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We discuss the classification of pseudoparticle solutions obtained using all inequivalent embeddings of SU(2)
in a semisimple algebra G. We also discuss some simple consequences of this classification on the interaction
of the pseudoparticles of Belavin et al.

I. INTRODUCTION

It has been suggested by Belavin et al. ' and more
recently by Wilczek' that one may construct
pseudoparticle' solutions of the gauge field equa-
tions in the group G by embedding the group SU(2)
in G. Qwing to the fact that there exist inequiva-
lent embeddings of SU(2) in SU(N) (N&2}, Wilczek
was able to draw some conclusions about the 4-
par ticle interactions from pseudoparticle solu-
tions in SU(3), and to construct solutions of wind-

ing number q & 1 in SU(N}.
An embedding of SU(2) in SU(N), for example, is

completely defined by a set of X numbers known as
the defining vector of the embedding, and can be
graphically represented by a diagram known as
the Dynkin characteristic. 4 Half the square of the
length of the defining vector is called the index
of the embedding. In most cases, the knowledge
of the index is sufficient to specify completely the
embedding. However, it may happen that inequiva-
lent embeddings admit the same index; in this
case reference should be made to the correspond-
ing Dynkin characteristics.

We show that the charge, or Pontryagin index,
is a multiple of the index of a particular embedding
of SU(2) in G. We illustrate our classification by
performing explicitly the classification of the em-
beddings for some simple algebras G [SU(N), for
N = 3, 4, 5, 6, f, 8 and the exceptional algebra E,] .

The gauge-transformation properties of the so-
lutions are completely determined by the Dynkin
characteristic; this allows us to assign relevant
quantum numbers for the various solutions ob-
tained in this manner. We do this in the cases
G =SU(3) and SU(4) as examples. Moreover, a
mathematical property of the embeddings is used
to discuss the interaction of pseudoparticles.

This paper is organized as follows. In Sec. II,
we recall the pseudoparticle solution of Belavin
et a/. for G = SU(2), q = 1, and their extension to
6 =SU(A}~SU(2), q&1, by Wilczek. Section III
deals with the mathematical apparatus needed for
our classification. This classification of the
pseudoparticle solutions is achieved in Sec. IV.

Finally, Sec. 7 is devoted to a discussion of some
simple properties of these solutions.

II. PSEUDOPARTICLE SOLUTIONS

We consider the gauge group SU(2) in the four-
dimensional Euclidean space, and define the gauge
fields by

i = 1, 2, 3 and ij. , v = 1, 2, 3, 4 . (2.1)

If we use matrix notation and write

A
P P 2

(2.2)

where o; are the usual Pauli matrices, then

(2.3)

and the effective interaction is

, Tr F„,F~'d'g. (2.4)

(2.5)

where F
p p6p p

FP' is the dual of F„„.This
index q may be shown to take always integer val-
ues.

An important inequality holds for the effective
action. For, since

Tr Fif F& cf xo p (2.6}

then

(2.7)

It is clear that if there exists a field such that
for q c 0, E„„=F„,, then the inequality is satur-

It has been shown recently by Belavin et al. '
that there exist nontrivial solutions to the clas-
sical equations of motion, characterized by a top-
ological quantum number, known as the Pontryagin
index, and given by
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1 g~+ SX 0'

)«2 )2lf ««zN g
l

(2.8)

where A. is an arbitrary parameter, or, using the
Jackie -Rebbi gauge transformation, '

ated and this E„,is a nontrivial solution to the
classical field equations.

Belavin et al. construct such a solution for q =1.
This is given by

set I'- of the root system I" of the algebra G, de-
fined by

I - = 1 (r + I'I f*(o) = o }, (3 4)

where the map f* is defined through the relation

(H, f(H)) =(f*(H),H), (3.5}

for any two elements 8 and f(H) in K. The index

j~ in the embedding f may also be defined by

(2.9) Q Ic.-.l',aqI"-
(3.6)

If we write this solution in the form A
„

= A, t(x}(o,./2) leading to the field strength, E„„
=E«»(x}(o;/2), then if T«, i=1, 2, 3, form any
representation of SU(2), [ T;, T) j =2fe;» T„,the
potential A „A'„()«)(T;/2)will give the field
strength, I' '„„(x)(T«/2),which is self-dual and
hence saturates the inequality for some q. Thus,
if the gauge group is G, all such pseudoparticle
solutions in G may be obtained in this manner by
embedding SU(2) into G in all inequivalent ways. "
All such solutions are thus characterized by all
inequivalent embeddings of SU(2) in G.

