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Starting from an underlying field theory in eikonal approximation, interacting Pomerons are produced
by retaining those Feynman graphs that correspond to self-energy and related radiative corrections. Multiple-
Reggeon t-channel thresholds may be viewed in a simple s-channel field theory framework, while the degree
of s-channel unitarity required depends upon the spin content of the underlying field theory and the classes
of permitted processes. An approximate eikonal calculation suggests how restricted triple-Pomeron
interactions can serve to remove the bare Pomeron, and substitute an alternate asymptotic expression for
~tot'

I. INTRODUCTION

One of the most interesting theoretical programs
in recent years has been the emergence of triple-
Pomeron (TP) interactions as a useful phenomeno-
logical tool in the description of high-energy re-
actions. ' More recently, renormalization-group
arguments have been used to estimate the asymp-
totic behavior of Reggeon field theory (RFT) built
out of interacting TP's. ' While the results ob-
tained are physically reasonable and even appeal-
ing, in spite of certain conceptual problems, ' the
question remains as to the nature of the underlying
mechanism that generates the bare Reggeons, or
Pomerons, which then interact with themselves
and with physical particles. In particular, if one
retains the canonical point of view that physical
particles are the quanta of complicated but under-
lying fields, then one is led to ascribe a similar
origin to Reggeons.

Historically, the work of Gribov and associates'
originated in just this way, "abstracting" from a
simple field theory such expected Reggeon and TP
interactions. More recently, Abramovski, Gribov,
and Kancheli' have written "cutting rules, " allow-
ing one to proceed from sets of simple field-the-
ory ladder graphs to interacting Pomerons; while
most recently, Guerin and Meunier' have extended
these rules to include the effect of transverse-mo-
mentum distributions of inelastically emitted par-
ticles. The present paper is essentially a return
to the original Gribov spirit, but with the analysis
performed within the context of an eikonal field-
theory model, thereby at once guaranteeing s-
channel unitarity. With the adoption of a simple
but representative hybrid field theory previously
employed elsewhere, ' and the use of a simplified
but sufficiently general eikonal analysis, one is
able to generate the typical interacting TP's of
RFT. It turns out that it is precisely those "self-
energy" insertions in mainly multiperipheral

Feynman graphs, discarded in previous phenom-
enological treatments of field-theory eikonal mod-
els, which are responsible for the appearance of
these interacting Reggeons, and that, in general,
one has a compact and well-defined way of classi-
fying those conventional field-theory graphs whose
ordered-rapidity processes are important to RFT.
One sees how multiple t-channel Reggeon thresh-
olds appear naturally in terms of "self-energy"
insertions in a simpler s-channel field-theory
process, rather like a variant of duality. This
analysis suggests that the spin character of the
underlying field theory and the class of radiative
corrections considered have a strong effect on the
degree of s-channel unitarity required to satisfy
the Froissart bound. Finally, a simple eikonal
summation of leading rapidity dependence indi-
cates just how TP interactions can act to remove
the bare Pomeron and lead to a gently increasing
total cross section, as suggested by RFT. It
should be kept in mind, however, that other pos-
sibly important amplitudes found in the eikonal
analysis, conventionally neglected because they
could not be estimated, could serve to change the
RFT results, qualitatively, if the bare Pomeron
is actually a construct of some underlying fieM
theory.

Arrangement of the present remarks is as fol-
lows. In the next section, a very brief review of
phenomenological Pomeron construction is given,
following from the most convenient hybrid field
theory. The proper basis of this procedure is
outlined in Sec. III, with a complete but compact
(functional) statement of the eikonal analysis, in-
cluding formal expressions for self-energy and
related insertions in all relevant Feynman graphs.
From this general form, one simple piece, or
subset, of the radiative corrections is then ex-
tracted and all of its insertions are followed in
the construction of TP's. In Sec. IV a simple ei-
konal model is developed for the numerical com-
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putation of these radiative insertions, with unitar-
ity playing an important field-theory role, one
which subsequently leads to an imaginary TP cou-
pling in the equivalent RFT. Certain leading-log-
arithm (in rapidity) expansions then exponentiate,
suggesting how the bare Pomeron can in this man-
ner be removed, leaving a 0„, increasing with
rapidity. A final section contains a summary and
a brief discussion of some relevant and open ques-
tions.

