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Pseudoparticle contributions to the energy spectrum of a one-dimensional system*
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We show that classical solutions of the Euclidean action can be used to calculate the shift in energy levels

due to tunneling through a potential barrier. In particular, we use the path integral to compute the kernel of
the double-well anharmonic oscillator for a large, but finite, Euclidean time interval by expanding about

pseudoparticle solutions {i.e., the kink). This allows us to determine the ground-state energy plus that of the

first excited state {the splitting is due to barrier penetration). We find that not only the classical solution

must be expanded about, but also nearly stationary trajectories corresponding to kink plus kink-antikink

pairs. The quasitranslational invariance must also be dealt with carefully. We compare with the WKB result

and find our result more accurate, because it avoids the errors introduced by the linear {Airy functions)

connecting formulas.

I. INTRODUCTION

The classical (Minkowski) action has minima
corresponding to periodic oscillations about a po-
tential minimum. These classical solutions can
be used in connection with Dashen-Hasslacher-
Neveu' scheme to find information about the spec-
trum of the Hamiltonian. However, in cases where
the potential has more than one minimum, it was
previously noted by one of us' that such classical
solutions yield no information about the shift in
energy levels due to tunneling through the poten-
tial barrier. Since then, solutions which minimize
the classical Euclidean action of several theories
have been discovered, ' and it has been noted that
such solutions correspond to tunneling between
vacuum states. ' (These solutions are now generi-
cally known as pseudoparticles. ) In this paper we
demonstrate how such solutions can be used to
learn about the spectrum of the Hamiltonian of the
system.

For simplicity we consider a theory with one
scalar field in one time and zero space dimensions.
The Lagrangian is

with p. , ~&0. This is just the anharmonic oscil-
lator with a double-well potential (Fig. 1). In a re-
cent paper proposing several models which po-
ssess pseudoparticle solutions, Patrascioiu'
pointed out that for this anharmonic oscillator
the kink is a pseudoparticle. For weak coupling
(Ag/p'« I), we use the kink solution in applying
the steepest-descent approximation to the path in-
tegral to compute the Euclidean kernel (y„t, (

y„t,), and from it learn about the energy spec-
trum. We compare these results with that of an
ordinary %KB approach, and to our pleasure find
that the pseudoparticle approximation to the Eu-

clidean path integral gives the more accurate re-
sult. This is true because the path-integral ap-
proach avoids the errors introduced into the %KB
approximation by the introduction of connecting
formulas. (It is amusing to note that despite the
care and effort needed for the patl;-integral analy-
sis, we probably spent more time coming to grips
with some of the subtleties entailed in actually
having to execute a WEB program. }

To obtain the correct kernel for a large Eucli-
dean time interval, it turns out that one has to be
very careful to expand about not only the classical
solution which minimizes the action, but also
about trajectories for which the action is almost
stationary. Thus not only the one-kink contribution
(Fig. 2) must be taken into account, but also that
of one kink plus any number of kink-antikink pairs
(Fig. 4}. These correspond to those processes in
which the particle tunnels back and forth between
the two wells before finally arriving at (y„t,)

All translations of the kinks must be reckoned
with. For the case of an infinite time interval the
action is translationally invariant. In expanding
about the kink, this invariance implies a zero-
frequency-mode contribution to the propagator.
It is known that this problem can be circumvented
by the introduction of collective coordinates. '
Since we calculate the kernel for a large but

FIG. 1. Anharmonic potential with two wells.
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We now apply these results to the scalar field
theory given by Eq. (1.1). Let lL„)and lR„&de-
note the energy eigenstates of the left and right
wells when one ignores the presence of the other
well. Then the potential barrier splits the L-A
degeneracy such that to lowest order in 5 the two
lowest eigenstates are

FIG. 2. The kink in a box.
lo & =~ (lL. &+ lft. &}, (2.3a)

finite time interval there is a quasitranslation-
al invariance. This quasi-invariance results in an
eigenmode contribution to the propagator whose
eigenvalue decreases exponentially with time;
thus the perturbation expansion is no longer use-
ful. Again the problem is surmounted by introduc-
ing a collective coordinate. The measure of in-
tegration is obtained via the Faddeev-Popov tech-
nique', however, the application of this technique
to our problem requires great care since we are
dealing with only a quasisymmetry.