III. EMBEDDING OF THE SU(2) ALGEBRA

IN A (SEMI) SIMPLE ALGEBRA 6

The mathematical problem of embedding a sim-
ple subalgebra G is a simple algebra G has been
discussed by Dynkin. '

Consider a semisimple complex algebra G and
K its Cartan subalgebra. I et G be a subalgebra of
G, with K its Cartan subalgebra. An embedding
of G into G is completely defined by a mapping
from K into K

f(H ) = P f,,H„ i =I, . . . , I,
k=1

(3.1)

withH, andH; the elements of K and K, respect-
ively, where l is the rank of G and n the rank of
G.

The relation

{$.2)(f(X),f (Y)) = jq (X, Y), X, Y(= G,

in which (X, Y') = Tr adX ~ adY is the Killing form
relative to X and Y, determines a scalar factor
jz independent of X, Y, and is called the index of
the embedding.

The set of numbers f&k form the matrix of the
embedding. The embedding of the shift operators
E- of the subalgebra G in G is given as

f(z„-)= g c.-.z„,
a&Ia

(3 3)

with the C- complex numbers determined through

f&k by the embedding of the roots 5 into the sub-

as long as G and G are different from C„.' The
index j& is a non-negative integer. Embeddings
of the same algebra G in an algebra G which are
related through an inner automorphism of G are
equivalent embeddings and 'he subalgebras of G

which correspond to these embeddings are con-
jugate subalgebras of G. (Two algebras are called
conjugate if they are related by an inner automor-
phism. ) Two equivalent embeddings have the same
matrix (f;~) and hence the same index j&.

In most cases the indices j& corresponding to
inequivalent embeddings are different and hence
may be used to label the embeddings. However,
the indices of inequivalent embeddings may coin-
cide, in which case one must refer to the defining
matrix (f;~).

If G is isomorphic to SU(2) then the matrix (f„)
becomes a vector (f,), )« = 1, . . . , n, called the de-
fining vector of the embedding. The index is in
this case given by

n

(3 7)

(a, u)=2, (3.9)

which is half the square of the length of the de-
fining vector, in any m-dimensional Euclidean
space with m & n.

It is well known that one can choose among the
set of (positive) roots of an algebra G a subset of
n roots n ', . . . , n(" such that any root is a linear
combination of n ' with either all non-negative
or all nonpositive integers. This subset of n roots
is called a system of simple roots for G. It holds
that

(~( «) ~( «) )2

(&(«) &(«))(&(j) &(«))

r = 0, 1, 2, 3;. icj, (3.8)

and

(~(3) ~(i)) ( 0

The longest root is normalized through the usual
scalar product
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A,e-e

(I)
2 5

{n-I )

N-I N

[f,(X),f, (Y)] =0, ivj;X, Y~G,

then f =f, + f, + ~ ~ ~ +f„is likewise an embedding and

~~, + &f, + '+~j}'n (3.10)

Theorem DI is useful in classifying pseudo-
particle solutions and theorem D II indicates cases
when two solutions may be added to form a third.

Now, let the matrices 1'', i=1, 2, 3, with

II a"'= —,'(e, -2e,+e,)

{b)

FIG. 1. (a) Dynkin diagram for SU{Ã). (b) Dynkin
diagram for G2.

except for C„.'
A root system I of a simple I ie algebra G con-

te, ins at most roots of two different lengths.
A graphical representation of the system of sim-

ple roots is given by a Dynkin diagram4: Every
simple root is represented by a circle with a num-
ber of lines joining two circles equal tor, as de-
fined in Eq. (2.8). When roots of different lengths
exist, shorter roots are represented by filled-in
circles. The simple roots of SU(N) =A„,are
given for examples as

[r', r'] =2'„,r', (3.11)

E =
1

represent the embedding f of SU(2) in G. This
embedding is characterized by the defining vector
(f„)such that T, =Q,",f,H, , and its index is
jz =-,' g,",f,'. This is half -the square of the
"length of the vector" T, in any Euclidean space,
where H» form a set of unit orthonormal vectors.

If G =SU(N}, then it is convenient to consider
the root space in a hyperplane of the N-dimen-
sional Euclidean space. The H, are (X —1) NxN
diagonal matrices which can be written as a sum
over the N-dimensional orthonormal basis

where e& are a set of orthonormal unit vectors in
the N-dimensional Euclidean space. The corre-
sponding Dynkin diagram is shown in Fig. 1(a).
Figure 1(b) shows the Dynkin diagram for the ex-
ceptional algebra 6, as another example.

If we label the circles of n{'~ in the Dynkin dia-
gram of G by the numbers (f, a~'~), where f is
the defining vector of an embedding of SU(2} in

C, we obtain the Dynkin characteristic of this em-
bedding.

