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Weak neutral currents in electron-positron anm»&ation into three pions with polarized beams
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We present a detailed discussion of the possible angular asymmetries in e +e ~m'+n' m' and their relation

with the presence of a weak neutral current for the case when the initial beams are either transversely or
longitudinally polarized. We define several asymmetry parameters which provide information on the axial-

vector and vector couplings of the weak neutral current. We also estimate the order of magnitude of these

parameters for beam energies of the next generation of accelerators.

I. INTRODUCTION

Recently it has been proposed" to observe the
weak neutral current in the annihilation process

e'e -m'm m'.

The idea is to look for angular asyrnmetries which
arise from the interference of the amplitude for
annihilation via a neutral particle Z and the ampli-
tude for annihilation via one photon. The origin of
the asymmetries lies in the opposite charge-con-
jugation properties and in the opposite parities of
the axial-vector neutral current and either the
photon or the vector neutral current. In Refs. 1
and 2 the lepton beams were assumed to be un-
polarized and it was indicated how to detect the
coupling constants of the weak neutral current. It
is the purpose of this note to analyze the case when
the initial beams are polarized.

In Sec. II we derive the explicit form of the
stiuare of the matrix element for process (1.1). In

Sec. III we assume that the polarization is trans-
verse and isolate the polarization-dependent part
of the differential cross section. The angular
asymmetries allow us to define six asymmetry pa-
rameters Api Ap2 Ap3 A i A 2 and A s which
are proportional to different combinations of the
coupling constants. We show also that two asym-
rnetry parameters may have a zero for beam ener-
gies & Ms/2, where Ms is the mass of the Z par-
ticle. In Sec. IV we discuss the case of longitu-
dinal polarization and define three additional asym-
metry parameters proportional to the polarization.
In Sec. V we present our conclusions.
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e is the electron charge and g„(g,) is the coupling
constant of the vector (axial-vector) neutral cur-
rent to leptons. L„describes the y-m'm n' vertex
and V„and A„describe the Z-m'm n' one with vec-
tor and axial-vector coupling, respectively.

I.„and V„are axial vectors antisymmetric in
their dependence upon p„p, and p,. That is,

to denote the result of replacing in the expression
for E the constants a, b, ... by a', 5', . .. .

As before' we assume that the neutral current is
of the V- A. form and that the negative G parity
piece of the hadronic neutral current has a vector
isoscalar part and an axial-vector isovector one.
We denote by q, q„p, p„andpf the four-rno-
rnenta of the electron, positron, pions, and total,
respectively, in the center-of-mass frame of
e'e . Furthermore, let s, (s ) be the polarization
four-vector of the positron (electron}.

The sum of the amplitude for annihilation via one
photon and the amplitude for annihilation via a neu-
tral particle Z is

II. GENERAL MATRIX ELEMENT

I.„=t,ee„„,p, p }'p F, ,

V&
= 1g& 6

& vpap+ p-p0 +2 r

(2 7)

(2.8)

In this and the following sections we will often
need to interchange constants in some expressions.
To this end we find it convenient to introduce the
symbol

R[E;a- a', b- b', .. . ] (2.1)

where F, and E, are Lorentz scalars symmetric
in their dependence on p„p, and p, . On the other
hand, A„ is a vector symmetric in p, and p:

~„=g.[(f, f ),F,.(f,-p )„F..I,„F,], (2.&)

where I, and F, are symmetric in their depen-
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dence on p, and p and I 4 is antisymmetric. g„
and g„are the coupling constants of the vector and
axial vector neutral current to hadrons.