H. REVIEW OF POMERON BUILDING

The origin of the method is the effective eikonal
reproduction in the asymptotic region of Pomeron
poles and cuts. One begins with the representation

This eikonal model may most easily be construc-
ted as the g' expansion of the formal, functional
solution'

ix= exp -- —D—2, ~rr ' &rr

x exp ig'
J

5',Z, (II)&,
II o, conn

-1, (2.4)

where D, and 4, are respectively pion and A-meson
propagators, and where 5:,(u} = J d$ 5"&(M z,.
+ $p, ) represents the classical current of the ith
scattering nucleon, with position z,. and momentum

p, [here, b=(z, -z,)r]. The effect of ordered pion
rapidities in the desired set of ladder graphs is
quite simply reproduced by the functional replace-
ment

(2.1) ~iq» (x n)

27t') q 2+ m
(2.5)

where t= -q' and -t «s. In any field theory where
eikonalization exists —where one sums over multi-
ple exchanges of an appropriate singlet represen-
tation between distinct scattering particles —iX
may be formally exhibited in terms of a sum over
all connected, t-channel Feynman graphs. ' As a
useful example, consider a hybrid cp' theory with
couplings (g, &&} between nucleon f&i, scalar meson
A, and scalar pion 0,

Z'= -g /An't) --A2II, (2.2)

where

(2.3}

For at least moderate impact parameters, mb
& 1, this becomes

G2 s ~mb /r

with Y=ln(s/so), A=». '/32vnm', G=g'/4w, c-m'/
A; in this model, effectively, A=1+a{0), where
a(0) denotes the bare Reggeon intercept.

where the basic interactions corresponding to this
interaction Lagrangian serve to generate the eikon-
al graphs of Fig. 1. Effectively, a Reggeon pole-
plus-cut contribution to (2.1) is produced by the
leading ln(s) sums of i)(„

(g)/
ix, = -2 — d'q e" 'na, (q) — -1

where
/0

IIo, =
~

d'k rl(k)y(k; y)[q —k), ' +m'] '.

together with the subsequent prescription
th

,
dk(,

&
dk( &y'(k;y)(k'+ &&' -iE) ' in-d'y= inY .

~i
2

Here, pion rapidities are summed over all pos-
sible values, with the necessary (n! ) ' factor of
the desired ordered rapidities produced by expan-
sion of the exponential source dependence of (2.5).
In terms of rapidity and impact-parameter varia-
bles, one could equivalently write

5—D,—-—d'5 dy2 . 511 ' 5II 4 ~, 511(b,y}

together with

Iio,- dy d'b II(b, y)K,(mb)e ' '.
In each case, the rapidity range of the functional

differentiation operator is that of the full range in
the problem, y, -y„while the rapidity range of
the source dependence is to be specified by those
"horizontal" pion rapidities associated with their
vertical positions along any A line. In the labora-
tory frame computation of the Pomeron, for ex-
ample, y, = F=y, -y, and y~=0, but over any finite
"vertical" rapidity interval y, -y~ this exchange
of "horizontal" pions builds the corresponding eiko-
nal-function contribution of a Reggeon exchanged
across that rapidity interval. Pictorially, the sum
of such leading-log ladder graphs may be replaced
by a Reggeon between the same rapidity values, as
in Fig. 2. The Pomeron may be defined, in this
phenomenological field-theory manner, by the
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!X = E
(m)

!X2 !X3

FIG. 1. Some graphs which enter into the complete eikonal expression.

choice A=2, so that -iy.,=p-I' 'e xp(-c 'b/Y) In.

the familiar way, this then generates

0'gg —2 A(p —op + ' ' ')

=A 8/I'+- (2.6)

with A. and B positive constants, representing the
Pomeron pole and cut contributions to the total
cross section.

