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The form of the anomaly in the trace of the energy-momentum tensor in a general theory of interacting

fermions and non-Abelian gauge bosons is derived. The result is shown to involve precisely those gauge-

variant operators which are known to mix with the naive trace under renormalization. The trace is shown to
be soft on the mass shell if and only if the theory is at an eigenvalue of the Callan-Symanzik P function.

The dilatation anomaly in the matrix element of 8"„with two electromagnetic currents (to lowest order in

electromagnetism, but including all orders of the strong gauge interaction) is derived and shown to be

infinitely renormalized in finite orders of strong perturbation theory. This anomaly is then shown to be

canonical and given precisely by the lowest-order result provided the strong interactions are summed to all

orders before going to the limit of physical space-time dimensions.

I. INTRODUCTION

'The behavior of nontrivial, renormalizable quan-
tum field theories under dilatations has been the
subject of considerable attention for quite some
time. ' Stimulated mainly by the existence of vari-
ous scaling phenomena, the interest has centered
on the asymptotic behavior of Green's functions.
This behavior exhibits departures from that sug-
gestedby naive dimensional analysis, and can be
analyzed on the basis of Callan-Symanzik' or re-
normalization-group' equations (RGE's), which
take explicit account of the anomalies in the dilata-
tion Ward identities caused by the inevitable pre-
sence of regulator contributions. The information
expressed by the RGE's can also be obtained, less
directly, by studying zero-momentum insertions
of the trace 8„" of the energy-momentum tensor in
the general Green's function. ' There have also
been attempts" to obtain predictions about low-
energy phenomena by studying 6)„" such as the par-
tial conservation of dilatation current (PCDC) cal-
culation of the (c -2y)/(e -2w) branchingratio. Here
the energy-momentum trace enters directly, as
the operator putatively dominated by an e ("dila-
ton") pole.

In this payer, we will study the trace of the en-
ergy-momentum tensor directly in theories con-
taining fermions and non-Abelian gauge vector
particles (but no scalars). ' The exact form of the
anomaly in the trace was recently derived' for
@ED: For non-Abelian theories, the derivation

is somewhat complicated by the mixing' of gauge-
invariant with gauge-noninvariant operators under
renormalization. In Sec. II, we fix our notation
and write down the expression for the trace in
terms of bare fields, in the dimensionally regulat-
ed version of the theory. In Sec. III, we derive
an exact expression for the anomalous part of the
trace at zero momentum in terms of dimensional-
ly subtracted normal-product operators. " In Sec.
IV, the extension of the result of Sec. III to ar-
bitrary momentum is proved. We note here that
one result of the computation is that the energy-
momentum trace, on-shell and at nonzero mo-
mentum, is soft if and only if P(g) =0, that is to
say, at a Gell-Mann-Low eigenvalue. In the gen-
eral Green's functions, a hard (and manifestly
gauge-noninvariant) operator survives in the trace,
even at an eigenvalue. In Sec. V, we study the
dilatation anomaly in matrix elements of the ener-
gy-momentum trace with the hadronic electro-
magnetic current, in a theory with non-Abelian
strong interactions. It is shown that the "canoni-
cal trace anomalies" of Chanowitz and Ell.is' are
in fact infinitely renormalized in higher orders of
strong perturbation theory. It is then demonstrated
that, by summing to all orders in the strong cou-
pling, before passing to physical dimensions
(I = 4), the dilatation anomaly is exactly computable
and given precisely by the canonical (lowest-order)
result. Some technical details relevant to the
analysis in Secs. III and EV are relegated to the
Appendix.
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II. COMPUTATION OF THE TRACE

A. Preliminary

We shall be considering a non-Abelian gauge theory with fermions. " The unrenormalized but dimension-
ally regularized Green's functions of such a theory can be computed from the effective action (in linear
gauges)

S, [A, , ~, ('A , )~„(,~]= ja * ,r .—(*)Z.:„(*),F"(*)()),r) g —,.) ((*) [ag„.(x)I*
0

+ s"~.(x)[8„.(x) -))c„„A"„(x)w,(x)]I,
where

(2.1)

(2.2)

&u ((d, ) are the Faddeev-Popov ghosts (and antighosts), and g„m„$, are the bare coupling, bare
mass, and bare gauge parameter, respectively. We have chosen the gauge group to be simple; the t are
its generators in the fermion representation, and the c,~„are its (totally antisymmetric} structure con-
stants.