The square of the matrix element M can be writ-
ten as the sum of an electromagnetic (e), a pure
weak (zu), and an interference (i) part:

IM I' = ~~'~ 7 ~"+ ~~ & z'"
pv {e) ]I v (m)

+ (T~„T(.)+ C.C.) (2.10)

where each term is the product of a leptonic ten-
sor, 7.„,, and a hadronic one T"'. Neglecting the
lepton masses and defining

„„=(q„q„'+q„q'-g „s/2)(1 —s+s )+(q„s„'+q„s'„)q+s +(q'„s +q„'s„)q s,
+ (s„'s„+s„'s„)q q, -g„„(q s, )(q, s ),

c,'„=A[c„„;s,- -s,],
d n 8 n 8 p a + a 8 p + a 8 p

)I v
=

]f v n87-9'+ gpv n8pa -O'A+ + + V]f vn8pV- + -+Vv p a8pO-
+ n 8 p + a 8 pSp~vn8pQ'-~+S- Sv~t n8pQ-0'+S- ~

we have'

{e)
T„v —e C„v

{i)T v
—8g C~ v+ Zeal~ v

(2.11)
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(2.13)
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Noticing that d„„depends on the polarization only through its symmetric part, we can immediately see
from Eq. (2.15) that there will be no polarization-dependent part, in the differential cross section, pro-
portional to g„g, .

Since'

Coo Oi 00 ~oi ~i 0

it is sufficient to specify the spatial-spatial parts of the hadronic tensors'.
2

Tj,'& ——'(p, xp )'(p, x p )' IF,I',

(2.1&)

(2.18)

I.'&= (, M2)2 [g.(f"f ) F,.g.(f, -c )'F, -w, ~~(p, p ) F.]
2

x[g„(p, +p )'F3+g„(p, -p ) F;+~g,Ws(p, xp ) Ff] (2.19)

rs (p, x p )'F, [g„(p,+p ) Fs+g„(p, p ) F,*+qg~~s(P, xp ) F2]s-Mz )y s
(2.20)

In this way Ecl. (2.10) becomes

IMI'= s'- c;&(p. xp )'(p. xp )' IF I'

+
( ~ 2y2 [gv czg+g~ c~g+ &gzg~(d gd~gg)] [gg(p++p ) F3g+(gp p+) F& xg&~s(p+ xp ) F2]s-Mz )

x[g„(p, +p )'F3+g„(p,-p ) F,+ig~~s(p, xp ) F;]
2

+
~q( M 2)/(gad&) —i gc&q)(P, x P )' [F(gP, +P ) Ff+g„(P+ P )Ff+igy&s-(P, -xP ) F2]+c.c},

(2.21)

where

c,~=-(g~s/2+2q, q,)(l-s, s )+v ss'(q~s, +s, q, ) —v ss', (q~s, +q, s, ) ——,'s(s,'s, +s,'. s, )+ss~',g.. . (2.22)
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d, , =-v se...q'+kg, [q (s xs, )] —2s', [q,(jxs ),. +q. (jxs ),. ]
—Ws[s,'(jxs ), +s,'(qxs ),.] —~q, q, [j . (s, xs )],

cI =q = -q+

(2.23)

(2.24)

III. TRANSVERSE POLARIZATION

Let s, = (0, -s), s = (0, s). In this case the expressions (2.22} and (2.23) simplify to

c,, = —(sg, , /2 + 2q,.q,.)(1 —s ') + ss,.s,.

d;, = —Wse;, ,q'+ vs [s, (q x s},+ s, (q x s), ] .

Choosing the z and x axes in the cI and s directions, respectively, we have for any two vectors a and b

c,,a'b' = s[a'b'+a'b'+ s '(a'b' —a'b')]

s[a h —a'b'+ s -'(a'b' —a'b')]

d, &a'b ' = ,'s[-a"-b' —a'b'+ s '(a"b'+ a'b')]

(3.1)

(3.2)

(3.3)

(3 4)

which allows us to easily distinguish the polarization-dependent terms from the polarization-independent
ones in )M~'.

