) sln1Fa
1 ' (2a+ 1)P(x)
r px

1
[Q (z, q) + Q (z ,)]+ Q (z,g) + tII (z„)— + Q (-z„)1 1 1 1

X 8 X t X f X Q
t2I fg g

One can relate the function a")(I, s), given by the sum of (2.20} and (2.22), to the function

as)', (*)((s, )) ~ ((s, ) ('(&l ~ ()(4 )+-,' a,*a s,.„'
) q

~ )
f(x s) 1 1

(2.22)

(2.23)

In fact, (2.23) is equal to a(4), unless a(s, )=0 for some s+c(-s0, 4). That is seen by deforming the x con-
tours in (2.23), in the same way as in the derivation of (2.16). On the part of the deformed path from 4 to
-s„ the P 's are replaced by Q, 's, through the discontinuity relation (2.1V). If a(s~) =0 for -s, &s„&4,
one gets an additional term from integration around the pole of (sinxa) '. In that case, a(4)(t, s) is equal
to (2.23) plus the s-wave ghost pole term

p(s, )
s —s, a'(s~) (2.24)
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The amplitude a(l, s) may now be assembled from (2.12), (2.23), and (2.24). In the usual case in which the
ghost term (2.24) appears we have

a(l, s) = z dz P, (z)A(s, t) —6,0 — Im[ao(y, ) —a(0, y, )]+a (~)+ (2.25)
1 s-sg a sg

We finish the proof of (2.6) by noting that the ex-
pression in curly brackets in (2.25) is just the
Cauchy representation of a, (s) —a(0, s). The func-
tions a, (s) and a(0, s) were constructed in II so
as to have the same left-cut discontinuity, and so
that a(0, s) and a, (s) —a, (~) vanish at large s, uni-
formly in direction. Since a, (s) has no poles,
and a(0, s) has a pole at s = s~ with residue -t}(s~)/
a (s~), the quantity in braces in {2.25) is indeed

ao(s) —a(0, s). This establishes relation (2.6) for
large positive s [recall that we made the restric-
tion to large s to avoid Regge poles in a(l, s}]. Since
both sides of Eq. (2.6) are analytic in the cut s
plane, the equation must in fact hold for all s in
the cut plane. Since A(s, t) clearly has no pole
at s =s~, there is no ghost in the physical ampli-
tude, even though a(l, s) does in general have a
ghost pole.

To verify the contention that A(s, t), as defined
by (2.1), has the correct double-spectral regions,
we first apply the discontinuity relations of Legen-
dre functions to calculate its t discontinuity A, (s, t).
We find that the latter is given by (2.8). Next we
calculate p(s, t) from (2.8):

p(s, t) = —.[A,(s„ t) -A, (s, t)J
1

= p" (s, t)+ p" (t, s)+ v(s, t),
(2.27)

p" (s, t) = dl(2l+ 1)q(s)h(s)e(s -4)
4i

&& a(l, s,)a(l, s )P,(z„)
+ —,v8(s, —s)t(f(s, t) .

As was shown in Eq. (II2.20)ff, one may move the
Watson-Sommerfeld contour in (2.27) to the line
Rel =L„where L, &max(Rea), to obtain

p" (s, t) = . dl(2l+ 1)q(s)h(s}
S(s 4)

4i
0

& a(l, s,)a(l, s )P,(z„).
(2.28)

The large-
~

l
~

bound of a{l,s,), stated in (12.20),
now guarantees that p" (s, t) is zero for t &16s/
(s —4): when the latter inequality is met we can
close the l contour in (2.28) and conclude from
Cauchy's theorem that p" =0; see (I2.20)ff.