The unrenormalized Green's functions of the theory are generated by

0 0 0 0 0.Ws'. ~a~~xe~X~~~ i'[) lgo~ 0~ &oi&ia~

dAd~d~dg exp —S~, + d ~ „x x+X x~ x+(d »X x+g» + xg x ~

(2.3)

Here a is a loop expansion parameter (to be set equal to 1 in the end). The unrenormalized connected
Green's functions are generated by Z, = -i ln@'o, andthe correspondingproper verticesby I'o, obtained from
Z, by a Legendre transformation:

r,b', ))', ()'( ('; m, .)', ,(,.n, a] = z, —f a gz: (x)r"r (x)+„)):(x'.)„x (x)+ x (x)').):(x) .r(x)n'(x)~~ r(x)('(x)],

(2 4)
where we have defined

We have the relations

gr, , or, , or,'„{x}=—5, ( }, X'(x}=— ~, ('}-, ~'(x)= 5~, ('}, etc.

(2.5)

(2.6}

Further, one may generate Green's functions with an arbitrary number of insertions of a local composite
operator O(x) simply by modifying the exponent in Eq. (2.3}by (i/a) J M(x)O(x}d x, where M(x) is a source.
Then if we define Z, and I', in an analogous manner (I', and Z, depend on M and M does not appear in the
Legendre transform), we have

aZ, Or,
5M(x) 5M(x}

We further have the Ward-Takahashi (WT) identity:

(2.V}

0= ~ ~ o ——8„+ x —j(d x d p cTg~ g e~(dg g +gocg„6A~
0

x exp —3„,+ d "x[J'(x)A, „(x)+'0'(x)(1)(x)+V(x)r]'(x)] (2.8)
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We have the equation of motion for the gauge field,

+cJ ~ x exp —8 fg+'''&~.rf (2.9)

and its analog for the fermions. We also have the equation of motion for the antighost field,

0= dA '' ' 8~ ~ (do X -g0CMYAN X (dS X +Xo + ~ eft+a (2.10)

where, in Eqs. (2.9) and (2.10), the exponents are identical to those in Eq. (2.3).
The theory is made finite by the multiplicative renormalizations given below&. We shall determine the

renormalization constants by the minimal subtraction scheme, "[i.e., counterterms subtract just the poles
in (n —4)]. Thus,

J R g l/2g0
OQ 3 COP&

x"=~'"x'., x"=~'"x.,
~R g 1/2~0 ~R Z l /2~0

2

ggp(84) /2g

lpga

l /2gp(ft 4) /2g8 0 1 2 3 0 gP

m„=S 'm, $„=Z, '$ .
Then the generating functional of renormalized Green's function is (g=(Z, », 1„.. . )) &=(g, m, $/)

Ws[g ";X", p) n, a] =—Wo[$0; Ao) n, a]

and is a finite functional of its arguments at n = 4.
We shaB use the notation

(2.11)

(2.12)

(F[A, g, tlI, ()), (()])&o = (dA d(d d()) dg tg)E[A, g, )It(, (d) (d] exp —(S«+ ' ' ' )
0 g

(2.13)

B. Trace of the energy-momentum tensor

Consider the energy-momentum tensor as constructed by Freedman, Muzinich, andWeinberg, "modi-
fied to include fermions. It reads

'»»(&) = &».jeff -F:.F:e-g». &0 "-&O'Ae)+ &0 '[A. »( 'A»)+ (~-v)l
+ ~i[+„(s„—igot A„)g —$(s„+ig&)t A„)y„(I)+(v —v))+[s„(d (s„(d -goc „()A(o ) ()(+p —v)]. (2.14)

Here Z«(x) is defined to be the expression in the curly brackets in Eq. (2.1). The trace of 8„„in n dimen-
sions can be expressed (without use of equations of motion) in the form

,s (s, g, ,„A;,) ( 4)[g.„~;s p, , s"A„)].

(i) As we are using a mass-independent renormalization scheme, we have"

m, (T(g = m~(T((g) = a finite quantity.

(ii) Using the equations of motion for (I) and g,

(2.15)

(2.15)

(x) -"' + "' g(x) = &gn'+q'(t)-&
5T((x) 5y(x)

] ~ 8 8
i q" ~( )

—rf(x) ~( )
W„—= iN„. (2.17)

The truncated on-shell Green's functions of N „vanish at q w 0 and at q = 0 they equal the number of exter-
nal fermions (antifermions included) of the Green's function; in particular, they are finite.

(iii) Further, by using the equation of motion for the antighost, viz. , Eq. (2.10), we obtain
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(2(o (x)8'[e, d (x)-g c „A",(x}&o (x}])=-2((o (x)xo(x))

2i 0=+ )P (x),
( )

W,

2i
~ xo ~

~~a=-» y

Xo
(2.18)

where N„ is the counting operator" for ghosts
whose truncated on-shell Green's functions vanish
at q0 andatq=0 equals the number of external
ghosts and antighosts. In particular, therefore,
its Green's functions with external gauge bosons
and fermions only vanish identically.