The following two theorems, due to Dynkin, will
be very useful for our discussion.

Theot'em D l.' A necessary and sufficient con-
dition that two three-dimensional subalgebras of
the semisimple algebra G should be transformable
into each other by an automorphism of t" is that
their characteristics coincide.

0 0

~ 0

(3.12)

In the case of simple algebras C the word "auto-
morphism" above may be replaced by "inner auto-
mor phism. "

It can be shown furthermore that every number
which is written into the characteristic diagram
is0, 1, or2.

Theorem DII.' Let f, ,f,, .. . ,j be embeddings of
a simple algebra G into the simple algebra G and
let

In this basis T, is represented by

(3.13)

It is clear from Eq. (3.12}that f~ are simply the
diagonal elements of T, . If we denote these ele-
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ments' bymz =2J, 2(d —1), . . . , -2J; mz
=28', . . . , 3d', . . . , where (28+I)+(2j'+I)+

then the index of the embedding becomes

or

1
2f 2

IJyJ ~ ~ o ~

2mJ (3.14)

gf = &TrT3 (3.15)

Note that Eq. (3.15) may be directly obtained
from Eqs. (3.1), (3.2}, taking proper care of nor-
malization factors.

It is obvious to generalize this property for any
semisimple algebra. Note that if the gauge group
is of the form G &&G(2) x, ' yG(+) with G

G ', . . . , G ' simple, then the corresponding de-
fining vectors are sets of k vectors fi'', . . . ,f ",
with fi" characterizing the embedding of SU(2) in
G ". In this case the index is the sum of the in-
dxces gf (~).

IV. CLASSIFICATION OF PSEUDOPARTICLE SOLUTIONS

Let F '„„T;represent solutions obtained by em-
bedding SU(2) into G. The Pontryagtn index is
given by

= rr', Tr(r, I' JF'„„pr"d'r

y 8~ J EqE, "d x, (4.1 )

where jf is the index of the embedding.
For the solution (3.8) of Belavin ef al. , q = jr= 1.

In other words, the integral (1/8m') f F '„„F,""d'x
= 1. A new set of solutions" where this integral
takes all integral values has been obtained by
Witten; i.e., q =jfur, where jf = 1, with so any in-
teger .

For any embedding of SU(2) in G, we get a gen-
eralization of the Belavin et al. solutions with

Q =gfK, (4.2)

where jf is the index of the embedding.
It must be clear from our discussion of Sec. III

that the index jf is not enough to classify the em-
bedding, and hence the solutions. One must refer
to the Dynkin characteristic of the embeddings. In

the following, we discuss the solutions for G

=SU(N), N = 3, 4, . . . , 8, and for E„oneof the ex-
ceptional groups, which are also of physical in-
terest.

Let us mention at this point that the classifica-
tion of the embeddings of SU(2) into simple al-
gebras of rank W are given in Ref . 11, and into

the exceptional algebras in Ref. 4.
Case G= SU(N). The inequivalent embeddings

of SU(2) into SU(N), N=3, 4, 5, 6, 7, 8, are given
in Table I.

In Table II we show the characteristics for the
cases SU(3) and SU(4). Let us recall that the Dyn-
kin characteristic is simply a graphical descrip-
tion of the defining vector. The second column
shows the minimal including regular subalgebra.
One calls G' a regular subalgebra of G if the set
I' contains one and only one root n of G for every
root n'e I" in G' [see Eqs. (3.4},(3.5)j. The
knowledge of these subalgebras will be useful in
the discussion of Sec. V to visualize the positions
of the different SU(2) in the matrix adjoint repre-
sentation of G.

We notice that when N is odd, the —,'(N+1)th co-
ordinate of the defining vector is 0, and the other
coordinates are symmetric with respect to it.
When A is even, the coordinates are symmetric
with respect to the —,'Eth comma.

Every embedding specifies the transformation
properties of the pseudoparticle solution under
G. For example, in the case of SU(3), the solu-
tions with jf = 1 and 4 transform like A,

„

in the ca,se
of SU(4) they transform like A., —(I/&3)A, +(-', )'~'A»

for j~=2, and A +v3X, +v 6X» for jr=10.
Note that in the case of SU(8}, one obtains two

solutions with the same index but different defining
vector. The degeneracy of jf, already seen by
Wilczek, ' emphasizes the need of the full defining
vector (or characteristic) to classify solutions.

Case G=E&. As another particular case of dif-
ferent characteristics corresponding to the same
index, we mention in Table III a few of the em-
beddings of SU(2) into E, . A complete list is given
in Ref. 4.