We have yet to settle the deferred problem of
showing that the N/D amplitude of II has the Frois-
sart-Gribov (FG) representation (2.7). It is suf-

ficient to make the proof for l =0, 2, 4, . . . . We
shall show that the N/D amplitude, a(l, s) in
(II5.5}, and the FG amplitude, (2.7), have identical
discontinuities over their s-plane branch cuts,
and the same ghost pole (if there is any) at I =0.
Since we also argue that both amplitudes vanish
at large ~s ~, uniformly in direction, it will follow
that the amplitudes are equal. The left-cut dis-
continuity of the N/D amplitude agrees with that of
(2.7), since the left-cut input term of the N/D
equation was in fact calculated from the FG inte-
gral; see II, Sec. II.' The right-cut discontinuity
of the N/D amplitude is given by

q(s)h(s)a(l, s.)a(l, s )+ 4
1 —q'(I, s) (2.29)
4q s h s

1 —qz(l, s) 4
4( I d&((, (*„(lp"(&, ) ~ (s, &)],

(2.30)

whereas the corresponding quantity for the FG
amplitude is obtained from the discontinuity of
A, (s, t) as

( 4)
dt Q, (z„)[p"(s, t)+ p" (t, s)+ v(s, t)] .

4

(2.31)
One can show that the term in (2.31}involving
p" (s, t) is identical to the first term of (2.29).
Substitute formula (2.28) for p" (s, t), and reverse
the order of f, and l integrals, taking l&Lp Put
in the value of the t integral stated in (I2.32), and
close the l contour by an infinite semicircle in
the right half plane. The contour encloses one
pole, and the evaluation of the residue by (I2.33)
gives the desired first term of (2.29). Because
of analyticity in l, the result is good also for
O~l&L, . For the matter of ghost poles, we have
already shown that the FG amplitude a(0, s) has a
pole (if any) as in (2.24). But a and (8 in (2.24) are
by definition the Regge parameters of the pole in
the N/D amplitude. It remains only to show that
the amplitudes vanish uniformly at large

~

s ~.
Consider the most doubtful case, in which there is
a Pomeron trajectory with a(0) = 1. According
to (I2.51) and I2.27), the N/D amplitude is domin-
ated at large s

~
by C(l, s); the other term in

(I2.51) is O(s '), thanks to the cutoff in r(1, s).
If we look through the various terms in C(l, s), as
given in (II2.46), we find that the term c„which
contains the contribution of the I-channel Regge
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poles, is the dominant dynamical contribution at
large ~s ~. The input term V(l, s) may be of a simi-
lar order, but it vanishes at infinity by assump-
tion. By contour deformations similar to that of
(II3.2)ff, and applications of the identities (II2.49),
one finds that c,(l, s) = 0(

~

lns f') as s tends to +~
on the real axis. The calculation for s--~ re-
quires careful attention to the cuts of Legendre
functions; some of the Legendre functions are
continued onto second sheets in the course of con-
tour deformation. By an application of the Phrag-
mdn-Lindelof theorem we can infer that the N/D
amplitude is bounded in the cut plane as

a(I, s (2.32)

for sufficiently large
~

s ~. By (II2.29), (II2.37) we
see that the FG amplitude is also dominated by

c,(l, s), so that it satisfies (2.32) as well. The
bound (2.32) holds for any fixed complex I with
Re/» -&. 'The constant ~ depends on /, and in fact
tends to infinity at large Im/.

III. REGGE ASYMPTOTIC BEHAVIOR

%e wish to point out first a shortcoming in the
usual derivation of the Regge asymptote. %e begin
as usual with the %atson-Sommerfeld representa-
tion of A(s, t) with (s, t) in the t-channel physical
region:

A(s, t, ) =A(t„s)

= Q (2I+ 1)a(l, t.)P',"(z„)
l~o

2(s+ i0)p. (, (-* ..) (e, ) (-=(-

s&4, t&4;

(3.2)

that is, a Legendre function evaluated on the lower
side of its cut. Next we let t go to a point less
than 4, by a path through the upper t plane. 'Then

the argument of (3.2) goes into the upper half
plane, which is to say onto the second sheet of
I', and returns to the real axis at a point greater
than -1. The second-sheet continuation of (3.2},
evaluated at the final point where s»4, t&4, is

P «)(-z„)—2i sin)ta(t)P «)(z, ,).
'The other term in P'" starts at a point off its cut,
and ends on the cut with an evaluation

(3.3)

Pu(t)(zt s)n (3.4)

The residue p(t, ) is continued to t &4 and acquires
the value

p( e
(4 t)a(t)sita(t)p(t)

p(t)"" (3 6)