There are two main questions requiring further
comment if this method of Pomeron construction is
to have a realistic field-theory content. The first
point concerns the reasons underlying the special
choice 4 = 2 and its possible relation to the ladder-
graph approximation used to extract those leading
terms that act as the Pomeron. The second ques-
tion relates to the neglect of all the other iX„,
n ~ 3, which terms contain nonplanar Feynman
graphs that have never been properly evaluated.

Concerning the second point first, a very crude
estimate has been given' in which the pion linkages
are such that ix„ is reyresented by Reggeon be-
havior between each pair of the n A-mesons ex-
changed, iX,-i"s s~"'~"~', with m =n for scalar
A's and m = 0 for vector A' s. It was argued that
such dependence —going far beyond the tower
graphs of iX,—can have a crucial effect, changing
the saturation of the Froissary bound into a cross
section that vanishes asymptotically. More pre-
cise evaluations are really needed, for if these
higher eikonal terms are so important, one can
have little confidence in any phenomenological
method, such as the present one, which deals only
with the tower graphs of ix,. Perhaps a better

graphical analysis mill indicate that effective Reg-
geons are formed only between "nearest neighbor"
A lines, rather than between each pair of A's ex-
changed; or perhaps strict attention must be paid
to available energy restrictions in the construction
of all the zX„. Whatever the possible reason, sup-
pression of the ix„, n ~ 3, is an essential initial as-
sumption to be made at present, here restricting
attention to the tower graphs only, and to those
modified eikonal quantities built out of them that
generate interacting TP's.

Secondly, it is necessary to ask if there can ex-
ist a reason for the special choice A= 2, which de-
fines this phenomenological Pomeron. Remember-
ing that in any exchange of m pions between the
pair of A lines, one has selected only the ladder
graphs containing the leading s '(m!) '(Ins) de-
pendence (thereby neglecting m! —I crossed-pion
graphs, each of less importance in that mth or-
der) it is not difficult to imagine that sums over at
least a partial subset of the neglected crossed
graphs could have the effect of generating cancel-
lations which reduce the power s dependence to a
final form essentially independent of s. At present
it is not known how to estimate the relevant cor-
rections due to the crossed graphs, and one can
only guess at the result; but if such cancellations
do take place, one can perhaps understand the phe-
nomenological choice A = 2 as simply a matter of
correcting a too-enthusiastic first evaluation of the
ladder graphs' leading lns dependence.

III. APPROXIMATIONS TO THE COMPLETE EIKONAL

It is useful to first rewrite (2.4) in terms of a
complete eikonal expression that, at least formally,
contains all radiative corrections and insertions.
For the present hybrid theory, one may write the
generating functional and its formal solution as

(x)

FIG. 2. Construction of a phenomenological &eggeon/
Pomeron by the leading-ln{s) portion of ladder graphs. where j,k, $, q are appropriate c-number sources
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for the operator fields II, A, g, P; and

515K5 =exp i i~ji ~k i |g i~&
0

x exp i gS,g+ —
A, h, + — QD, II

where S„b,„and D, represent the free nucleon,
A-meson, and pion propagators, respectively.
X is a normalization constant representing the
vacuum-to vacuum S-matrix element. Using well-
defined Gaussian techniques' this may be put into
the form

NS(0, 0, q, q]=exp -2 5
D, 5„exp ——,—Z, (II)—exp i qG, (A)q+L(A)+L'(Il)

II "-A~o

(3.2}

with L(A}= Tr ln(1+gA S,) and L'(II) =

-2 Tr ln(1+ XIII,) given in terms of fictitious c-
number fields A and II; here G,(A}=S,(1+gAS,) '
and Z, (II) = d, (1+%.IIE,) ' denote respective propa-
gators defined in the presence of the indicated
source fields. In anticipation of constructing an
elastic nucleon scattering amplitude, the j and k
sources of 3 have been set equal to zero. This de-

I

rivation tacitly suggests that the "nucleon" is a
fermion and the other pair of fields are spin-zero
bosons, but after subsequent eikonal limits are
taken, they may all be considered as spin-zero
bosons.

