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Asymptotic freedom and the baryon-quark phase transition
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We have calculated the ground-state properties of a quark gas to second order in the quark-gluon coupling
constant. Asymptotic freedom has been taken into account by using the renormalized coupling constant of
Politzer and Gross and Wilczek. We find that this asymptotically free perturbation theory leads to an

equation of state for a quark gas which for pressure P ) 0 is very similar to the equation of state obtained
from the MIT bag model of hadrons. In particular, we can identify a "bag pressure" term in the
perturbation theory expression for the pressure as a function of density. We obtain estimates for the baryon-

quark transition pressure by comparing the perturbation theory results with the Gibbs energy per baryon of
baryonic matter. Our calculations show that the baryon-qua k transition takes place at densities on the order
of 10—20 times that in ordinary nuclei. These transition densities are higher than the maximum central
density calculated for a neutron star.

I. INTRODUCTION

The quark theory of hadrons has had great suc-
cess in classifying the spectrum of baryon and me-
son states, ' providing an interpretation of lepton-
hadron deep-inelastic scattering, ' and explaining
e'e annihilation data. ' The fact that free quarks
have never been observed in nature possibly means
that quarks are permanently bound inside hadrons.
Such a situation could result4 if quarks interact via
a massless non-Abelian gauge field. There are,
indeed, theoretical reasons' for believing that the
gluon field which carries the strong interactions
between quarks is a non-Abelian SU(3) massless
vector gauge field coupled to quark color. The
permanent confinement of quarks in such a theory
could be due to the fact that in a non-Abelian gauge
theory renormalization efforts can become very
large when the gauge field carries small momen-
tum transfers. In particular, using renormaliza-
tion group arguments it has been shown' that the
effective quark-gluon coupling constant n, (=g'/
Isw) is
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where K is the number of quark flavors, Q is the
momentum transfer, and A is the single parameter
which characterizes the effective coupling. In
principle, the value of A may be deduced from e'e
annihilation data' or from deep-inelastic lepton-nu-
cleon scattering, ' even though in practice the de-
termination of the exact value of A is complicated
because of threshold effects associated with heavy
quarks and possible contributions to the data from
heavy leptons. '

Although Eq. (1.1) is only rigorously valid for
small values of Q.„ it does suggest that the quark-
gluon coupling constant can become very large for
momentum transfers Q-A. This large increase in
quark-gluon coupling at small momentum transfers
may result in quarks being confined to a finite re-
gion of space. However, this is only a conjecture
at the present time since a rigorous theory of
quark interactions when n, is large has not yet
been developed.

Another and more straightforward result of the
renormalization of the quark-gluon coupling cons-
stant is the asymptotic-freedom property, which
states that the quark-gluon coupling becomes very
small at large momentum transfers if the number
of quark flavors is not too large, as is evident
from (1.1). If tiuarks are indeed asymptotically
free at large momentum transfers then one in-
teresting consequence would be that at superhigh
densities where the quark Fermi energy is large
matter should behave like a gas of free quarks. ' Of
course, the density where such a description be-
comes valid must be higher than the density of
matter inside nuclei, because it is well known that
the behavior of matter up to these densities can be
described in terms of baryons (protons, neutrons,
and hyperons). Evidently then, nuclear matter un-
dergoes some kind of transition at densities above
those occurring in ordinary nuclei from a state
where the quarks are localized inside baryons to a
state where the quarks are delocalized and approx-

.imately free.
This question of a phase transition between bary-

on matter and quark matter is not entirely of aca-
demic interest because nuclear densities higher
than those occurring in ordinary nuclei occur in-
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side neutron stars. Thus it is of interest in con-
nection with problems such as the maximum mass
of a neutron star to know the baryon densities
where the baryon-quark phase transition takes
place. High baryon densities also occur in the
early universe, and the baryon-quark transition
may have important cosmological implications. '

In order to investigate the baryon-quark phase
transition one needs a theory of quark matter. In
principle one should in fact be able to calculate
where the baryon-quark phase transition takes
place from the theory of quark-gluon interactions,
i.e., quantum chromodynamics (QCD). At the
present time, however, one cannot carry out such
a calculation because of the lack of a calculational
procedure for describing quark confinement, i.e.,
the regime when the quark-gluon coupling becomes
large. Instead, one must adopt a more phenome-
nological procedure.