~P, (coslg)
)

t(s [
~

ln()t —8)
~

+ I],
0» 8&m, Im/&0,

which may be proved from the Mehler integral
representation. '

Let us attempt the continuation of (3.1) to the
s-channel physical region, s& 4, 4 —s» t» 0. Con-
sidering first the Regge pole term, we take s to
a value much greater than 4, say on the upper side
of the s cut, while keeping t fixed at a value greater
than 4. Then expression (S.l) for A(t„s,) entails

[2a(t,)+ 1]P(t.) p(, ) (sin(ta(t, ) '4)

4, 4-t »s»0.
(3.1)

P, (-z,) = s'" P, (z) ——sin((a(I) (z) (3.6)

according to (II2.19). Next, to take advantage of
the asymptote of P (z) for large positive z, we use
the identity

Inthe t-channel physical region, where -1» z„
~ 1, the integral in (3.1) converges exponentially,
provided z„1+1. 'The convergence follows from
the bound

to eliminate functions with negative argument in

(3.3) and (3.4). The continued Regge pole term is
seen to have the form

(1~ e )n( „)——"e "s,in-*(1—ti sine )(!,(-*„}})t (2a+ 1)P(t) 4 —t t, 2

T sin((a p(t) m o=e(t )

Now for z -+~,
I'(a+-,'} (2z)
I'(a+ 1) (t'"

()) (z) = O(z ' "'"),
so that the asymptote of (3.7) is

(2a + 1)p(t) I'(a+ —,') „4s
2 . sinva I'(a+ 1) P(t),. (,)

(3 7)

(3.8)

(3 9)

(3.10)
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The factor p(t) "' in (3.10) takes the part of the scale factor s, '" which is usually introduced in an ad
hoc way in phenomenological studies. ' Correspondingly, the reduced residue p(t) has a clearer theoretical
meaning than the (various) residue functions used in phenomenology.

If we attempt the continuation of the integral in (3.1}by simply continuing its integrand, the steps fol-
lowed above lead to

2l+ 1
dl . c(l, t,) (1+ e "')P,(-z„)——e"' sinful (1 —2i sinsl)Q, (-z„)4, sinful ' ' p(t) ' " z (3.11)

This integral is very far from absolute convergence, and even some weaker form of convergence seems
extremely unlikely: The coefficient of Q, has a factor exp(2mlml), (I)( itself vanishes only as (Iml} '~', and
the best bound we have on c(l, t,) behaves as (Iml) 't'; see (13.5). It appears that the analytic continuation
of the Watson-Sommerfeld background integral (a continuation which certainly exists) cannot be obtained
by the simple process of continuing the integrand. Thus, we are in no position to make the usual assertion
that the background integral is O(s ') at large s.

Our theory makes no use of the Watson-Sommerfeld integral in (3.1). We avoid the convergence problem
by writing Watson-Sommerfeld integrals only for absorptive parts, which are quadratic in the partia}. -wave
amplitudes and converge absolutely. To derive the Regge asymptote (3.10) we appeal directly to the repre-
sentation (2.1). For the limit of large s at fixed t the only significant terms are

((), s)+(((, )= ——,
' f & . [P,(-*,„)+&,(-*„)])dx (2a+ 1)P(x) (3.12)

The sum of the other terms is bounded by a constant. Initially we suppose that there is no zero of a(x)
for -sp~ x&4; later we shall account for a zero. We take large positive s, with -spat+4, and consider
[l)(t, s,)+(t)(t, u). To extract the dominant term at large s, we must deform the x contour, just as we did in
(2.16). A new feature is that the functions

P (, )(-z„, }, P („)(-z„) (3.13)

are evaluated on the lower sides of their cuts prior to contour distortion. Consequently, P &„}goes onto
its second sheet when x goes into the upper half plane, while P,„}stays on its first sheet when x goes into
the lower half plane. The functions

P.(.,)(-z..), P, („)(—z,„) (3.14)

are evaluated off their cuts initially, but are finally on the lower and upper sides of their cuts, respective-
ly. The paths between 4 and -sp strike the zero of the denominator x —t, giving principal-value integrals
and 5-function terms in the limit in which the paths follow the real axis. The discontinutiy over the real
axis is calculated as in (2.17). We apply (3.3) for the second-sheet continuation of P, and (3.6) to effect
rearrangements of the 6-function terms. After some calculation we find that