Repeating the eikonal construction of Ref. 8, one
obtains

or

ie'"= exp —— D ——exp —— —6 (v) —exp ig F p+L(A)+L'(Il
2 . ~rr '&II 2 5A c

i ie "=exp —— —D —exp —g' 5: Z (II)P exp —— 4 (II)—
2 . &II '&II c» 2 gA c

A~ II"-0
{3.3)

x exp L'(Il)+L A+g F,P,(II)
0

(3.4)

where F»= 5, + F,. Unfortunately, the simple eik-
onal limits applied to self-energy processes gen-
erate ambiguous, or ill-defined results, and fur-
ther modeling will be required, below.

In previous derivations of eikonal representations
tions, the closed-loop functionals L(A) and L'(Il)
were, for the most part, neglected. Here, all pion
insertions generated by closed A loops are again
dropped, L'(II) -0, but those radiative corrections
representing the simplest self-energy bubble in
sertion in every virtual A line are retained. That
is, L{A) is approximated by its quadratic depen-
dence only, L-(i/2) J A(x)IC(x-y)A(y), with
K(x y) =ig'tr[S, (x-y)S,(y -x)]. For scalar nu-
cleons, S, becomes an ordinary boson propagator,
n„, and L(A) = -2 Trln{l+gAn„} so that K(x —y}

(i/2)g rh„(x —y)d„(y -x).-Retention of more
complicated dependence of L(A) would lead, among
other things, to quartic and higher Pomeron ver-
tices in the equivalent RFT. While this relatively
simple approximation must be improved in any
serious field-theory calculation, it is at least an
intuitive method of beginning to understand the in-
terplay of radiative corrections and Pomeron con-

struction. With these simplifications, (3.4) be-
comes

~ exp —g'
J, r„a,(II)[l -fcZ, (II)]-'&„

-& Tr in[i -KZ,{II)]
rr 0

(3.5)

N S (qj= exp — qh„(1+gAa„) 'q
2 .

-2 Tr ln(1+gAE„} (3.6)

The same quantity K enters into other processes
defined within this and related field theories. In
particular, one of subsequent interest is that ex-
pression of unitarity in the description of (scalar)
nucleon pair production by a suitably time-depen-
dent, external source A(x}. In this simplest of
problems, where a nucleon field interacts only with
an external c-number source A, corresponding to
2'= -( /g2)g„'A, one has for the generating func-
tional S (t))=,„(0

~
[exp(if qg), ~

0)„ the formal solu
tion
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lnP() =—Re Tr[AL„Aa„]

=Re i AgKx yAy (3.V)

using the second (scalar nucleon) form of K It is
clear from the physical interpretation of P, that
(3.7) must be negative, an easily verifiable situa-
tion, since

Re[iK(q) ]= — 8(-q') 8(-q' -4m')(1+ 4m'/q')'~'

where the zero-source limit of (3.6) provides the
identification of N=„(0~8[A]~0)„. It follows that
the probability of the vacuum to remain a vacuum,
under the influence of the source A, , will in gen-
eral be less than unity,

P, = [,„,(0[0)„('=)N('= exp[-Re Tr In(l+gAA„)]

or, in quadratic source approximation,

and A(x) is real. By this computation, one sees
that the absorptive part of K is fixed above thres-
hold to be positive, and that, asymptotically, it is
just a constant, ImK(q) -+g /16m. This require-
ment, dictating the phase of that part of K which
corresponds to particle production, will be useful
in constructing an eikonal model of self-energy in-
sertions which respects this particular aspect of
unitarity.