The inclusion of multikink trajectories requires
a refinement beyond the considerations of quasi-
translation invariance: One must deal eareful1y
with the problem of joining kink-antikink pairs. A

careful analysis leads to the inclusion of an addi-
tional determinant.

Our presentation commences with a short dis-
cussion of the desired form of the kernel for a
large Euclidean time interval. We assign separate
sections to the one-kink and multikink contribu-
tions. For completeness we briefly review and
compare with the WEB result.

II. PROJECTION OF THE GROUND STATE

First let us consider the general case of a field
theory in one dimension (one time, zero space di-
mensions, i.e. , quantum mechanics). The only
assumption will be that the Hamiltonian is bounded
from below and has at least one discrete eigen-
value. Then we know that for a large-enough Eu-
clidean time interval the transition amplitude be-
tween a state S, at time -T and S, at time T is

&s. T
I
s„T&= (s.

1
o&(o -ls, &c-""&". (2.1)

l» = (lL.)- lft. &}, (2.3b)

gg
x sinh (2.4)

Thus if one can compute (y„Tl
y„-T), one de-

termines E, and 4E. In the next two sections this
amplitude will be computed via the pseudoparticle
contributions to the path integral. The results
will be compared in Sec. V to the WKB approxima-
tion.

III. ONE-KINK CONTRIBUTION TO THE KERNEL

In this section we compute the one-kink contri-
bution to the path integral. For pedagogic reasons
we find it convenient to first present the naive
treatment, which ignores the fact that translations
of the kink are quasisymmetries of the action.
The correct treatment of translations is given in
Sec. III B.

A. Naive treatment

We will compute the Euclidean kernel

~2 X/2

(rp„Tlp„-T&for rp, =rp, = —-tax& . (3.1}

with corresponding eigenvalues Eo —nE/2 and Eo
+ 4E/2. Consider the amplitude (p„T

leap„T&,

-
where y, and cp, are near the bottom of the right
and left wells, respectively. Retaining only the
contributions of lO) and

l
1) to this amplitude and

dropping the small overlap terms ( y, lL, ) and

(y lIf, &, our amplitude for large Euclidean T is

(v. , Tlv. , -T&=(v. lL. &«. lv, &e """

Thus the ground-state eigenvalue, E, is projected
out. If the lowest eigenstates correspond to a
s1ightly split degeneracy, then one can choose to
keep track of all the associated eigenvalues. If the
spectrum is completely continuous, then the sum
over intermediate states would be an integral, and
the result would become

It is given by the following path integral:

1 ~ (j2 A. p,
~

Qy t exp — dtI ~ 2 4

(3.2)

(s„Tls„-T& „,&s, lo&&ols, )e
with the boundary conditions y( —T) = y, and y(T)

The classical solution obeys the equation

(2.2) 3 (u'+v - ~v'= O (3.3}
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The boundary conditions were chosen so as to
select as the correct solution the kink:

(3 4)

For large T

S- '' —" (3.6)

The corresponding classical aCtion is

S~= dC pp

Expanding about the kink, we introduce new vari-
ables of integration:

=-v 2 ———tanh' +tanh
1 3 pT jlT
3

y(t) =q(t) —y&(t) ~

The kernel becomes

(3.6)

2~2 p.'
(y» T ly» T) =-exp

g)y t exp dt y2 y2+ y2tanh2 + ~2y 1/2~h ys+

For weak coupling (&«p'), we drop the cubic and quartic terms and approximate the kernel by

2%2 g(y T~y T) =ex-p — — ay(t) exp -- dt g' ——y'+ y'tanh'—1$ jg'X r 2 2
(3 8)

with the boundary conditions y(-T) =y(T) =0. The cubic and quartic terms can be taken into account per-
turbatively, but in the sequel we shall ignore them.

The Gaussian functional integral in (3.8) can be computed in two ways. We do the calculation both ways,
not as an exercise in computational prowess, but because it enables us to determine the Jacobian in-
volved in transforming to the normal modes.