(i)(t, (()+ [I)(t, s.) = —
2

. [e '"P ( z„)+P (z,„)-]
(2a+ 1)S(t) 4 t—

P 'p dx - . 4 —x
+— (2a+1)[3(x)sinwa [q (z,„)+q (z, ,)]

4 x

+ (2a+ I)p(t) [cosva Q (z,„)+isinza(I) (z, ,)]
p t o=o( t)

(( ~ )o( )[p ( , ) p ( )[)

[2a(x)+ 1]P(x)P (,)(z, ,).
~&r ) x —t

(3.15)

The asymptote of the first term agrees precisely
with (3.10). The second and third terms are
O(s ' ' '()'), and the fourth and fifth terms are
O(s ' 'o'). Since we require that a(-s,) &0, the
amplitude at large s is given by (3.10) plus terms
which are bounded by a constant.

We have yet to account for a zero of a(x) at
x=s„c(-s„4). In the integrals over the upper
and lower sides of the line segment [-s„4], which
are obtained when the integration path in (3.12) is
deformed, we introduce small semicircular de-
tours around the pole at x = s~, in the upper and
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lower half planes, respectively. The coefficients
of (sinsa) ' in the upper and lower integrals be-
come equal at 0. =0, so the two semicircles con-
tribute just 2' times the pole residue, which is
to say the term

1 P(s~)
sg —t c (sg}

(3.ie)

W(s, t) =O(1), (3.17}

since we may deform the x contour to obtain a
formula like (3.15), but without the first term on
th4 right-hand side. If t is complex and inside

Since (3.16) is to be added to (3.15), there is, of
course, no pole at t= s, in g(t, u)+ P(t, s.). The
first term on the right-hand side of (3.15) has a
pole which cancels (3.16}.

%e conclude this section by stating the asymptote
of A(s, t) for large s and fixed complex t. Consider
the closed curve &o(f') consisting of the parts of
~(g.) and ~(I' ) connecting s, to s„ i.e., f' is the
straight line between a(s, ) and a(s„) in the l
plane. If t lies outside &u(f'}, then

&u(f'), we pick up an additional contribution from
the pole at x=t. 'The leading part of the pole con-
tribution has the same form as the first term in
(3.15}, provided that (4- t)' is defined as follows:

(4 —t)' = exp ([Re ln(t —4)+ i arg(4 —t)]a),
—v& arg(4 —t)&w. (3.18)

The nonleading part of the pole term involves Q,
and is O(s ' "' ) =O(s ' }. Thus, the familiar
Regge asymptote holds at complex t, provided t
is inside &o(1"), (4 —t) is interpreted properly,
and Rea(t) &0.

IV. POSSIBLE EXPERIMENTAL TEST OF A GHOST-

EXTINCTION SCHEME

%e are concerned solely with ghosts at l =0 on
even-signature trajectories. As was explained in
II, Sec. IV, our theory can have no other ghosts.
According to the work of the previous section, the
large-s behavior of the amplitude at fixed t is
given by

(
—w'~' (2o. + 1)P(t) 1 (a+ —,')

(i „4s 1 P(s~)
(

1 - dxp(x)
2 sinsa I'(a+ 1) p(t) (,) s —t a'(s~) ' v, x- t '

(4.1)

W +P~g+Pg. (4 2)

The last three terms in (4.1) are included if and

only if the ghost-extinction scheme of II, Sec. gt
is employed. By contrast, in the conventional ap-
proach to ghost extinction' there is a zero of P(t)
at the location t = s~ of the ghost pole, and the
background to the Regge asymptote is supposed to
vanish at large s for all t. It is clear from (4.1)
that our scheme leads to a different kind of high-
energy prediction, for t such that —q ~ a{t)& 0.
The last three terms in (4.1) are energy indepen-
dent and dominate the Regge term for t in that
range.