It has been pointed out'~" that one may obtain an
estimate of the densities where the baryon-quark
phase transition is likely to take place by compa-
ring the Qibbs energy of a quark gas with the Qibbs
energy of baryon matter calculated using phenome-
nological nucleon- nucleon potentials. The Qibbs
energy of the quark gas should of course be cal-
culated as accurately as possible, but since one
does not have an exact theory of quark-gluon in-
teractions one must make some sort of approxima-
tion to calculate the properties of the quark gas.
One possibility is to make use of the phenomeno-
logical MIT bag model" of hadrons. This theory
has been successful in explaining the observed
properties of baryon states" and in addition pro-
vides a prescription for calculating the properties
of a quark gas. In particular, it can be shown""
that the energy density z and pressure P of quark
matter in the limit of zero quark masses is

N and & masses. " Using these bag parameters
and some recent phenomenological equations of
state for baryonic matter it was found' '" that the
baryon-quark phase transition occurs at a density
of 10-60 times that in nuclei.

Another approach to caleula. ting the properties of
a quark gas would be to use perturbation theory,
including the higher-order effects which lead to the
coupling-constant renormalization. ""As a con-
sequence of asymptotic freedom, perturbation
theory will be valid at very high densities. Wheth-
er or not perturbation theory is valid at densities
as low as the baryon-quark phase transition de-
pends on the value of the quark-gluon coupling con-
stant at the transition. %'e will show in the follow-
ing that at the baryon-quark transition density the
effective strength of quark-gluon interactions a,
probably lies somewhere in the range 0.25 to 0.45.
Although these values are not so small that one can
be confident that perturbation theory is a good ap-
proximation near the transition density, they a.re
small enough so that one might hope that perturba-
tion theory is not too bad an approximation near the
transition density. In this paper we mould like to
reinvestigate the question of where the baryon-
quark phase transition takes place, adopting this
point of view.

In calculating the ground-state properties of a
quark gas we will apply our previous result, (1.2a),
for the energy density of a quark gas, but with B
=0. Instead of using a fixed gluon coupling constant
as in the MIT bag model, we will use a renorma, l-
ized gluon coupling constant that depends on the
Qibbs energy per quark and appears as the natural
expansion parameter in a perturbation-theory
treatment of many-quark systems. '"" In other
words, we mill assume that the energy density of a
quark gas is given by

(1.2a)

P=—n —B& 4(3 (1.2b)

] + C (1.4)

The coupling n, and the bag pressure 8 do not de-
pend on quark momentum in the MIT bag model,
and they are determined by fitting to the observed

where A and 8 are constants. Note that (1.2a) and
(1.2b) lead to an equation of state

(1.3)

In second order in the quark-gluon coupling g, A
gets a contribution from the single-gluon-exchange
diagram for quark-quark scattering and is given
byloy ll

where A is related to the quark-gluon coupling n,
as in (1.4), but now this coupling depends on the
Gibbs energy per quark. The form of (1.1) sug-
gests that an appropriate expression for o,, in a
Fermi gas would be"

lr 1
22 ——,K ln(k~/Ar) ' (1.6)

where kz is the quark Fermi momentum and Az is
a constant. This assumes that the medium screens
the long-range quark-quark interaction' as in the
corresponding case of an electron gas. In order
that the value of a, calculated from (1.6) be con-
sistent with (1.1) the quantity Ar should be com-
parable to &A.

Alternatively, it has been suggested" that the
MIT bag model applied to quark matter"'" might
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be improved by using a renormalized coupling con-
stant n, that depends on the Gibbs energy per
quark. However, there are questions concerning
the validity of such an approach. For example, if
the coupling n, depends on the quark Gibbs energy,
why should the bag pressure 8 be kept constant' ?

We will show in Sec. II that this question finds a
natural resolution within the framework of renor-
malized perturbation theory. In particular, one
can identify a term in the renormalized perturba-
tion-theory expression for the pressure which
plays the role of a bag pressure. This effective
bag pressure does depend on quark momentum, but
in the region of the baryon-quark phase transition
it is approximately constant. Thus we find that as
far as the equation of state for quark matter is
concerned there is practically no difference be-
tween the bag-model theory and second-order per-
turbation theory using a renormalized quark-gluon
coupling.

The question of exactly where the baryon-quark
phase transition occurs is discussed in Sec. III.
The density where the baryon-quark transition oc-
curs depends on the parameter A~ and on the equa-
tion of state of baryonic matter, but for reasonable
values of Az the transition density probably lies in
the region of 10-20 times the density of matter in
nuclei.