Let E,=p', , 8, (8 ), and g, (g ) the polar coordinates of p, (p ), and 8, the angle between p, and p given
by

s+M'+2E, E 2~s(E,-+E )
2IP.lip I

(3 5)

where M is the pion mass. Separating the differential cross section in its symmetric (s), charge-anti-
symmetric (ca), and parity-violating (pv) parts,

do = dcr' + dct" + do~",

the dependence on the polarization becomes

(3.6}

(3.7)do (s) = do (0) + s 'd Z, k = s, ca, pv,

where the terms dZ, which are specified below, do not depend on the polarization. I et I be an integral
operator defined by

E E
I=, dE+ dE 5(cos8. —cos8, cos8 —sin8, sin8 cos(g, —g )), (3.8)

where Z = (s —3M')/2s, then

do'(0) =dQ, dQ I1Cp'[1+cos(8, + 8 )cos(8, -8 ) —2cos8„cos8,cos8 ]

+C~ ~(sin'8, +sin'8 )+C", ~(cos8, —cos8, cos8 )),
dZ' =dQ, dQ I(C',"'[ 2i s,n8insc8os8.,cos8 cos(P, +P }—sin'8, cos'8 cos2t},-sin'8 cos'8, cos2$ ]

+CI'~'[sin'8, cos2$++ sin'8 cos2) ]+ C', ''sin8, sin8 cos(g, +(t )j,
do "(0)=dQ, dQ IC~,', ~(cos8, —cos8 ),
dZ" =dQ, dQ IC'„' [sin'8, cos8 cos2g, -sin'8 cos8, cos2) +sin8, sin8 (cos8 —cos8, )cos(g, +g )],

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

do'"(0)=dQ, dQ IC(,'~(cos8, +cos8 )sin8, sin8 sin(g, —g ),
dZ'" =dQ, dQ IC'~'J' [sin'8, cos8 sin2rp, —sin'8 cos8, sin2$ +sin8, sin8 (cos8 —cos8, )sin(g, + g )],

s -M~' 2(s -M~ (3.15)
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c',"=, ',},(g„'+g. ')g„'(IF,+F,l T), '+ IF, -F, I T) '),
4( -Mz' ' (3.16)

c',"=
(

.). (g. '+g. ')g 'IT).
1 IT) I(IF,I'-IF.I'),

C')'=A[C') g '- -g '] i =1,2, 3

(3.17)

(3.18)

c "= '
M, (1+cost), }IT)+IIT) 1»v+ "M' «IFl[F.(IT). l+ IT& I)+Fa(IT). l

—IT) l)]js -M~' s -Mz

c'„') = It [c'„');g„g„-0],
2 2

»&g.g~+ 2
' " imkF*[F.(IT). I+ IT) I)+F,(lp. l

—IT) I)]},
C(1)c P [C(1).g 2 g 2]

In the Eqs. (3.15) and (3.18)-(3.22) we have assumed the universality-type relation

If I', cI, then in d Z'" there is an additional term proportional to ImF,F,*.

(3.19}

(3.20)

(3.21)

(3.22)

(3.23)

A. Asymmetries

We will now isolate dv (0), dZ", dv'"(0), and
dZ'" from each other and from dv'(s). Since both
dv-(s) and dvo"(s) are antisymmetric under the
transformation 8, n —8„,

l
a-oo a-oo d ca (S)

d8, d8 dg, dg

a-Oo a-O d E"(S)"-d8, d8 d~.d~

(3.24)

where 8, is some given angular cutoff. Thus we
conclude that there are no pure-azimuthal asym-
metric s.

On the other hand, since dv'"(0) is the only part
of dv(s) that is proportional to sin(g, —g }, we can
isolate the polarization-independent part of the
parity-violating effects in an asymmetry param-
eter defined by

and where ONw and osw are defined by an integra-
tion analogous to that in Egs. (3.26) and (3.27), ex-
cept that g, is integrated from g + z to g +2n..
Using the transformation properties mentioned
above and performing the azimuthal integration we
conclude that

vNE (0)
vNE(0)

' (3.28)

That is, A» is given by the ratio of the parity-
violating polarization-independent contribution to
Eq. (3.26) to the polarization-independent part of
the symmetric contribution. This parameter was
already analyzed and estimated in Ref. 1.