A test of this prediction should properly await
an elaboration of our theory to cover processes
more accessible to experiment than m-m scatter-
ing; For elastic m-m scattering we would in any
case have the Pomeron as the leading even-signa-
ture trajectory. Since the Pomeron may not be-
have like an ordinary trajectory, or indeed may not
correspond at all to a simple Regge pole, it is
presumably safer to test our prediction on an even-
signature trajectory arising in inelastic scatter-
ing. A good possibility is the A, trajectory, which
may be isolated in the reaction

Data on this reaction up to p„~= 200 GeV/c have
been fitted in terms of an "effective" A, trajec-
tory. ' If an expression analogous to (4.1) were
valid for (4.2), one would expect a,«(t} to flatten
out and acquire zero slope at the t for which

a„,(t) =0. The observed behavior seems consis-
tent with this prediction, although the errors are
fairly big in the crucial region of large —t. 'The

analogous effective p trajectory, from

(4.3)

does not show a flattening at a,«=0." Again, that
is expected in our scheme, since s-independent
terms like those in (4.1) are not associated with
odd-signature trajectories.

Since our ghost-extinction scheme entails a dif-
ference between the physical s wave and the l-
analytic amplitude at l = 0, it is in conflict with
the philosophy of maximal analyticity of the sec-
ond degree. "" It appears to us that the argument
for such maximal analyticity is based mostly on
aesthetics, and has little support from experiment.
Our theory should help to put the experimental and
theoretical issues into relief, as soon as it is ex-
tended to allow for spin and several coupled chan-
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nels.
Another feature of our theory with possible ex-

perimental consequences is that only the right
half plane is involved (Rel & -a, 0&& &-,'). Al-
though we regard it as something of a victory to
have formulated equations in which no knowledge
of amplitudes in the left half plane is necessary,
it would still be interesting to perform a continu-
ation into the left half plane. %e are unable to
make such a continuation, however, since our in-
tegral equations become singular at Re l = -&. In
the present state of knowledge we must allow for
the possibility of singularities just to the left of
the line Re l = -&, or even for a natural boundary
preventing continuation into all or part of the left
half plane. Nearby singularities or a natural
boundary could have an important role in Regge
phenomenology. In general, Regge fits of data
seem to be more successful when e is positive,
and at least some of the difficulties for e negative
or near zero may be due to nearby left-half-plane
singularities different from usual Regge poles.

V, REGGE POLES IN THE INELASTIC FUNCTION

s) 4p2 ~

The contour in (5.3) is the line Re/= I.,
&max[Re&z(s, )]. We define r, by

r, (s) = + 2ik(s)b, (s)t(a(s, ), s,),
and move the contour in (5.3}to Rel = —z. In
analogy to (II2.23) we obtain

(5.4)

(5.5)

the form

p"(s, t) = 4. dl(21+ I)k(s)t(l, s,)
8(s —4p )

4g Lo

x t(l, s )P,(z„), (5.3)

and 8(s, t) =8(t, s) is a smooth function of the class
to which our former v(s, t) belonged. In (5.3) the
Froissart-Gribov amplitude t(l, s) corresponds to
a process mm-MM, where M is a meson of mass
i& & 1, and k(s} is the corresponding phase-space
factor. We suppose that f(l, s) is analytic in I for
Rel & -&, except for a pole at c&(s,), where o. is
the same Regge trajectory that appears in a(l, s):

t(l, s,)= 8(s, —s) ' +t(l, s,),b, (s)

The inelastic function

( )
1-&}'(I,s)

4r(l, s) (5.1)

p (sq I) = p (ss I)+ 2w 8(s& —s)8 (s —jl )n&& (sy I), (5.6)

&5"(s, t) = . dl(2l+ 1)k(s)t(l, s,)
8 s -4p'

4i

v(s, t) = p"(s, t) + p"(f, s)+ ~(s, i), (5.2)

where the "quasielastic" spectral function p" has

defined in (I2.36), is part of the overlap function.
It represents a sum over inelastic partial-wave
amplitudes which are generally expected to pos-
sess the same Regge poles as the elastic ampli-
tude. Heretofore we have artificially restricted
the central spectral function v(s, f) so that f(I, s)
could not have poles. %e now remove the restric-
tion and consider a v of the form

xt(l, s )P, (z„},

nm (s, f) = 2.([2n(s, )+ I]r.(s)P.&„,(z„)
1

—[2n(s )+ ljr (s)P &, &(z,~)J.