II. PROPERTIES OF A QUARK GAS IN QCD

In this section we discuss the ground-state prop-
erties of a quark gas in second-order perturbation
theory in QCD, including the effects of renormal-
ization of the quark-gluon coupling constant a,
(1.6). Introducing the dimensionless parameter )I

=kz/Ar, we can write o., for A" =3 in the form

P/A4 ~F
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FIG. 1. The pressure P/hJ, 4 as a universal function
of energy density &/hz4, shown for the case (a) @CD
equation (2.4), and for {b) the NIT bag model, (1.3),
where e, and & are determined according to (2.7) and
(2 13).
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Note from (2.1) to (2.5) that n„n/Ar', «/Ar', P/
Ar', and p/A are universal functions parametrized
by X independent of A~. This is illustrated in
curves (a) of Figs. 1 and 2 and the curve of Fig. 3,
where we show P/Ar' as a function of e/Ar', p/Ar
as a function of P/Ar', and a, as a function of P/
A~4. We have included only three quark flavors, K
=3, in (2.1)-(2.5) because the charmed quark is
expected to have a mass m, -2 GeV and, it turns

18lnX ' (2.1)
IO

where X is determined by the conserved baryon
number density

A 'X'
n= 2 (2.2)

Substituting (2.1) and (2.2) into Eq. (1.5) we obtain
for the energy density

9 4 4 4
,A~'g 1+ (2 3)

Then the pressure P =nde/dn —c and the Gibbs —en-
ergy p= de/dn deriv—ed from (2.2) and (2.3) are

I

tO

I

12 14

3, , 4 1P
4 2 Ap g +

1
p. =3A~y 1+ 1—

(2.4)

(2 5)

F

FIG. 2. The Gibbs energy per baryon, p/h&, as a
universal function of the pressure P/h~ for the case
(a) @CD equation (2.5), and for (b) the MIT-bag-model
result (Ref. 11), p =4(A/3)3 (P+B)' 4.
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l.2

l.o—
Az by the consistency requirement that this energy
per baryon at P =0 be higher than the nucleon
mass. For e,/n, &940 MeV we then obtain Az&207
MeV. Actually this lower bound Az is only approx-
imate because near P = 0 for A~ ~ 300 MeV the
mass of strange quarks is not negligible.

To compare the equation of state from QCD with
previous results using the MIT bag model"" we
note that (2.3) and (2.4) imply that

,2-
P=k [& —4B(X)] ~ (2.11}

1 1 1 I I I I 1

-2 0 2 4 6 8 10 l2 l4

F

where

~p' X'
(2.12)

FIG. 3. The renorxnalized quark-gluon coupling con-
stant 0, , (2.1), as a function of the pressure P/A,
(2.4) .

out, can be ignored for densities near the baryon-
quark phase transition. Our neglect of the mass of
the strange quark m, -0.3 GeV can also be justified
a posteriori for these densities.

According to (2.2} and (2.3) the energy per baryon
e/n has a minimum as a function of X which occurs
when the pressure P vanishes. Solving (2.4) for P
=0 we obtain

lnX, = —,', (2v 7 - I) =0.3178

Comparing (2.11) with the corresponding equation
of state in the MIT model (1.3}we interpret B(X) as
a density-dependent bag pressure.

At P=O we have

12m' ln2pa
(2.13}

which for Az =207 MeV gives B(X,) = 71.4 MeVfm ',
a value somewhat higher than the value of the con-
stant MIT bag parameter B =59.2 MeV fm '. Note
that B(X}(2.12) has a minimum value at

lnX, = g

or

X, = 1.374.

(2.6)
or

X, = 1.649, (2.14)

The first interesting consequence of this result is
the value of the effective quark-gluon coupling con-
stant n„(2.1}, at P=O,

a, =1 =0.549,18 ln)(0
(2.7)

which is numerically equal to the value obtained by
fitting the hadron spectrum in the MIT bag model. "
The corresponding baryon density n (2.2) and ener-
gy density e (2.3) at P = 0 are then

(2.8)

3w' ln'y0

giving an energy per baryon

(2.9)

= 4.533', . (2.10)

Of course we know that the physical ground state
of the system at P=O is not a quark gas but nuclear
matter. This implies that a phase transition oc-
curs at somewhat higher densities, below which
quarks become confined inside individual baryons.
We can apply (2.10) to determine a fotter bound to

which gives

B(X,) = 0.2495A~'. (2.15)