The eikonal of (3.5) is still somewhat complicated
for these purposes, and further simplifications are
useful. In the absence of the self-energy bubble K,
(3.5) reduces to (2.4) plus additional radiative cor-
rections corresponding to A linkages along each
nucleon line. The latter are now neglected, fol-
lowing the procedure of examining only those ra-
diative insertions defined by the simple bubble K
relative to the form (2.4). Further, we retain only
the K dependence corresponding to a single-bubble
insertion in any A meson, but neglect all K depen-
dence in A linkages between nucleons 1 and 2,

~ ~ ~

p 2 g
~

& P~(ll)[1-K)i' N}l

(3.8)

This is perhaps the simplest way in which TP's are generated, and it will become clear, later on, that
the neglected terms correspond to the modification of TP vertices and to virtual Pomeron-particle inter-
action. The remaining closed-loop part of (3.5}, which in the absence of pion linkages would just corre-
spond to vacuum fluctuations, will also be approximated following the spirit of the steps leading to (3.8} by
retaining only an exponential of quadratic K dependence,

exp[-D Tr ln(l -KZ, )]-exp[-,
' Tr(K&+&,) ]. (3.9}

The terms of (3.9) upon expansion will correspond tothe sources of Pomeron self-energy graphs in RFT,
with the terms omitted again corresponding to nonconventional Pomeron interactions, as described in the
sentence following (3.8).

The simplified eikonal function to be examined is then given by

(3.10}x exp ig' &,&,P, +2g' 8',ZKZD8', +-g' F,Z,KZ, F, +-, Tr(KZ, KZ, ) -1,
- II ~ osconn

with the understanding that each Z,(II) is to be represented by the form (2.5), and suitable care is to be
taken in the ordering of all relative rapidities. Finally, the desired modification of the g expansion of
(2.4) is obtained by performing the same expansion here:

2

Ix,'= exp —— ' —D, e F
'I PEP)exp —e ,J, P,eJCZ, P; ~ (I- 1) ~ —,

' Tr(I(e,)(e,)' &rr 2t g ~ 0&conn

where iX,' represents the eikonal function contain-
ing the stated K-bubble insertions into the simpler
functional representation of ix,. It is clear that
many classes of graphs have intentionally been

omitted in the passage from (3.5) to (3.11); but it
is also true that (3.11) represents a simple de-
scription of all the interations of the two basic pro-
cesses which have been retained.
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IV. EIKONAL MODEL OF THE RADIATIVE INSERTIONS

Evaluation of these forms is not without difficulty,
because the adoption of the naive eikonal limit for
self-energy processes quite generally leads to
spurious divergences and associated zeroes. The
first of these arises because of the incompatibility
of translational invariance with the eikonal limit.
For example, in the momentum-space integrand of
the quantity f F,Z+Z, F„ there will appear two
factors of 5(qp, ), one from each Z, propagator,
with the same argument following from the trans-
lational invariance of K(x -y). That this occurs is
really no surprise, for the eikonal limit treats
every A line emitted or absorbed by a nucleon as
independent, while every such self-energy graph
requires their momenta to be the same. One can
avoid the divergence by taking the eikonal limit
only at a later stage; but the combinatoric struc-
ture then seems to become prohibitively compli-
cated. What one would really like to have is a sim-
ple method for the construction of such radiative
corrections that respects both unitarity and the
permutation sums always associated with the eik-
onal model, and one such method proceeds as fol-
lows.