(iv) Finally, we consider the term in 8"„(x):

28'[-$ 'A, s"/t.„+&o (8,v -g,c s „A",&o~)]. (2.19)

Regarding this term we shall show in the Appendix
the following:

(a) At q4 0, its truncated on-shell Green's func-
tions (with physical wave functions attached) van-
ish identically.

(b) At q = 0, these Green's functions vanish. This
is, of course, obvious once one notes that the ex-
pression in the square brackets in (2.19) cannot
have a 1/q' singularity because it does not have the
quantum numbers of a ganp'e field.

(c) For the sake of completeness, we shall show
that the only other renormalization part in the
Green's functions of (2.19), viz. , the two-ghost
proper vertex with an insertion of the expression
(2.19), is finite.

To summarize, we have shown that the terms
in 8"„(x)[see Eq. (2.15)], apart from the term pro-
portional to (n -4), are finite and for physical ma-
4'ix elements of 8~»

8„"(x)—(n —4)[R,«$,+'8,(/Pe"/1„)] = m„Ngg)+ iN„.

(2.20)

It thus remains to consider the last term in Eq.
(2.15). This gives rise to the anomaly and will be
treated in the next two sections.

g g(g (s)~(n 4) /2oz/2 t (s) ) (3.1)

Note the appearance of the loop-counting param-
eter a accompanying powers of g,'.

At zero momentum, the anomalous part of the
energy-momentum trace is just [cf. Eq. (2.15)]

(8") = (& 4)& « ~ (3.2)

We have adopted the convention 8 -=J d "x 8(x) for
an arbitrary local operator at zero momentum.
Now we note that zero-momentum insertions of
C,«can be obtained simply by differentiating the
bare functional 8', with respect to the loop param-
eter a:

III. THE TRACE ANOMALY

We will now compute the zero-momentum in-
sertion of the anomalous part of the energy-mo-
mentum trace in the limit n -4, expressed in
terms of renormalized operators. The derivation
is completed by noting (cf. Sec. 1V) that the form
obtained must hold for arbitrary momentum, by
the general theory' of renormalization of gauge-
invariant operators.

We begin by noting that, by virtue of the mass-
independent renormalization scheme we have
chosen, the Z's of Eq. (2.11) all have the function-
al form

1 ~S'0 i-v(L,„+(-4' A) + ~ ~ ~ )808'0 ~a ~0 & a

= —-r (8,„)8 o —— d "xg '(x) ~
i 1 „~0 68'0 1

5j'x W,

i 1 „g 5%'~ 1
= ——,(8,„)so —— d "xg "(x) ~ (3.3}

The source terms are evidently finite at n= 4, so up to terms vanishing at n =4

1 aw„--v(n -4)(S~,) = (n -4)
a efi

&8'g ~J] 1
+ ~

' + other source termsex~ ~a,o „ B
(3 4)
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[The sum over t in (3.4) includes a spatial inte-
gration. ] From (2.11) and (3.1) it follows that,
setting a= 1,

~A'R
lim (n —4) " = P(g„)-=lim Io, g„
n 4 ~a )to n 4 ~~ )t .

(3.5)

The other a derivatives in (3.4) reduce similarly
to the corresponding anomalous dimensions, yield-
ing (a = 1), in an obvious notation,

t(n -—4)|,« = —.'(y,N„+ y~„+yN„)

a 8 8
+p —y mR —y, ER

~JR ~m

Now recall that differentiation of a renormalized
Green's function with respect to a parameter A.

appearing in (3.7) amounts to insertion of i(BI„,/
sk). Furthermore, the dependence of renormalized
Green's functions on (» g~, &„ is just

G (p. yR g 1 t ) g Ng/2g //o/or -N~/2

xGs(P;A, 1, 1, 1),

so that, for example, NA can be replaced by the
differential operator 2S/-Sf„T.hese remarks
lead directly to the following correspondences:

N~ --tiN Ao~ +2&gr -gscus. N[~o "A oo'o]
Ill

(3.6)
+gsN[0&ot &] [ (3.9)

The quantities N „, N~, and N „are just the total
number of external gauge, fermion, and ghost
lines, and arise from the counting operators
J", (8/BJ f), etc. , in (3.4).