Now, dv'"(s) is the only part of dv that is anti-
symmetric under the transformation g, - -tI), .
Furthermore, da'"(0) is antisymmetric under the
interchange of g, and g . Thus, to isolate the in-
formation on the polarization-dependent part of the
parity-violating effects we may define

(vNE —vNw) (vsE —vsw)
Ap, =

O NE + &NW +& SE + 0 Sw

where

ONE = d8+ d8
eo eo 0

+m

' d8, d8 dg, dg

(3.25)

(3.26)

where

W/2

d8, d8
8 0

—d8+d8 dq+dy

(VNEE VNWW} ( SEE SWW)
p2

&NEE+ &NWW + &SEE + 0SWW
(3.29)

(3.30)

7f- 80 7f- 80 27r

d8, d8 dg
7f/2

{3NWW

r/2
d8+ d8 dg(+

0

da' d8, d8 dg, dg
(3.27)

0
X

d8, d8 dg, dg
(3.31)
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mp"
~NEK

22 ~S (0}
(3.32)

and where 0~«and a~~ are defined by an integra-
tion analogous to that in Eqs. (3.30), (3.31), except
that (9, and 8 are both integrated from n/2 to
p —0,. It should be obvious that

where s 'ZN«is the polarization-dependent parity-
violating contribution to (3.30).

Since in the above analysis the m' and the energy
of the charged pions are not observed, there are
only three independent angular variables. If we
choose g as dependent variable, then integrating
it from 0 to 2n we obtain

do'(0) =d&, d& dg, J'(CP'[1+cos(8, + 8 )cos(8, —8 ) —2cos&, cos&, cos& ]
+ C~'~(sin'8, +sin'8 )+ C', "(cos&, —cos&, cos& }}, (3.33)

dZ' =cos2), d&, d& d),J [CP'[2cos'8, —sin'&, cos'8 +cos'8, sin'8 —2(cos, —cos&, cos& )'/sin'8, ]

+C,"'[sin'8, +2(cos&, —cos&, cos& )'/sin'8, —sin'8 ]
+ CPi'(cos&, —cos&,cos8 )j,

do (0) =d&, d& dg, ICP~(cos&, —cos& ),
dZ" =cos2$,JC'„'~[(cos& —cos&, —2/sin'8„)(cos&, —cos8, cos8 )+sin'&, cos& +sin'8 cos8],
doC" (0) = 0,
dZ'"=sin2g, d&, d& dg, JC",j'[cos8 (1+cos&, ) —cos8, (cos28 +cos&, }

—2cos8, (cos&, —cos8, cos8 )'/sin'8, ],
where J is an integral operator defined by

J= ', dE, dE 8(1 —cos'8, )8[cos&, —cos(8, +8 }]8(2n 's

(3.34)

(3.35)

(3.36)

(3.3V)

(3.38)

x 8[cos(8, —8 ) —cos&, ][cos&, —cos(8, + 8 )) '~2[cos(8, -8 ) —cos&, ] '~' .
(3.39)

Thus, to isolate the polarization-independent part
of the charge-antisymmetric contribution to da we

may define the asymmetry parameters

in an obvious notation. These parameters, A y and

A„, were already analyzed and estimated in Ref. l.
Finally, to isolate Z" it is expedient to study the

parameter defined by

where

s„=f' SS,
eo

71- 60 2n'

' d8 dg d

o, = dH, d6} dg,
0 0

A = ' '
Acl

cr +cr ~ c2 cr +CJ
(3.40)

(3.41)

0~ —0'a
cs O'A+Oa

where

o „= dq, &(cos2q, )
0

(3.45)

71'- 6 do'
e(cos& }d&

d8, dL9 dg, '

(3.46)

0 = d8, d8 dg,

(3.42)
and where o~ is defined analogously, except that
8(cos2g, ) should be replaced by 8(-cos2t(, ). In
this way

It is evident that

(3.43)
A =s'