(5 7}

(5 6)

The contribution of v(s, t) to the inelastic func-
tion f(I, s} now contains Regge poles at I = a(s, ),
which come from the term Ago(s, I} in p"(s, I)
The term in f(l, s) from nw(s, f) may be evaluated
with the help of (I2.36) and (I2.32).

4P(s) "
d@ (z }& 8(s )n ( f} p(s) '8( }8( 4,)W(l, &&(s,), ,z c&,&)[ 2a(s, )+ 1]r,(s)

(5 9)

Here Z(s) is the boundary of the support of p"(s, i);
it depends on the rate of decrease of f(l, s) at large
Ref [cf.(I2.20)ff]. Since W(l, f, x) = —1, the pole
terms in f(l, s) are

~~ ~

p(s) '8(s, —s)8(s -4V') r. (s) r (s)
s —4 2i I —a(s.) I —a(s )

(5.10)

%e must now reexamine the behavior of the uni-
tarity condition near the Regge poles. By the

unitarity condition (II2.20), the definition (II2.1) of
the reduced amplitude c(l, s), and the result (5.10),
we find that

P(s, ) r, (s)8(s ——4~')
2iq(s)k(s)

(5.11)

This relation replaces our former e&luation (II2.22).
The elastic double-spectral function (II2.6) is
modified through (5.11). When the I contour is
moved from Rel = J-, to Rel = -& we obtain instead
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of (2.27) the result

p"(s, t) = p"(s, t)+ —,'w&(s, —s)

x[rtf(s, t) —s(s —4 p')4xo(s, t)], (5.12)

where p" is defined in (2.3).
By (5.6) and (5.12) we see that the term involving

4' cancels in the sum

p"(s, t)+ p"(s, t) = p"(s, t)+ p"(s, t)

a(s, ) from o. (4p, ') to a(s„). Since c(l, s) should
be meromorphic in l, the second term must have
similar cuts but with opposite discontinuities. By
applying (5.11}, one can show that the cuts of the
second term indeed cancel those of the third, so
that the sum is meromorphic with poles only at
I = a(s,). This cancellation is the same phenomenon
as the elimination of 4w in p, in a slightly different
guise.

+ —,'ws(s, —s)&f(s, t) . (5.13)
ACKNOWLEDGMENT

The result (5.13) implies that the crossing-sym-
metric representation (2.1) of A(s, t) retains its
original form, if we redefine p to be

p(x y) =P'(x, y)+ P'(» y)+ 7'(y, «)

+ p"(y, x)+8(x, y). (5.14)

With this new definition, A, is still given by (2.8).
It is fortunate that the residue functions y, (s) are
not required to be analytic; in fact, we do not ex-
pect these functions to have simple analyticity
properties.

The cancellation of gatv in the derivation of (5.13)
at first seems remarkable. 'The cancellation is
required, however, for meromorphy in I of a(l, s).
One sees that from the partial-wave dispersion
relation (I2.41):

1 r(l, s')c(t, s,')c(l, s') „,
W s —s

1 " 1 —g'(I, s') ds'
x „4»(f,s') s'-s ' (5.15)

The third term on the right-hand side has cuts in
the I plane, because of the pole terms (5.10) of the
inelastic function. The cuts follow the trajectories

The idea of Sec. IV was suggested to us by Ver-
non Barger. We thank him for a very helpful
discussion. A talk with David Atkinson influenced
the presentation of Sec. II.