The final stage of the computation involves re-
expressing N„, N„, N„and the derivatives with re-
spect to the renormalized parameters in terms of
zero-momentum insertions of renormalized nor-
mal products. " To this end, we write the effective
normal-product Lagrangian in terms of dimen-
sionally subtracted normal products:

N~ -22+~,

N„- -2A
(3.10)

(3.11)

RB (3.13)

iN A~„—2iXA
~-

ag-
-rgsc~„N[ &o,e"A »~o] + tg„. N[gg t g]

(3.12)

~.rr, N p &~+~z—+&.r+&c
I r„=r„-r„=i

4gwN[ Fo og I")-,
am„- iN[ gm„-g]

R
(3.14)

Z~ -=CoN[$(t(P —tg„C„' 'g, t, ) ™„)g],
&~ -=—2" N [('.A.")']

&c = &M& s"(S.~w -4'"gsc~, A,.)~ol,

(3.7)

A+ ~gR
A [ /A=i

(3.15a)

fn deriving (3.9) and (3.12), it is convenient to note
the following scaling properties of ZA:

with

1/2
+altv g Aev VAett, +SR~A ~ot87 AStt, A7'v

(3.8)

8Z, M„d'xA „(x)
( )

.
A CA=1 Qt Q

Substituting (3.9)-(3.14) in (3.6) gives

(3.15b)

-(n —4)N,„=— &„+v N (Imper)
2P

RR

+ ——' N A „A g„c &„N(&u oS-A»u )o+gsNgg t g) —y,Zz —yacc. (3.16)
gR 2 "5AI

Note the appearance of non-gauge-invariant
operators and ghost terms in the anomaly. In
fact, it is known' that the following set of bare
operators are the only ones to mix under renor-
malization with the gauge-invariant operator 0,

pv,

5 ~~A
Oo=Aeo

6A
~os soo'a+go~+et ""

Oo = -@~a)~e -goceo ~~nS Ayo&A ~

0,'-=g(~f- m, )g,
0, -=/mop.

(3.17)
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+ ——
2

-y N[O, ]-y,N[O,]
P y,

+y N[O,]. (3.19)

In particular, on the mass shell (n)ith external wave
functions) and at nonzero momentum, N[O, ] and

N[O, ] vanish by the ghost and fermion equations
of motion. It can also be shown" that N[O, ] van-
ishes on-shell at nonzero momentum. Under
these circumstances, therefore,

(8".)...I. ... =-—N[O, ] y.N[O.]

N[I .,„r.""]+y.N[gm„y].

(3.20)

Putting this result together with Eq. (2.20} we ob-
tain the following simple result for the on-mass-
shell full trace" at nonzero momentum:

e„" ~...,.„=(1+y„)N[ym„y]

+ N[E+0.+e"1. (3.21)

Furthermore, this set is closed under renormali-
zation to all orders. Defining corresponding re-
normalized normal-produce operators, we find
that (3.16}becomes simply

(e„).-= )dff[o, ]-, ' —';)f([0,.0,]-
gz

-yN[Osl -yAO&l +y~N[Os] ~

(3.18)

If (as will be demonstrated in Sec. IV} []„"at ar-
bitrary momenta is a linear combination of just
these operators, we may remove the restriction
to zero momentum in (3.18):

(s"„), = — )([0,] ~ —~)Ã[0,]
gs ga 2

5A„(x)= [S„(d (x)+g0c ~„A~ (x)(o„(x)]5X

=D„~(d~ (x)5X,

5(d (x) = -,'g0c ~„(d~(u„(x)5X,

5~.(x) =—S„A".(x)5][,
1

0

5y(x) = fg,f.y(x)~. (x)5~,

5$(x) = -([g,]I)(x)t, (u, (x)5X,

(4.2)

where 6X is an x-independent anticommuting c
number. These transformations satisfy

0= 5(D„u&~) = 5( 2c~„(-d])~)= 5(t, g(d ) = 5gt, (d) ) .
(4.3)

The gauge-invariant part of , « is clearly in-
variant under the BRS transformations, as they are
just a special gauge transformation on A, g, $.
Furthermore, one finds

5 — (5"A )' —(d) 5"D u& =0
u e g g

0
(4.4)

IV. EXTENSION TO ARBITRARY MOMENTUM

Here we shall derive the form of the anomaly
in 8"„(q) valid at arbitrary momentum q. This form
will determine the set of linearly independent oper-
ators that can be present in the anomaly: Com-
parison with the known value of the anomaly at
q = 0 as given by E[I. (3.18) will determine the
coefficients of all the operators and thus establish
E[I. (3.19). The method is a minor modification
of that employed in Ref. 8.

The terms in 8"„(x)proportional to (n —4) are

-(n -4)[8„,(x)+ $, '5 "[A„'(x)S"A„(x)]] =- -(n —4)e(x) .
(4.1)

e(x) has a simple transformation property under
the Beccbi-Roust-Stora (BRS) superfield trans-
formations".