C3 S (p)
(3.4 t)

o", (o) o", (0)
Cl S (0) S C2 S

(P)
(3.44)

The above equations suggest that we can define
another parity-violating asymmetry parameter
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given by
Oc-O' n

2
Ap3 = s 0'c+OD

(3.48}

c&„=(1 —h h )(q&q„'+q„q„' -g „s/2)

+i(h —h, )e„, sq™q,, (4.2)

where ere (crD) is defined by an integration, analo-
gous to that in Eq. (3.46), except that 8(cos2$ J
[8(-cos2$,}]has to be replaced by 8(sin2$, )
[8(-sin2&, )]. Thus

d„„=-(l-h,h )e„„sq'q,'
—i(h —h, )(q„q„'+q„q„' -g„,s/2) .

(4.3)

(4.4)

pv
2 Z,

»3 $(0)
(3.49)

4'~'ng„
ga }g'v+ 4rrcLg»

(3.50)

Let F. be the beam energy, ~' = s, and let 4F.,'
= s„ then

8. Estimate of the asymmetry parameters

In Ref. 1 it was found that A~„A„, and A„are
of the order of magnitude of 3 to 4/0 at beam en-
ergies =20 GeV.

Since A~, and A» are proportional. to C",, ', they
have a zero at

Thus cpp cp] c'p dpp dp' d'p 0 and

c,, =-(1-h,h )(2q,. q, +-,'sg, ),
—i(h -h, )v se,.„q',

d,.r = -(1 —h, h )v s e,.~sf»

+ i(h —h, )(2q,.q~+ —,'sg, , ) .

(4.5)

(4.6)

Substituting Eqs. (4.4)-(4.6) into Eq. (2.21) and

calling T the matrix element for the longitudinally
polarized case, we immediately obtain

I&l'= (1 -h, h )R[IM(', s,-0]
+ (h —h„)R[~M~', s,- 0, c,, —id„.], (4.7)

which leads to

sgn(E, —Ms/2) = sgn[(g, ' —g„')g„g„] .
In the following we will assume'

g„=-(G/2W)"'M, (1 —4 sin'8, ),
g, = -(G/2~"'M, ,

g» = -(BG//Y)'~'Mssin'8v,

g„=-(~G)"'M, ,

(3.51}

(3.52)

(3.53)

(3.54)

(3.55)

da (h „h }= (1 —h, h )da (0, 0)

+(h -h, )dZ,
where

dcr(0, 0) = der(0),

dZ =A[do(0); o'-o, g„'+g, '-2g, g„,
g„e g, e] .

(4 8)

(4 9)

(4.10)

with sin'8~=0. 35 and M~ = 75 GeV. In this case,
the zero of C,'„&' occurs at E = 28 GeV. But for E
= 20 GeV, C~'„~' is of the order of C',)/2, so we ex-
pect A», A»=0. 5 A» for such energies. On the
other hand 4„/A„=c'„'~/C'"~ and for E& 30 GeV we

have C '~ = C~'~ and thus A„=A„.

da(0) in Eqs. (4.9}, (4.10) is given by

da(0) = da'(0) + da" (0) + da'"(0), (4.11)

where dcr'(0), da (0), and dcr'"(0) are given by Eqs.
(3.9), (3.11), and (3.13), respectively. From
(4.10) it follows that

IV. LONGITUDINAL POLARIZATION dZ= dZ~" + dE (4.12)

X „y"u=h u, X,„y"v=h, v, (4.1)

where u and v are the electron and positron spin-
ors, respectively. Thus, to obtain the matrix ele-
ment in this case it is sufficient to insert in the
appropriate place the projection operators Z(A»)
=(I+h, y, )/2. In this way we obtain

Let X»= (vq, O, O, E)h, /m be the polarization four-
vector of the positron and electron, respectively.
F. , q, and rn denote energy, momentum, and mass
of the electron. The mass term in the denomina-
tor of A. , forces to retain terms which were
dropped in Eqs. (2.11)-(2.13).