(i) Change of vamables We in.troduce the mapping

s(t) =y(t) — y(r)~r,
' N(r}

N(v'
(3.

where N(t) is defined by the equation

N = - p,2+ 3p,
2 tanh2 (3.10)

We denote the functional integral in (3.8) by I and obtain

I= Sz t do —exp — dt ——+io. z T +N T dt z t
y 1 N(t)

Sz 8- -T 2 Nm(t) J f
(3.11)

Here n is a Lagrange multiplier which inserts
the constraint on s(t) induced by y(T) =0. The in-
tegrations were carried out by Dashen et al.' and
give

(ii) Expansion in normal modes. Performing
an integration by parts, we can write I as

T p2
5)y t exp —— dty --,'8,' ——

2& NTN-T T N2t

A solution of (3.10) is

{3.12)

The matrix

3P2 2 Pt+ "tanh'" y.
2

{3.15)

~2 1/2 1
N(t) =jpz(t) = (3.13)

v 2 cosh'(pt/v 2 )
M=--2~, ——+ tanh21 2

l2 3P2 2 Pt
M2

(3.16}

so that finally we have

(gism)"* (3.14) MC „=E„24„, (3.1V)

is Hermitian, and it can be diagonalized by solving
for its eigenvalues E„'and eigenfunctions 4„,
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subject to the boundary conditions 4„(-T)=4 „(T)
= 0. %e can expand y in terms of normal modes

y(t) =g c„qt„(t}, (3.18}

and change variables of integration from y(t) to
(c„).Since the transformation is linear [Eq.
(3.18}],the Jacobian ~my/Sc„~ can be factored
out. The integrations over c„'sare simple Gaus-
sians, and we obtain

0

(3.19)

In deriving (3.19), we have normalized the qt„'s
such that

fT
dt's„(t)4„(t)=h/p'.

«T
(3.20)

2 24 p2e 2+2' T
0

E,'= —,'p'+0(e ' )

(3.21a)

with c some constant
(3.2 lb)

The product in (3.19) extends over all eigenvalues
of M. If T were infinite, the spectrum of Iwould
contain two bound states of energies E,' =0 and

E,' = —,'t[' and a continuum of states for l' & t(,'.'
We show in Appendix A (using boundary perturba-
tions) that imposing the boundary condition 4t„(-T)
=ty„(T)=0 produces a spectrum of bound states
with energies

Popov technique' and define

&[+(9 (t})]
T«C T

das dts(t)a(t+aT, (t))) t, =
«T-T+C

(3.22)

where f(t) (which is chosen so as to ensure that
under translations the end points remain fixed at
dp, and Tt),) is shown in Fig. 3(b), c will be speci-
fied shortly, and 4', (t} is the eigenfunction which
corresponds to EO2 [in fact, tido(t)()-T}ts(t)). It fol-
lows that for y(t} such that

Flo. 3. (a) The kink (solid line) and its translation by
a. (b) f(t), which is used with translations in order to
fix the end points.

E,' = p'+ n')[ /2 T, n = 1,2, . . . . (3.21c) T
dt's, (t)rp(t) =0,

«T
(3.23a)

B. Nonperturbative treatment of kink translations

As stated in the Introduction, the presence of
the quasizero eigenvalue (3.21a) destroys any hope
of computing the deviations from Gaussian behav-
ior of (3.V} in perturbation theory. Moreover, we
notice from (3.8) and (3.14) that the naive treat-
ment does not reproduce the desired result pre-
sented in Sec. II [Eq. (2.4)]. To account for the
quasisymmetry represented by kink translations
in a nonperturbative way, we use the Faddeev-

T

a[s(s(t)N =f «a.(t)S(t)
«T

(3.24)

Next we multiply Eqs. (3.2) and (3.22) and inter-
change the order of integration to obtain

we have

nF'«(t+&f(t))}] = &V'(c (t))]

(3.23b)

and in fact

(S„T(tl„—T) Jda f Sat(t)axa( S[a=(t)))a[St(a(t)))a (f d-ta(t)a(t+ad(t))),

1 T
da Qyt exp —9yt —a t EEfpt)& dt's'0

«T4 C T
(3.25)