Finally, we note that the recently obtained re-
sult' for the anomalous trace of the Belinfante
tensor in QED is obtainable directly from (3.19}by
setting P=-,'g„y„y™=O.Also, it is amusing to note
that, by (3.21), the eigenvalue condition P(g„)= 0
is a necessary and sufficient condition for the
restoration of softness of the trace in on-mass-
shell matrix elements, though not [because of the
appearance of the dimension-four operator N[O,])
in the general Green's functions.

which lead immediately to

58 = —5"(A„s"D„' ur()) 5]]..
0

Consider now the generating functional

(4 6)

(4.6)

fr'[d', d', ff', )f I', fd]= f (deded dddd)es)sI( d. fd"*M(s) ~ s+oo re re s for f'e)ds (4.7)
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where the source terms for fields are identical to those in the exponent in Eq. (2.1), and Z contains sources
for the BRS invariants of Eq. (4.3),

~=~yj, g+ d +o, Dy, &6 & + &go ~ t(gy — I~H 0, & + 2L g{)&{ggy&g(dy & (4.8)

and is fully invariant under the BRS transformations.
Now consider the effect of BRS transformations on the integration variables of W'. The Jacobian of the

transformation is unity. Furthermore, the value of W' should not change under the change of integration
variables. This leads to

(4.9)

0= cfAdcodcodg d x.el~~ x {) g+X~ x —

0 ——~p, AI x g~ x

y q'(x) —,q'(x) ——M(x)S"[A„'(x)y' (x)] exp[i(8+ )] .

The antighost equation of motion has been used to replace YD„~&uz(x} by -X' (x) in the last term in curly
brackets. Had we had a gauge-invariant operator multiplying M(x) instead of e(x), this term would have
been absent. Thus the Ward-Takahashi (WT) identity satisfied by W is identical to that satisfied by a
generating functional for insertions of a gauge-invariant operator, excePt for this term. Now we can, as
usual, define the generating functional for proper vertices l"' corresponding to 8", by making a Legendre
transformation Z' —=-i in%"'.

r (', n', F,e', @',sc', ~tt:.)-=z Ja *(z 4 "Ve.„p"n ~ x'4' &'.4'. ), (4.10)

with ao(x) -=5Z'/58" (x}, etc. For any source K not entering the I.egendre transformation, we have 5Z'/
5K~ ~o = 5I"/5K ~,0 . Thus Eq. (4.9) becomes

J ] 5a'." (x) 5Z'. „(x) 5no(x) 5f,'. (x) &,
[ " ]5IF.(x)

~r or' cr or' s „„,„-, ~r
W'(x) 5P'(x) 5H'(x) A'(x) [, " 5D:(x)

Differentiating with respect to M(y) and setting M =0,

5a'"(x) 5K', „(x) 5K', „(x) 5ao" (x) $,
" ' 5fj'(x) 5M(y) ~„, (, " y

5TF, (y)

(4.12}

The dotted terms (~ ~ ~ ) involve "conjugate" pairs
(O' I ') (O' 8') (O', H ). The sources K', I ' H'
8' are all multiplicatively renormalized such that
when each term on the left-hand side is expressed
in terms of renormalized quantities, a factor of
(Z,Z) '~' can be extracted uniformly.
For example,

5F' 5I" 5I' 5I"
5a „5K 5a „5zs„

But the right-hand side of Eq. (4.12} is

(4.13)

or' ~r'
gO g 1gk g 1 /2 8 g~1/2

"oQ' E ' ' " ~tF

gent

(4.14)

Thus, expressed in terms of renormalized quan-

tities, Eq. (4.12) has the form

~ ~ ~
or' 6 ar'

5a".'(x} 5Z".„(x} 5M(y) „.,
= finite functional. (4.15)

But this WT identity is identical in form to that for
a gauge-invariant operator except that the right-
hand side is finite instead of zero. Thus the one-
loop divergence in

5r[o', a", II'] s"-Z"-n-
can be expressed in terms of the field operators
that can mix under renormalization with a dimen-
sion-four gauge-invariant operator that is a
Lorentz scalar and has even charge conjugation.
But they are precisely the five operators listed
in Eq. (3.1'7).' In other words,
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51'[a",0",6"]
5M(x) K =L -8 -8 =N~

d|v

+ Q b["(O,[A, ur, (o,g„],]) . (4.1V)

where b, (n, g, $) may be divergent as n-4. There-
fore, we can write

((6(x))]= finite terms

The above arguments can be extended to higher
orders in the same way as done for gauge-invar-
iant operators in Sec. III of Ref. 9. Basically,
the argument consists in showing that the above
set of operators thai appear as renormalization
counterterms for 6(x) themselves satisfy the
homogeneous WT identity [i.e., Eq. (4.15) with
the right-hand side set equal to zero. ] With such
an argument one can conclude that the overall
divergence in [51/5M(x)] in the N-loop (N ) 1) ap-
proximation has the same form as that given by
Eq. (4.16). In other words„we can write

x.e.,

(
5 N-j 5

6(x) —Q Qb,"'a'O, [A. , i~, ~,g,] = Q b,'"'a"O,[A, (u, ~, g,] +finite terms,
$~1 l=l 5~1