Consider the exchange of a pair of A lines be-
tween nucleon 1 and a third nucleon, say nucleon
3; to this process the eikonal limits, involving the
desired permutation sums, may immediately be
performed. In the absence of connecting pion link-
ages, this corresponds to the skeleton graph of
Fig. 3(a), and its contribution can be written down
immediately, as proportional to the factor
(ig' fO, Z, F,)''One t.hen associates with nucleon
3 an extra, virtual, scalar nucleon propagator, as
represented by Fig. 3(b); only the mass-shell part
of this virtual propagator is employed. Pions with
ordered rapidities are then inserted, as in Fig.
3(c), with care taken to distinguish pions with ra-
pidity larger or smaller than y, ; insertion of the
quantity 1 = f dy, &(y, -2 ln(p,"'p,' ')) under the

fdp,"'fdp,' ' integrals of this closed loop serves
to define y, as the rapidity of nucleon 3. Integra-
tion is then carried out over all relevant trans-
verse variables, and finally over all y„with y,
&y3 y2 The overall phase of the loop is deter-
mined by the requirement that the same construc-
tion must contribute an appropriately absorptive

term when applied to the decay of a sufficiently
massive A meson into a pair of scalar nucleons;
it is essentially this requirement that subsequently
fixes the TP coupling as pure imaginary.

As in the discussion following (3.7), unitarity re-
quires that whatever construction is used, it must
result in a positive imaginary part for asymptotic
K, and this property is here achieved in an ad hoc
way, by simply adjusting the phase of the result
to correspond to such absorption. This is really
a model calculation of ImK, for both its constitu-
ent nucleon lines are on their mass shells; and it
leaves open the estimate of ReE, a quantity that
could conceivably become important when many
TP's are involved.

It should be emphasized that this assignment of
phase is an extra model assumption, performed
only to circumvent the awkwardness of a proper
eikonal-plus-self -energy calculation. For ex-
ample, it is obvious from the expansion of the K
dependence of (3.11) that TP absorption arises
when K has a positive imaginary part, a require-
ment satisfied by the unitarity discussion follow-
ing (3.V). Upon closer examination, however, one
notes that 1mE(q) vanishes below threshold, and,
indeed, for spacelike q', just the range of q values
that enter into any eikonal computation [where q
«p„q(a)-0]. But this zero then multiplies an
infinity [the second 5(qp, ) ], giving a nicely inde-
terminate result and one which is here dined to
have just the phase given by the known asymptotic
value of ImK(q), and with a magnitude proportion-
al to the third-nucleon construction above. Ob-
viously, this method of self-energy calculation is
even more heuristic than the eikonal model itself;
but the result is surely correct, for it contains
the two essential physical requirements for these
insertions: all (eikonal) permutation sums plus
unitarity of the simple bubble.

We first fix the definition of K. Relative to the
eikonal of ix„and before pion linkages are in-
serted, the third-nucleon construction generates
an extra dependence of amount

I'iv d'p, &(p,'+M') ig' F,Z,(II)5, , (4.1)

where g is some constant whose phase is deter-
mined by comparison with the formal self-energy
insertion factors

(o)
A A

(b) (a)

A 3
N

2

FIG. 3. Three steps in the phenomenological construction of a triple-Pomeron graph.
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Thus, in effect,

K(M —v) - 2w-g t' d'p35(p33+ M3) 6:3(«)6 3(v),

(4.2)

and in order for K to have a positive imaginary
part, we must in (4.1}choose t as -iI&I.

Once this identification has been made, the same
construction can now' be applied to every term in
the K expansion of the formal (3.11), replacing
each K there by the form (4.2). Thus, for exam-
ple, the closed-loop expansions of (3.11) are ob-
tained by connecting each pair of "extra" nucleons
(say, p, and p, ) by eikonal exchanges of A lines,
illustrated in the skeleton graphs of Fig. 4(a); all
eikonal A-meson permutations are automatically
included here. Then, mass-shell propagators are
associated with each such extra nucleon, convert-
ing to the graphs of Fig. 4(b); and finally, pions
with ordered rapidities are inserted, as in Fig.
4(c}, to generate an effective Pomeron self-energy
graph, Fig. 4(d).