In the second step we have used (323b). To do the y(t) integration, we again write

c)(t) = rp, (t)+y(t)

and obtain

(3.26}
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exp —
dt's„ay(t)exp

—— dt —,y' ——y + tanh y +(t/, &) tanh y + 4y
1 2 3& 2 I"t 2 2 x(2 "t 3 4

cl -r.. 2 2 v2 M2

dt's'0 ~+y 5 dt's' y +y

The y(t) integration can be performed by first computing

] T+0 p2 3p2 pt T T
I=— Qy t exp —— dt 2y'- —y + tanh y dt's'0 ~ 5 dt+p

- ft-r+a 2 v2 - -r '' -r

(3.27)

(3.28)

and then taking care of the remaining terms per-
turbatively. We notice that if in (3.22) we chose
c = O(1/p} (i.e., the "width" of the kink), then
neither the propagator nor the vertices produced
by (3.27) wiD depend on a (corrections are of
order e '" ). Also we have

dt's, „= dt's„. (3.29)

The Faddeev- Popov determinant,

(3.30)

can be factored out in (3.28}. The remaining inte-
gral can be done by normal-mode decomposition.
The 6 function eliminates the quasizero eigenvalue
Eo', and we obtain

~" ~~~0 E~

Combining (3.14) and (3.19), we can rewrite this
equation as

pansion would now be fruitful since the previously
bothersome quasizero-frequency mode is elimina-
ted from the propagator by the & function.

IV. CONTRIBUTIONS FROM KINK

PLUS ANTIKINK- KINK PAIRS

Vfe begin our discussion again with the path-
integral formula for the kernel [Eg. (3.2)]. We
notice first that the boundary condition requires
summation over all paths which begin at y, ((0)
and end at y2 (&0}. Such paths fall into classes
according to the number of times they cross the
line ///(t) =0. This number must be odd. For sim-
plicity we will discuss the case of three zeros,
the generalization being obvious.

The path shown in Fig. 4(a) is not a classical
trajectory such that y(- T) = y, and /p(T) = rp„but
it is nearly stationary. It has the property that
for large T, under local translations labeled by

3A. 2m@ m p,
2

or, substituting for Eo [(3.21a)],
a/2 ~ 18~2~s x/2

vl ~2 vAA

(3.32)

(3.33)

T

3

Returning finally to the ke'rnel (3.25), we obtain
in the Gaussian approximation

1(2

(6~2~3 1(z
x exp—2M'//, '

3XS

(3.34}

In obtaining this formula, we have neglected O(l/p)
compared to T.

In (3.34) we have written the terms in a form
reminiscent of the desired form. The product of
the last three terms is the first term in the expan-
sion of sinh[(&E) T/h], as will be seen in the next
section, where we include the effect of all anti-
kink-kink pairs. %e notice that a perturbation ex-

2T+, +Lo(l IlI'

)
/if'

I

0, + lO(q II

FIG. 4. (a) Three kinks (solid line) and a translation by
the a s. {b)f&(t)'s, used in performing local transla-
tions [Eq. (4.4)j.
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a„a„anda, [Fig. 4(a}], the action changes only
by terms of order e 'r (some c). Thus we have
a quasisymmetry in our problem, much as in the
case of one kink translations. Hence, we will
need three 6 functions to fix the zeros at the loca-
tions of our choice, say --,'T, 0, and -,'T. Having
done that, we notice that we can use the complete-
ness of the kernel to write

(T., T)T„» -da=f,da.(T., Tl)T...'»—
Iaa(O m()C)

x (q 2» T I(t( xt

X(y„-~T
(4.1)

The steepest-descent method applied to compute
the intermediate-time kernels in (4.1) and to do
the y, and y, integrations mill select as the opti-
mum paths (nearly stationary) the kink plus anti-
kink-kink pair, so that -P, =y, = p, '/&. The Gaus-

j. /2

e's[q, ] ~

(K sq„' )
(4.2}

We compute S'S/Srp, „'in Appendix B and we find

(4.3)

As mentioned in the Introduction, the kink pius
antikink-kink pair describes tunneling back and
forth betmeen the two wells; in Sec. V we will
associate the determinant (4.3) with the ground-
state wave function.