(Oi}= Q ZEJ N[O /[Ay +i Ri g]] ~

f

where Z, &
has an expansion in a and I/(n —4). Substituting Eq. (4.19) into Eq. (4.18), we can rewrite Eq.

(4.18) as

(4.19)

5

(6(x})&s= g b, O,[A, ~, ~, g,] + finite terms (4.18)

valid up to an N-loop approximation. Here the b, are polynomials in 1/(s —4). Now using the fact that this
set of operators is closed under renormalization we can write

(6(x))&
= g b', (N[O, [A, ru, ~, g]])+ finite terms (4.2o)

We are interested in the limit (n -4) of
5

-(n —4)(6(x))s = —g (n —4)b', (N[O, (x)]}&—(n —4) && (finite terms) .
j~l

(4.21)

Note that the above equation is valid at each x and
hence for f 6(x)d "x, i.e., for the zero-momentum
insertion case worked out in the previous section.
Comparison of Eq. (4.21) in the limit (s-4) with
Eq. (3.18) tells us that the quantities lim„, (n —4)b',
are finite and given by the coefficients of the re-
spective operators in Eq. (3.18). We thus es-
tablish Eq. (3.19}for an arbitrary momentum q
(i.e., at each x}. It should be noted that the exten-
sion from the q =0 to the q 40 case has been pos-
sible because the Green's functions of N[O, ] for
the five operators in Eq. (4.21}remain linearly in-
dependent at q =0.

V. ANOMALIES IN CURRENT MATRIX ELEMENTS

In this section, we shall discuss the dilatation
anomalies which appear in matrix elements of
current operators, in order to clarify the content
of the "partially conserved dilatation current"
(PCDC) hypothesis. ' Specifically, we shall con-
sider the electromagnetic current in a theory with

fermions interacting via non-Abelian gauge gluons.
The electromagnetic interaction will be treated
to lowest nontrivial order, and the strong gauge
interaction to all orders throughout. %e shall find
that the dilatation anomaly (to be defined below)
in the two-current matrix element of 8„, although
renormalized infinitely in any finite order of the
strong interactions, is completely unrenormaIized
provided we sum to all orders in g„(the renor-
malized strong-coupling constant) before passing
to the limit of physical dimensions, n=4.

Consider the matrix element of 8„" with tmo re-
normalized photon fields: Using gauge invariance,
we have

P,'P, '(o
I
»".(P }A'(o)&(g}

I
o}

(Pl PSgllll PlllP24) l(PltP2)

+(P&~P„g~pP) )(P2Pmv gvP2-') 2(P,~P2), -

(5.1)
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where q=- -(p, +p,). We now employ the methods of Sec. III to relate the zero-momentum insertion of 8'„

into the renormalized photon propagator itself:

a 8 8 8
&0ITA"„(p&A„"(0)82 I0&=-i tt, +P, —(1+r )», S r-pcs

8&
+r, &0ITA"„(p}A"„(0)I0&

=-ip" „+2 OT "p "„0 0, (5.2)

where we have used the renormalization-
group equation for the renormalized photon
propagator. Writing the latter (to order e„') as

we have

P'[1+en'IIs(p u mz gs n&] "(P')' '

(5.3)

(0 I
TA"„(p)A„(0)82 I0& =

8
X8g Pp ~- Hg ~

P'p
(5.4)

Together with E(I. (5.1) (at q=0), E&I. (5.4) implies

8
V, (p, -p)-p'V, (p, p)=e„'P„ II„(pe &em„eg„en)."ap~

(5.5)

Now suppose we attempt to saturate 8„" in the
mass-shell matrix element (p, e„p2z2 I

IT"„(q)
I
0& with

a single e ("dilaton"} pole contribution. Only

V, (p„p,}is relevant to this matrix element,
whereas the relation (5.5) involves the combina-
tion V, -p'V, . However, at p'=0, the right-hand
side of (5.5}vanishes (for nonvanishing bare &Iuark

masses), implying that V, (p, -p) IP2~ is zero. In

other words, the use of the total energy-momentum
tensor 8„"(q) to extrapolate the c field off-shell is
incompatible with the assumption of maximal
smoothness for the ~-2 photon coupling (i.e., an
effective ~F„„F""interaction). This is because
the electromagnetic and hadronic contributions in
8"„(q) cancel exactly in this matrix element at
q=0.