One final simplification will alw'ays be made:
Bather than performing integration over all mo-

o„,=2 d'b[-ix3(b, s)]; (4.3}

that is, it is assumed, as with the ordinary Pom-
eron computations, that complete s-channel uni-
tarity —the actual exponentiation of iX3(b, s)—is
not necessary. Those situations where such ex-
ponentiation is necessary —when &3(0) &1, or in-
cluding nonplanar pion linkages, or (at least in
this model) when fermion rather than boson fields
are used in the construction of K—will become
apparent shortly. We work out the first computa-
tion in detail, and then merely quote the results
for the other, similar calculations.

After the parametric eikonal integrations have
been performed, (4.1) may be put into the form

mentum components of the subsidiary nucleons
introduced to compute these eikonal self-energies,
it is more convenient to integrate over their third
and fourth momentum components (or p& &

and

p& &, with p, =E+ p3) together with an integration
over their spatial transverse coordinates zg

and we shall everywhere replace J d'P 5(P'+ M')

3 fd'z fdp&, & fdp& &5(M' —p&. &p& & ) a f&»m ap-
propriate to the ordinary Pomeron assumption of
limited but conserved transverse momentum.

For simplicity, we calculate only the contribu-
tions of these terms to e„„now given by

I 3»& & f 3)&& &&I(P& &)&& & M )(),«P& & ), & &),«')-*

I
x d's

3 3. „,exp i&I (z, -z3)+i&I'(z, -z3}+&& Il&r, +&& & Iio, ,q'+ m' q" + m' J
(4.4)

Fixing the definition of y, by introducing
1 —f&fy35(y3 3 ln(p,"/p3 ')} into the p, integrands
and then interchanging integrals, one finds that
(4.4) becomes

&fy [e3& 33 e» "3)tPq
(q'+ m')'

3&y

x exp A. IIo' +X
J

IIo
3'3 3'3

(4.5)

with p~'=Me"&. The pion source dependence of
(4.5) contains implicit dependence upon y„ for the
pions are to be inserted with ordered rapidities;
according to the prescriptions of Sec. II the or-
dered pion graphs of Fig. 3(c}generate a contri-
bution to otot of amount

&6&+e(o)3(3&3 3&2)

5o AM'P, ' . (e"1 "3 83'3"»)'

d
X i q 2(3& 3&3)[1+e(o) I e'Iq 2

(q" + m'}'

(4.6)

F-1 dytot ~ ~

eyrie

(O)-x]
+(Pom)

tot
(4.7)

where q is a positive constant.
When the bare Pomeron intercept is unity, this

construction of the simplest TP contribution to
the total cross section, Fig. 3{d), generates an
amount -q lnFct'Pt' '. The negative sign here is
indicative of expected strong absortive effects,
just as for the Pomeron cut, and has been ob-
tained from a comparison of the formal eikonal
solution with the unitarity requirement of the sim-
ple bubble, K. Were the Pomeron to have an in-
tercept greater than unity, this contribution would

carry the s dependence -s" '&/Y. Similarly,

where it has been assumed that (y, —y, ) I
o' )m'

& 1, and the definition 1+ o&(Q'} = &&'&&&3(&)&}l8«has been
used; because the q' integrand effectively cuts off
at [~ o'~(y, —y,)] '~', some simplifications have
been employed in reaching (4.6). For simplicity,
we assume a unit rapidity range is required be-
fore any such distributions become valid, which
leads to
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FIG. 4. Three steps in the construction of a Pomeron self-energy graph.

were pion linkages permitted between all the A
lines of these graphs, as in Fig. 5, or, had spin-
& fermions been used in the construction of the
bubble, then this contribution to o„,would have
been proportional to -s'/Y. In these latter cases,
one would expect that the full exponentiation of the
complete ix,'(s, p) would be necessary to avoid both
exceeding the Froissart bound or finding a negative
cross section.