APPENDIX

We wish to remove the restriction n( s, ) &-0,

which was imposed for the discussion of Sec. II.
The weaker condition a(- s,) &1 is assumed in the
following. We discuss the contribution of A,"',
defined in (2.8), to the integral (2.V) (the lower
limit of the latter is now y =0). The second term
in A',4' may be treated by the method of Sec. II,
since it has an inverse power of t from the de-
nominator x -u that is not present in the first
term. We need analyze only the first term, call
it S,:

S,(s, t)= — &f(x, t).Sy

2 ~ x —s (Al)

We subtract and add a term in the numerator; it
consists of t}f(x, t) with (x —4) P, (z „,) replaced by
(s-4} P (z„). After the contour deformation of
Sec. II, the integral takes the form

s, (s, t}=ps}"(s, t}

[( -4) P ( . ) —( -4) P( . )]

[(.-4) P.( ...)-( -4)™P.(, ,)]
a =a (x)

1 dx (2n+ 1)P(x)
+~4t (r&x —s p(x) ts=ts( } ' (A2)

The subtracted terxn has no x discontinuity between 4 and -s,. We may carry out the Froissart-Gribov
integral (2.V) over S,'" for I & 1. Since S,"'(s, t) is O(t ' '(}'}, the integral converges absolutely and has the
value (Itef. 7, formula V. 114)

1 dx (2o. + 1)P(x)(s —4) 1 1
2' (y(p) x s p(x}™ l- a I+ a+ 1,(„}

The Froissart-Gribov integral over S~" converges absolutely at I.=0, since the two terms in square brack-
ets in S('} cancel at large t to yield a sum which is O(t "( '"} '}. For the integral of S(t'} at t=0, 2, 4, . . .we
may then introduce
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( )
| &dzP)(z)

Q, (A4)

and reverse the order of integrations to obtain

s"'(), s).f «)', ( ) f—,. „,( „. J —, ((~-4) &.(*..)-(~-4) J'.(z..)I)
f = k(s-4)(z —1).

Now we assert that the y integral in (A5) is a slightly disguised Cauchy representation of the function

(A6)

y(t, a)= — . [(«-4)'P (-z„)—(s-4) P (-z„)]. (A6)

Postponing the proof of this assertion, we see that

(l„)=, 'd. P,(.) * " ("").(")("-')[P.(,„,),P.( .,„)]

1 (f«(2(r + 1)P(«)(8- 4)
4x &r &«—s p(«) slnÃn) | ( )

Upon evaluating the f integral (by formula V. 112.3, Ref. 7) we find that the last term in (AV) is equal to
-s(3'(f, s). Thus, the Froissart-Gribov integral of S, consists of the first term in (AV), plus the integral
over S,"'. In other words, the integral of S, is exactly the same as it was in Hec. II. %e obtain our pre-
vious expression for a"'(I, s) as given in (2.18). Notice that we had to use analytic continuation from l & 1
to l = 0, since the Froissart-Gribov integral is not known to converge at l = 0. The continuation from l )1
is in fact what we want, since it is identical with the N/D amplitude, the latter being meromorphic for
Rel &- e.

We still have to show that the y integral in (A5) is equal to the function y of (A6). The function
sinvn V»(t, a) is entire in a for «e4, s44. We shall obtain an integral representation first for Rea &0,
and then show that it is valid for Ren &1. I.et

«-4= ~«4ie", v&e&v

Then for --,' & a&0 and t &0,

8 ex'(N) gy 1 "dy
sinza V»(f, o() = - («-4) lim — P (z~)+ (s- 4) — P (z„).

@~co 71 p y~ g n'
0 y-t

(AS)

(A9)

The path of integration in the first term is a straight line segment, following the cut of P (-z„„). We may
rotate this path so as to put it on the real axis:

~exp«e) gy a sexy«e&
lim P (z„)=lim + ,P.(z„)g -+OO R~~ 0 g y~ g

=J ",'(*» (A10)

The integral from R to Re'e follows the arc of a circle of radius R, and tends to zero at large R, since

P.(z.,)=O(iyi ),
uniformly for ~arg(z„„)

~

& v —5&v. We have established that

(A11)

sin«a C)(t, a)= —— [(«-4) P (z~) —(s-4)'P (z,„)],
0

for --,'&0.&0 and -m&8&m, but the integral converges uniformly in e in a region

I) = [n: -&+ 5 &Rea (1—5, Ima = 0(1)},
since for e ca one has the bound

(A12)

(A13)

(A14)(« —4) P (z ) —(s-4) P, (z,„)=0(iy["' ')

uniformly for ~arg(«-4)
~

( v —5&v. [The bound (A14) may be proved by estimates based on the Laplace
integral representation of P .] By analyticity in a it follows that (A12) is true in the region a.
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