The assumption of PCDC is simply that the had-
ronic part of 8„' is saturated with an & pole. In
order to implement this assumption, one must
define a finite "hadronic part" of 8",. We shall now
show that to finite orders in strong perturbation
theory, it is not possible to unambiguously separ-
ate finite hadronic and electromagnetic contribu-
tions in 8"„(although one can certainly define a
finite hadronic piece, this definition amounts to
a specific choice of finite part of the counterterms).
However, if one sums to all orders of gs before
passing to four dimensions, the hadronic part of
the bare trace remains finite and in. fact has a
completely calculable zero-momentum vacuum
to two-photon matrix element, given exactly
by the lowest-order result.

To proceed, we first relate the matrix element
of 6„"with two currents to that with two unre-
normalized fields, as follows:

&0(TA„(e)A„(0)e (0) je'xd'le=-"'&O(TA„(*)A„&O)e,'(l)(O)

= -e.'n-(P&~ (P)&0lr~'(p)f'(0)8l 10&

[Pp D„,(P) -P,D„p(P))[P'D„'(P) P'D„'(P))+ O(e, '-) . (5.6)

(5 7)

(5.8)

where

Here n and D are the free and unrenormalized photon propagators respectively [the latter is computed to
O(e, '), all orders ing, ]:

(p) gpll Pppeefp t PpPle
Pll p2

+ 0 (p2)2

p'[1+ e,'II,(p', g, (n), m, (n), n)] ' (p')'

=[1+co t(, z2(gp(n)t ",n)]D „(p)+O(eo),

Z2(gp(n)to& "~20 n)= —POle Par—t Of [to' "Ilo(P'egp(n)e mp(n)en)]. (5.9)
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The second term in Eg. (5.6) arises from graphs in which the electromagnetic part of 6„(expressed in

terms of bare fields), namely , (—n —4)E„„E"",inserts directly onto an external photon leg. The graphical
alternatives are summarized in Fig. 1.

The renormalized form of Eq. (5.6) is just

&0I»".(p&,"(0)sl I0&=-e '
z ~ &0l». (&b.(0)'l I»

-e,'(n-4), . (g..P'-P. P.)z,(g.(n)~''""",n)+o(e ')

+ (terms vanishing at n=4). (5.10)

The left-hand side of Eq. (5.10) can be related via Eq. (5.4) to the renormalized photon self-energy, so
finally we obtain

&0I».(Pb.(0)6~ I0)=(g,P' P.P.)-Pi fix(P')-(n-4)z, (g.(n)~'""",n)
~P)l

(5.11)

The last term on the right-hand side of (5.11) cor-
responds precisely, in zeroth order of go, to the
"canonical trace anomaly" of Chanowitz and El-
lis. We grill refer to it as the dilatation anomaly,
to distinguish it from the anomaly in the trace of
the energy-momentum tensor itself, discussed in
the preceding sections. Standard renormalization-
group argument&" show that the dilatation anomaly
is finite up to order g„, but diverges in order
gz' (owing to a double pole in z,) and all higher
orders. This, of course, implies that the two-
current matrix element of 8„" is divergent ' in
perturbation theory: It is, in fact, subtractively
renormalizable by precisely the divergence of the
anomaly. We conclude that the assumption of
PCDC is nonsense in perturbation theory.

Nevertheless, it is possible to resurrect the
PCDC assumption on a purely nonperturbative
basis, as we now demonstrate. Let Z, be the com-

8
y, (e»g„) =- p, 1nZ

Bp,

en'y(gz)+ «-ez') (5.13)

Here y(g„) is of order unity as g„-0.
Note that with minimal subtraction, "

y3$ and
hence y, are independent of n. Let P, (gz) be the
strong-interaction P function in the theory with

e, set equal to zero:

8
~~(gn) = & s gn go=0

g~, n ~~xW

One easily derives the following inhomogeneous
renormalization-group equation for z, :

(5.14)

P,( g, ~) 's "' +«,(g, n)=r(g ), (515)'z, (g» n)

piete photon wave-function renormalization con-
stant:

g (g (n)~(n 4) /2 e (n)~&n-e) g2 )

= 1+ e n'z, (gn, n)+ 0(e„') . (5.12)

Thus

where &=—n —4. For fixed n&4, we may assume
lim, ,g' z, (g, n) = 0. We also have"

(a)
J3 (gn 'z)= &gnI. &+y(gn)I (5.16)

where r(g„) is of order gz' for gz approaching
zero. The solution of (5.15) is

zp(gn 'n) = dg
r(g)

0 Pg gl~)

FIG. 1. (a) Insertion of the hadronic part of the
bare trace in a two-photon matrix element. P) Inser-
tion of the electromagnetic part of the bare trace.