This fact is more easily taken into account noti-
cing that for E»m we may write or, which is the same,

d Z'" = R[dcr'(0) + da "(0); C' "-O',„', C ' -C '

for i = 1, 2, 3], (4.15)

d -=A[da'"(0}; Cr, '„~ -C"&],
where

(4.16)

where

dE'" = R[da'(0}+ da (0); n'-O, g, '+g„' 2g, g„,
g, e g„e], (4.13)

dK =R[da~"(0); g,e g„e, g, '+g„'-2g, g„]

(4.14)
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C2„' =p, p ', 4«g2g2+, M, )2g2g2gv IFls -Mz ~s -Mz
2c'= ' " (i'd+pi'p'+i@ Fip')

2

(4.17)

(4.18)

(4.19)

C (&)
pv

1

"&,(1+cose+ )IP+IIP I 2«g„+ 2(" +&
2}

" «&EllE2(lp+I+ IP I)+F4(lp+I —iP i))}, (4 20)

2«g. + ' " ." 1m'* 2 .I+ip i
+ . ip, i-ip i ]}.S— s — z

(4.21)

(h —h, )ZNE

(1 —h, h )oNE (0)+(h -h, )o"„E

(h -h, )E',"

(1 -h, h )o', (0)+(h —h, )o',"

(h -h. )K',"

(1 —h, h ) o(0)+ (h -h, )~v,
"

(4.24}

(4.25)

(4.26)

in obvious notation. Since Z N'E /cr2NE (0) = O' Q'/C~p'„'

= -1 for E&15 GeV, then iL„i =iA»i for E&15
GeV. Similarly, from E"," /a", (0) = C',„'~/C'„'& = Z,'/
cr, (0) and from V„'/CP =1 for E& 15 GeV, we con-

GeV.
Finally, permuting the helicities we may mea-

sure the parameter

o(h, -h) -a(-h, h) ho'"

o(h, —h) +o(-h, h) (1+h')o'(0)

which is of order 1 for E~ 18 GeV.

(4.27)

V. CONCLUSIONS

We have assumed that the leptonic weak neutral
current has only vector and axial-vector compo-
nents and that the negative G parity piece of the
hadronic weak neutral current has a vector iso-
scalar part and an axial-vector isovector one.

For transversely polarized beams the differ-
ential cross section contains polarization-inde-

»om &gs (4.8), (4.12), and (4.13) it follows that

o(h, h, ) = (1 —h+h )a '(0) + (h —h, )o2", (4.22)

where

O'"=8[&&'(0); C", ~-C" for i=1,2, 3] . (4.23)

Since C pv 3 C3 and C p 3 C3' for any energy
and -C,'„~ s C',"for 18 GeVs E, we have -o""
s o'(0) at least for E z 18 GeV.

If we now define three asymmetry parameters
2„, X», and E» according to Eqs. (3.25) and
(3.40), respectively, we will obtain

pendent terms and t;erms quadratic in the polariza-
tion

do(s) =da(0)+s'dZ,

where s (-s) is the polarization vector of the elec-
tron (positron) and where dZ is polarization inde-
pendent. In particular, if we integrate over the m'

variables, over the energies of the charged pions,
and over one azimuthal angle, g say, then

do'(s) =do'(0)+s'cos2&, dZ',
da "(s)=dc "(0)+s 'cos2$, dZ",
dkr'"(s} = s'sin2$, d Z'",

where s, ca, and pv denote symmetric, charge-
antisymmetric, and parity-violating parts, re-

spectivelyy.

In the case when the beams are longitudinally
polarized we obtain a dependence on the polariza-
tions h and h, of the electron and positron, re-
spectively, of the form

der(h, h, ) =do(0, 0)(1-h,h )+(h -h,)dF,
where dZ is polarization independent.