For A+=207 MeV we find B(X,) =59.8 MeVfm '.
We expect therefore that the QCD equation of state,
(2.11), will be in close agreement for P &0 with the
corresponding equation for the MIT bag model
(1.3). This is indeed the case as is shown in Fig.
1. In particular note that to a very good approxi-
mation the pressure P depends linearly on the en-
ergy density for P &0, and dP/de = 3. This implies
that the critical values of P/e and the adiabatic in-
dex y =d lnP/d In(n) for the maximum mass of a
quark star should be nearly the same as those pre-
viously calculated in the MIT model. "

If one fixes n, and B according to (2.7) and (2.13),
respectively, then one can plot the MIT-bag-model
equation of state and Gibbs energy as universal
functions of e/Az' and P/Az', respectively. Such
plots are shown as curves (b) in Figs. 1 and 2. It
can be seen as expected that there is very good
agreement between the bag-model equation of state
and the equation of state from QCD for P&0. On
the other hand, for a given P the value of p, calcu-
lated from @CD is smaller than the MIT-bag-mod-
el result" u =4(A/3)'~'(P+B)'~'. This can also be
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TABLE I. Properties of the baryon-quark phase transition. P& is the transition pressure,
g& is the baryon number density on the baryon side of the transition, n2 ls the baryon number

density on the quark side of the transition, p, is the matter density on the baryon side of the
transition, and p~ is the maximum central density for a neutron star calculated using the in-
dicated equation of state.

Bethe- Johnson VH Pandharipande-Smith Causality limit

A~ (MeV)
P& (10 dyncm )
n& (fm 3)

p, (10"gem-')

p, (10"gcm-')

300
24.0
2.15
3 ~ 61
5.60

400
36.8
2.58
5.07
7.39

300
4.1
0.7
1.3
1.8

400
10.9
1.1
3,0
3.0

300
3.6
0.47
1.26
0.90

1.6

400
7.3
0.59
2.68
1.30

Using Fig. 4 one can read off the transition pres-
sure, i.e., the pressure where p (baryon matter)
= p (quark gas). One of the striking results evident
from Fig. 4 is that there is no baryon-quark phase
transition for the baryonic equations of state being
considered for A~ &200 MeV. This presumably
means either that none of the baryonic equations of
state being considered are realistic or that in real-
ity Az&200 MeV. In fact we argued in Sec. II that

A~ should be greater than 207 MeV on the basis
that the Qibbs energy per baryon in the quark gas
should be larger than the nucleon mass at zero
pressure. More realistically, one expects that the

energy per baryon in a quark gas at zero pressure
will be greater than the spin-isospin weighted
average of the N and 4 masses (1180 MeV) which
corresponds to A~ &260 MeV.

Another argument which supports the idea that A~
should be greater than 260 MeV is that one should
expect tha. t the value of n, ()t) will be close to the
bag-model value o.,= 0.55 when the average quark
momentum in the Fermi gas, &kz, is equal to the
average quark momentum inside the stable nucleon.
For the case of light qua. rks the bag model" gives
about 400 MeV/c for the quark momenta inside the
nucleon. Since o.,()t) = 0.55 when X = 1.3'13, we ob-
tain Az =—', (400)/(1. 3'13) = 388 MeV.

It should be noted that Az in the range 300 to 400
MeV is not inconsistent with current interpreta-
tions' of e'e annihilation data for center-of-mass
energies in the range 4 to 8 QeV, which suggests
that if there is a heavy quark with a mass ™2GeV
then A probably lies in the range 300 MeV to 1
GeV. Recent work on the breakdown of scaling in

electroproduction' suggests that A = 500 MeV.
From the transition pressure one can obtain the

matter densities and baryon densities on both sides
of the phase transition by making use of the quark-
gas and baryonic-matter equations of state. The
results for A+=300 and 400 MeV and the different
baryonic equations of state are shown in Table I.
It can be seen that in the case of the Pandhari-
pande-Smith-baryonic-solid equations of state the
matter density p, on the baryon side of the transi-
tion is going to be very close to the result obtained
earlier"" using the MIT-bag-model theory if Az
lies between 300 and 400 MeV. On the other hand,
if one uses the Bethe-Johnson baryonic equation of
state then the baryon matter density at the transi-
tion will be about & as large as the bag-model re-
sult.

The maximum central density p, for a neutron
star calculated using the Oppenheimer-Volkoff
equation and the indicated equations of state"" is
also shown for comparison in Table I. It can be
seen that with the possible exception of an equation
of state lying near the causality limit the calculated
baryon-matter transition densities lie above the
neutron-star maximum central densities. Thus,
although the possibility of having free quarks inside
neutron stars is not entirely ruled out, it does not

appear likely.
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