Having outlined the procedure for including con-
tributions from kink plus antikink-kink pairs, we
will nom give the details of the computation. We
begin by defining the Faddeev-Popov determinant
associated with the three 6 functions:

sian integrations over (It), and y, will introduce two
determinants of the form

5T/s T T/s T T
aa(T( t(tt)) ) da, f da, f da, ll f dta, (ta ', T)tt(ta ', T —a-,f (t)l -4 f did, (t)a(t —f(t))),

-T/s 4 T/s+og 2 T/s+ti2 -T T

xa dta (t —,'T)a(t —',T,f (—t))} =1 (4 4)
~T

Here a„a„andas label local translations, andf„f„andf, are shown in Fig. 4(b). The transla-
tions are made so as to preserve the order of the
kinks. We notice the invariance of 4("[E(t(()(t})]
under independent, but appropriately chosen local
time translations. We also note that

&'"[F4 (f})]=(&[F(p(f})]P

and that

(4.5)

J
5T/s T

da, dQ2
-T/s w T/sea~

T/s

T/ s+a2

(2T)'
ST

(4 8)
In (4.4) and (4.6) we have neglected the width of
the kink, O(1/p}, compared to T [see E(I. (3.22)].

We have at hand all the pieces of the calculation;
to assemble them we follow the principle outlined
in (4.1). The manipulations are familiar from the
one-kink case. The contribution to the kernel of
kink plus antikink-kink is

v~2 '" ~„,(~2m&)'

2v2 p'
x exp (4.8)

Comparing this with the desired form [Eq. (2.4)],
we can identify

1/4
&&

= (&'/~)' ~ I&.) = (4 8)

[For the reader's benefit: In evaluating (4.1), we
multiplied three quasizero frequencies
)) 24' exp(-v 2 p, —,'T), hence the factor exp(-)/2 pT)
in (4.V).]

The generalization to the case of kink plus any
number of antikink-kink pairs is obvious. The sum
over all contributions is trivial and we obtain the
final expression for the kernel:

( (
-»=(" '}'"-""

16M2p, ' '"
xsinh v2pT

g6~2~s s/2- 2~2~s -s

3~
(4 7)

eM2p.
(4.10)
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V. COMPARISON KITH THE KKB APPROXIMATION

[Note. In this section we shall mean by the
"standard" %'KB result that one which is based on
the linear (Airy functions) connecting formulas.
These connecting formulas are derived for the
highly excited states, but have been shown to give
a very good approximation for even the lowest
state. ' If one uses the (Iuadratic (harmonic-oscil-
lator functions) connecting formulas, one will
reproduce our result exactly. For those to whom

these remarks are obvious, we suggest skipping
this section. ]

E(luation (2.4) can also be evaluated using stan-
dard %KB results. One can show that'0 4~2 1/e

(p = (p'&')'" IR,)„„,=(,.~" (5.8)

lator. If one takes the square of the ratio of his
approximate 'WKB wave function for the ground
state to the exact harmonic-oscillator wave func-
tion evaluated deep inside the classically inacces-
sible region, one gets precisely the value of Eq.
(5.V). Thus the path integral does better than the
WKB approximation because it avoids the errors
introduced by the connecting formulas.

We know from E(I. (2.4) that the kernel is pro-
portional to the value of the square of the wave
function evaluated at the bottom of the potential
well. The value of the %KB wave function so eval-
uated is

bE = 2A (((((
i Ro &

—((/p PRO & „,0 .
8(p

The %KB wave function inside the barrier is

(5.1)
The square of the ratio of this %KB wave function
to that derived from the functional integral [see
E(I. (4.9}]is

-("ii'pp i)
~(-—.J'Ip~l'p), ((p —(t(2/y)1/2 [R )2 4 1/3

((((' = (t /~) IRO &ppth ( te((pa(
(5.9)

and its derivative is

(5.2)

(mlRO& =
@ (v IR0& (5.3)

pAps= exp -- ~p~~pp),

where

(5 4)

p dye= dp 2 — (p ——— 5

and

(5.5)