By an appropriate choice of angular cutoffs we

have defined the asymmetry parameters A„, A„,

subscript c (p) indicates that they are nonzero
when charge asymmetries (parity-violating effects)
are present. E„, L~„and T~, are measurable
only when the beams are longitudinally polarized.
A 3 c4p2 and A» are nonzero only when the beams
are transversely polarized. In any case, it is al-
ways possible to measure the parameters A„, A„,
and A» which are independent of the transverse
polarization and proportional to 1 —h, h .

We have also defined, in the case of 1ongitudinal-
ly polarized beams, a helicity-asymmetry param-
eter A. We have shown that

2&&SaE'~s s 8 EuEv8~
cll CZI Cl

@ ~ 2 2( M 2)2 7

z z



16 %EAK NE UTRA L CURRENTS IN ELECTRON-POSITRON. . .

2@0'g~g~s
s-M '

2wQg„g~s s (gu +gn )gyp~
»» P» P2 s M 2 2(s M 2)2

2&og g~s s (g -g )gag~
s-M ' 2(s-M ')'

and that A is a sum of terms px oportional to
Qg gy) g(2gt)gy ) and gg gt)g~ Fx m the e la
tions it is possible to obtain information on the
four coupling constants of the weak neutral cur-
rent. For example, (1) if Ax0 then g, e0, (2) if
some angular-asymmetry parameter is nonzero
then g„e0, (2a) if a charge-asymmetry parameter
is nonzero then g„o0 and g, o 0, (2b) if a parity-
violation parameter is nonzero then g„t 0 and g„
or g, e0.

If the values of g„g„, g„, and g~ are those

given by Egs. (3.52)-(3.55), then, according to
Ref. 1, A», A„, and A„are of the order of 3-4%%up

at beam energies =20 GeV. We have argued that
(1) A» and A» have a zero at a beam energy E = 28
GeV if sin'8~ = 0.35 and M~ = 75 GeV, (2) A „A,
=A»/2 for 8 =20 GeV, (3) A„=A„for Es 30 GeV,
(4) L„=A~, for E&15 GeV, (5) 2» =A„, X» =A„
for E &15 GeV. Finally, we have concluded that
2=1 for Ea 18 GeV.

ACKNOW LEDGMENTS

It is a pleasure to acknowledge fruitful discus-
sions with H. Moreno and C. A. Dominquez. One
of us (A. Z.) would like to thank the Fermi National
Laboratory, where part of this work was done, for
the warm hospitality extended to him. He also
thanks D. R. Shrock for interesting discussions.

*Work presented in partial fulfilI. ment of the require-
ments for the Master of Science degree at Centro de
Investigaci6n del I. P.¹,and supportedby a CONACy T
scholarship. Present address: Universite Catholique
de Louvain, Inst. de Physique Theorique, Chemin du

Cyclotron, 2, B-1348, Louvain-la-Neuve, Belgium.
/Work partially supported by the NSF United States-

Latin American exchange program and by CONACy T
(Mbxico) under Contract No. 540-A {participating in-
stitutions: Centro de Investigaci6n del I. P.¹,
Mdxico; RockefeIler University and Stevens Institute
of Technology, U.S.A.}.

'E. Calva- Tellez and A. Zepeda, Phys. Rev. D 14, 1867

(1976).
2R. S. Patil, S. H. Patil, and S. D. Rindani, Phys. Rev.

D 10, 3070 (1973).
SDirac spinors are normalized according to gg = 2'.
4To prove (2.17) use ques =2ESO, g s+ =2Es„and

[K ~ (bxK)] a= (K ~ K)(Kxb) —(K.b)(axc)+a (bxc).
5%'e are neglecting the width of the Z particle. See

O. P. Sushkov, V. V. Flambaum, and I. B. Kriplovich,
Yad. Fiz. 20, 1016 (1974} tSov. J. Nucl. Phys. 20, 537
(1975}].

S. W'einberg, Phys. Rev. D 5, 1412 (1972); J'. Ihopoulos
and Ph. Meyer, Phys. Lett. 388, 519 (1972).