In the present eikonal model, the sum of leading
(lnY)" contributions, corresponding to N TP ver-
tices illustrated (for %=2) in Fig. 6, can be shown
to exponentiate, adding a contribution of
exp(-q ln Y) —1 relative to the +1 of the bare Pom-
eron [assuming u(0) = 1]. In this highly approxi-
mate but suggestive way, one can see how such
leading ln Y dependence could serve to suppress
the bare Pomeron in the asymptotic limit. It is
al.so interesting to see how, in this simple exam-
ple, multiple-Pomeron exchanges corresponding
to higher t-channel thresholds, are obtained by
"dropping down" more and more radiative cor-
rections to the original s-channel process of iy, .
Summation over all t-channel thresholds is in-
cluded in the formalism, as is the availability of
full s-channel unitarity.

Incidentally, the self-energy insertions in the
graphs of Fig. 6, and their generalizations to high-
er N, can be attached to either nucleon line, with
a resulting doubling of this contribution to 0„,.
The only proviso is that bubbles arising from the
different nucleons cannot overlap in rapidity space,
for then those graphs at fixed N, and N, do not
generate the leading (ln Y)"~'"2 dependence.

More important contributions for large rapidity
are associated with the graphs of Fig. 4(d). In the
present model, and with n(0) = 1, these come out
with a somewhat stronger Y dependence, generat-
ing a contribution to o„,/o,'~; ' of the form"

-pY(lnY-1}, p&0. In this eikonal model, the
leading behavior of the term with N such Pomeron
self-energy bubbles, and no other TP radiative
corrections, exponentiates to yield e ~ " —1,
again suggesting how these Pomeron self-energies
can act to remove the bare Pomeron. The re-
maining contributions then generate a o„,/a, ',t'
-+p Y(1+ ), where the next-to-leading-term
of the contribution of Fig. 4jd) has been retained,
plus the other ".. ." terms, not given by any such
small-coupling analysis. For the sum of all con-
tributions, one clearly must resort to renormaliza-
tion-group arguments, or to special kinematical
models.

V. SUMMARY AND OPEN QUESTIONS

In the present special and simplified eikonal
model, it has been shown how the application of
s-channel radiative corrections generates effec-
tive, multiple t-channel interacting TP's whose
summed asymptotic contributions can readily act
to produce a Y-dependent e„„such as that sug-
gested by RFT. The main advantages of the pro-
cedure is that it contains automatic s-channel
unitarity along with an appropriate expression of
all t-channel Pomeron thresholds, thereby ap-
proximating t-channel unitarity as well. The main
qualifications to the model arise from the topics
discussed in Sec. II: the necessity for excluding,
in any equivalent field theory, those higher eiko-
nal terms presently neglected, and the necessity
for understanding the reasons behind the phenom-
enological choice n(0) =1, which here serves to
define the bare Pomeron.

For o(0) &1, and in certain other situations, one
is forced to employ the full s-channel unitarity
provided by the eikonal model; and it will be no
great surprise if the sum of all such radiative

(x)

FIG. 5. Example of graphs leading to modified TP's
for which full 8-channel unitarity must be employed.

FIG. 6. Phenomenological construction of a graph
with two TP vertices.
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corrections lead to an expanding disk eikonal. Re-
sults suggestive of this form have been obtained

in other recent o(0) & 1 model calculations. "
The contributions, modified by self-energy ef-

fects, of the higher nonplanarix„, n&3, remain
to be properly estimated; and it is always pos-
sible that they could completely change all other
qualitative results. If the simple, asymptotic
arguments of Ref. 7 were even partially correct,
then all RFT estimates require drastic and prob-
ably essential modifications. One wonders if the

bound o„,~ const x s '"'~"', recently suggested by

Khuri" (in P' theory, with the aid of arguments
made plausible by their frequent usage in renor-
malization-group computations) could be under-
stood in this way.
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