This is an elliptic integral. If one expands to low-
est nonvanishing order in (%jt/, ')'/' the result is

4p.' 2 2e i/2 2 2 ps
(5.6)

Comparing with the path-integral result [E(I.4.11],
bE ) e

E(yath intelrag
(5.V)

Now note that E(ls. (5.1) and (5.3}imply that bE is
proportional to the square of the ground-state
wave function evaluated at the center of the bar-
rier. Furry' has studied the %KB approximation
with connecting formulas for the harmonic oscil-

where P((p) is the classical momentum function and

a is the classical turning point at the barrier.
Thus

Again this is exactly what one gets by comparing
the corresponding %KB versus exact harmonic-os-
cillator results. ' As we by now expect, the path-
integral result again avoids the damage done by
the connecting formulas.

Note. Voile completing this work we received
a report by Polyakov" in which he computes the
correlation function (x(0) s(r) & for the anharmonic
oscillator. Thus the path integral is evaluated
over an infinite time interval. This approach al-
lows one to calculate the energy splitting, but not
the ground-state energy. Computing the kernel
determines both. Our analysis differs not only in
spirit, but also execution. For example, we fail
to see in that paper the determinant needed in
joining kink-antikink pairs [see E(I. (4.2)], .
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APPENDIX A

Imposing the boundary condition 4„(-T)=4„(T)
=0 is equivalent to putting the infinite-domain
system into a finite box. Thus the continuum of
states is replaced by the discrete infinity of bound
states given in (3.2lc). The energy of the bound

states Eo' =0 and E,' =
& p,

' is increased owing to
the infinite walls at +T. Since the bound-state
wave functions in the infinite domain die off ex-
ponentially at large

~

t ~, the shifts in the eigen-
values are of order e~~, where e can be computed.
For our purposes the only quantity of interest is
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E,', which we will presently determine.
%'e do this by treating the boundary condition as

a small perturbation. We denote by 4,'(t) the zero-
energy wave function is an infinite domain and by

4,(t) the corresponding wave function in the box.
They satisfy the equations (y

—= p, t/~2

Since to leading order

dy+o+o = dy~o+o
w Tl&2

we obtain from (A4)

(A9)

(
Ea

cosh'
(Al} E & =24P2ff ~&»~

0 (A10}

8„'+,—4tanh'y C, =O.
cosh'y

Equation (A2) can easily be integrated to give

(A2)

(AS)

We know that~2

S(T,y„p2}= W(E, p„y2)—ET,
and that

(Bl)

Multiplying (Al) by 4, and (A2) by 4„integrating
from —pT/W2 to pT/v 2, and subtracting we ob-
tain

y2 ( y ~a 2 I/2
W(Z, q, , q,)=f &2 8+- y' —— d0.

y, T/0'2

(asp 0
—4'08 p()}

-f4 T/&&

E 2 P, r/E2
dy+o+o .

~ r/~2

(A4)

From (Bl) we have

8$85'

(B2)

(BS)

To evaluate E,' we need 8„4',evaluated at +pT/W2.
We can find it using the WEB method For.y = p T/
v 2 we have

(A5)

which leads to

8$8$' 8$' 8E
8+~ 8+~ 8E8{p~ 8p~

Using (B1) again and then (BS), we obtain

8E 8'$8 8$8 8g
8&p 8+ 8T 8T 8+ 8T 8+

(B4)

—exp -2 p' dy

x exp p' dy

(A6)
where a is the classical turning point and P the
classical momentum. For large y we observe that
p(y) =constant, and so for y =gT/W2 we have

8„4,=- cIpI4, , (Av)

sp. =- 2'Ip I+.=2ap. . (A6)

Therefore,

8~+' 8E 8 g
8Eeq, 8T 8Eay, (8 T/aE)

82+ 1
8Esyi (82W/8E )

8~$8~W 8 8' 8 W 1

aq, ' sq, ' 8Eep, 8Eeq, (8%'/8E2)'

For the kink, (B2) and (B6) yield SS/ y,S'

=2&2', .

(B6)

(B6)
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