~e dg'x exp -e, . (5.17)
Pg gi&—

We shall assume (as suggested by scaling" ) that
the physical renormalized coupling g„ is in the do-
main of attraction of the origin, so that there are
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no zeros of y(g) in the interval (O, gs).
Now recall that the anomaly we are interested

in is ]ust lim, o zz, (gs, 4+ a). However, a Taylor
expansion in g„will inevitably commit us to an
expansion around the point at infinity in the z plane:

2 1
=—1+—y(gz)

P, (g& z) gz

y+ vf y

whereas we are interested in the behavior of
z, (g» e) for small e. Inspection of Eq. (5.17)
shows only the integration regions g, g'-0 ean be
responsible" for any singularities of z, as e -0.
Specifically, the region of interest is (given the
assumptions on y, y stated above) g' - e, g" -g ' —e.
'Thus, we can neglect the terms of order g„' and
higher in y and those of order g„' and higher in y
in Eq. (5.17), as far as the leading singularity of

z, as c -0 is concerned. Consequently, defining
yo=y(0), a=lim 0(1/g')y(g),

plicitly broken, so there is no Goldstone limit in
which spontaneous breakdown of dilatation invari-
ance would force the appearance of a zero-mass
particle. Nevertheless, one could adopt the PCDC
assumption as a testable qualitative hypothesis
(at least in principle) provided that one further dif-
ficulty can be resolved. Namely, the magnitude
of the coupling of the trace to the e pole is unde-
terrnined theoretically, so one is forced to con-
sider, "in addition to e -2y, processes such as
e-2m which involve the dilatation anomalies of
chiral current matrix elements. However, chiral
currents are notoriously difficult to handle in a
dimensional renorrnalization scheme, which has
been central to our analysis. It remains to be
seen whether a canonical dilatation anomaly will
also emerge nonperturbatively in such eases. "
Note Added. After completion of this paper, we

received a report" from N. K. Nielsen obtaining
similar results.
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yo APPENDIX

which yields the exact result for the anomaly
Here we shall deal with the term

(Al)
lim ~z, (gs, 4+ z) = y, .
~p

(5.18)

This concludes the proof of nonrenormalization of
the dilatation anomaly. " It should be emphasized
that, in contrast to the situation with the triangle
anomaly, the result (5.18) is necessarily nonper-
turbative, and cannot be checked in any finite order
of perturbation theory. " This is a consequence of
the highly nonuniform (in e) character of the ex-
pansion in powers of g„.

This result does not, of course, circumvent the
usual physical objections to the PCDC hypothesis.
The enormous width of the ~ ensures that the as-
sumption that the zero-momentum trace 8„' cou-
ples to an arbitrary state via a single pole term is
crudely qualitative at best. Furthermore, in con-
trast to the case with partial conservation of axial-
vector current (PCAC), there is not even a fiction-
al world (for PCAC, that of massless bare quarks
and pions) where exact calculations can be per-
formed. If we are not at an eigenvalue of the Gell-
Mann-I. ow function, then even in the limit of zero
bare quark masses dilatation invariance is ex-

in Eq. (2.15).
We shall, first, give a simple proof using the

discussion of Sec. IV that all the renormalization
parts of the above quantity are finite without ad-
ditional subtractions. Consider the discussion of
Sec. IV for 8(x). We note from Eqs. (4.4) and (4.5)
that the only part of 8(x) that is not BRS invariant
is precisely the expression in (Al). So the whole
discussion for the WT identity for 8(x) and its
renormalization applies to this piece as well.
Hence this implies that the renormalization coun-
terterms for this operator can only be those five
operators listed in (3,21). But the expression (Al),
and hence its renormalization counterterms them-
selves, is a four-divergence. But there are no
such (linear combinations of) operators in (3.21).
Hence the proper vertices of (Al) must be finite
once the wave-function and coupling-constant re-
normalizations are done.

Next consider the Green's functions of (A1) with
no external ghosts. 'They can be expressed via the
WT identity of Eq. (2.8) in a simpler form, after
a straightforward manipulation. The result is
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(B'Q, 'A, (x)B"A„"(x)+(u,(x)[B,(u, (x) g—,c s„A",(x)(cs(x)]j)

With the help of E(l. (A2) it is easy to see that the truncated Green's functions of the left-hand side (with

physical wave functions attached) vanish for q 4 0, owing to the lack of a single-particle pole in one of the
external lines.
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