For all other simple groups 8„,C„,D„andG„
F„E„E„completelistings of all SU(2) embed-
dings are given in Refs. 4 and 11.

V. SUMS OF PSEUDOPARTICLE SOLUTIONS

We consider now the problem of adding two or
more solutions to get a third. It is clear that when
two or more solutions are simply added, the sum
does not form in general a solution, except finally
when their positions coincide. This later pos-
sibility arises when the sum of two (or more} em-
beddings of SU(2) in G is itself an embedding.

Consider the sum of solutions

A „=A'j(x—t, ) 'T; +A'„(x—t ) T; + ~ ~ ~

From the general form of the action, one clearly
sees that

Sw'

& (lq&.&I+I«»l+
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TABLE I. Embeddings of SU(2) into SU(N), 3 —N —8.

Algebra

SU{3}

SU{4)

SU(5)

SU(6)

SU(7)

Minimal including
regular subalgebra

Ai
A2

A)
2A)
A2
A3

A(
2Ag

Ap
A2+A(
A3
A4

A)
2A(
3A)
A2
A2+A (

2A2
A3
A3+A )

A4
A5

A)
2A(
3A|
A2
A2+A (

A2+2A )

2A2

A3
A3+A ~

A3+A2
A4
A4+A)
A5
Ag

Index j&

1
2

4
10

2
4
5

1Q

20

1
2

3

5
8

10
11
20
35

1
2

3
4
5
6
8

1Q

11
14
20
21
35
56

Defining vector

{1,Q, -1)
(2, 0, -2)
{1,Q, Q, 1)
(1, 1,-1, 1)
(2, 0, 0, 2)
{3,1,—1, -3)
(1,0, 0, 0, 1)
(1 1 0, 1, 1)
(2, 0, 0, 0, -2)
{2,1,0, -1,-2)
(3, 1, 0, 1, 3)
(4, 2, 0, -2, -4)

(1,0, 0, 0, 0, -1)
{1,1, 0, 0, -1,-1)
{1,1, 1, -1,-1,-1)
{2,0, 0, 0, 0, -2)
(2, 1,0, 0, -1,-2)
(220 0, 2, 2)
{3,1, 0, 0, -1,—3)
{3,1, 1, 1,-1,-3)
(4, 2, 0, 0, 2, 4)
(5 3 1, 1, 3, 5)

(1, 0, 0, 0, 0, 0, -1)
(1, 1, 0, 0, 0, —1, 1)
(1, 1,1, 0, -1,-1,-1)
(2, 0, 0, 0, 0, 0, -2)
(2, 1, 0, 0, 0, -1,—2)
(2, 1, 1, 0, -1,-1,-2)
(2, 2, 0, 0, 0, 2, 2)
(3, 1, 0, 0, 0, 1, 3)
(3, 1, 1, 0, 1, 1, 3)
(3, 2, 1,0, -1, 2, 3)
(4, 2, 0, 0, 0, -2, -4)
(4, 2, 1, 0, -1,-2, -4)
(5, 3, 1,0, -1,-3, 5)
(6, 4, 2, 0, -2, -4, —6)

SU{8} A)
2Aq
3A(
4A)
A2
A2+A (

A2+ 2A (

2A)
2A)+Ai
A3
A3+A)
A3+ 2A|
A3+Ap
2A3
A4
A4+A |
A3+A2
As
A 5+A )

As
Ay

1
2

3
4I

4'
5
6
8
9

10
11
12
14
20'
20"
21
24
35
36
56
86

(1, 0, 0,
(1, 1, 0,

(1, 1, 1,
(2, 0, 0,
(2, 1,0,
(2, 1 1,
(2, 2, 0,

(3, 1,0,
(3, 1, 1,
(3, 1, 1,
{3,2, 1,
(3, 3, 1,
(4, 2, 0,

(4, 2, 2,
(5, 3, 1,
(5, 3, 1,
(6, 4, 2,
(7, 5, 3,

0, 0, 0, 0, -1)
0, 0, 0, -1,—1)
Q 0, 1, 1, 1)
1, 1, 1, 1, 1)
0, 0, 0, 0, —2)
0, 0, 0, -1,-2)
O, Q, -1,—1, -2)
0, 0, 0, -2, -2)
0, 0, -1,-2, -2)
0, 0, 0, -1,-3)
0, 0, —1,—1, -3)
1,-1, 1, 1, 3)
0, 0, -1,-2, -3)
1,-1,-1,-3, -3)
0, 0, 0, -2, -4)
0, 0, —1,—2, -4)
0, 0, —2, -2, -4)
0 0, 1, 3, 5)
1,-1,—1, -3, 5)
0, 0, —2, -4, -6)
1,-1, -3, -5, -7)
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TABLE II. Dynkin characteristics for SU(2)( SU(3)
and SU(4).

Index Dynkin characteristic

SU(2) case:

SO(3) case:

I

C

2
C

SU(4)
I

C

0
C
2
C

0
0

2 0

0 2

2 2

TABLE III. Embeddings of SU(2) into Eq for j&~5.

Minimal including
Index regular subalgebra Characteristic

Ai
0 0 0 0 0 I

0

If A „werea solution the equality sign would hold.
When we let all t~,), t(,i, . . . go to zero, the form
A„becomes a solution only if the sum

'T+ T+ =T.

with [ T, , T, ]=.2';,~ T, . This clearly would be the
case if the sum of the embeddings (a}, (b), . . . is
itself an embedding of SU(2} in Q. Then the action
becomes

Using theorem DII of Sec. III, we can see that
this would happen in the following cases.

(i) SU(4). The embedding with jf =2 may be ob-
tained from the sum of two embeddings of j f = 1.
This is because one can add two equivalent em-
beddings of the form (, ', ) and (', Or), where T are
2x2 matrices corresponding to jr =1, to form the
inequivalent embedding (, ro) with jr =2 in SU(4).

(ii) SU(5). For the same reason as in the case
of SU(4) above, jf =2 solutions may be obtained
from the sum of two jf =1 solutions. Moreover,
the jr= 5 solution can be obtained as the sum of the

jz =1 and j& =4 solutions. This is because for the
j~= 5 solutions the corresponding matrices are of
the form (0 r, ) with T 2x2 matrices and T' 3x3
matrices, whereas for jf =4 these are of the form
(', r ) and for jr = 1 of the form (, ,').

($ii) SU(6). In this case, just as in SU(5}, the

jz = 2 may be obtained as the sum of two j~ = 1 and

j& = 5 as the sum of j&
—- 4 and j& = 1. Moreover, the

j&= 3 solution may be considered as the sum of
three jf =1 solutions, or of one jf =1 and one j& =2
solutions, for now the matrices for j& = 3 are of
the form

2A|
0 I 0 0 0 0

3II

4II

[3A,]'

[3A |]"

[4A (]"A2

[4A ]II

5A i )A 2+A i

0 0 0
C

2 0 0

0 0 0
C 0-~

I 0 0

0 I 0
C

0
0 I 0

0
0 0 0

0
0 0 2

Q

0
0 0 0

0 0 I

0

Similarly the j& = 8 may be the sum of two jz = 4,
and j& = 11 the sum of j& = 10 and j& = 1.

(iv) SU(7). The list grows and in addition to the
case of SU(6) we have jz =6 the sum of jI =4 and

jr =2, or j& = 5 and jz =1, or j~ =4 and jf =1 and

jf =1; j&=14 the sum of j&=10 and j&
—-4; andj&=21

the sum of j& = 20 and j&
——1.

(v) SU(8). ln SU(8), the list goes further. How-

ever, we note that j&=4' (following notation of
Table I) may be obtained as the sum of four j& =1,
or two j&=2, or j&=1 and j&=3, or two j&=1 and
one jz =2, while for the inequivalent embedding
j&=4" theorem DII does not apply. Nevertheless,
as shown by Wilczek' in SU(3) and hence in all
SU(N}, N& 3, one can consider jf =4" as the sum
of four jf ——1.

A similar discussion can be done in the case of
all other semisimple groups, see for example
Table III for the case of E,.

Another set of cases where solutions can be
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seen as the sum of two or more may be obtained

using the sum constructed by Wilczek in the case
of SU(3). For example, one can see that the j&= 8

solution in SU(6) can be obtained as the sum of
four j&=2 solutions. We notice, however, that
the defining vectors corresponding to j& =1 and

jf =4 are parallel; so are the defining vectors for
jf =2 and j& =8 in SU(6). We conjecture that inany
semisimple algebra G, when two embeddings f and

f ' are such that their defining vectors are parallel,
i.e., f' =af, n&1, then it is possible to sum a'
embeddings f and obtain an embedding f '.

We remark here that the solutions" in SU(2) with

q & l. appear to be a sum of separated solutions of

j&=1, which is itself a solution because of the

special field configuration it has in space. The in-
dividual pseudoparticles in this case are in a sense
free as there is no interaction energy. These so-
lutions, however, are of the general form
A'„{x)(o;/2), and hence similar solutions may be
obtained in G by replacing o; by T;, the various
embeddings of SU(2) in G, and the interaction ener-
gy would still be zero.
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