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A simple relation is derived which specifies the number of massless excitations of a Dirac field of any
isospin in the field of an arbitrary configuration of pseudoparticles. The small fluctuations of the
pseudoparticle field are related to those of a Dirac field with unit isospin, proving that a pseudoparticle field
with winding number ~ n has 8 n independent modes of small oscillations. Thus, a general configuration of n

pseudoparticles or antipseudoparticles should be characterized by 8n parameters.

I. INTRODUCTION

A fascinating aspect of non-Abelian gauge theo-
ries involves the existence of topologically stable,
classical field solutions in Euclidean space-time. '
These "pseudoparticle" solutions have a finite ac-
tion and thus describe significant paths for quan-
tum-mechanical tunneling in Minkcmrski space-
time. This tunneling process has profound impli-
cations on the structure of the vacuum state and on
the nature of symmetries in gauge theories. ' The
tunneling process may provide a mechanism for
the confinement of quarks. '

The pseudoparticle solutions are classical solu-
tions to the Euclidean, non-Abelian field equations
for the gauge group SU(2). Solutions with n psuedo-
particles (or n antipseudoparticles) are charac-
terized by a topological winding number (Pontrya-
gin index) n (or n) 'E-xp.licit forms have been
found corresponding to configurations with arbi-
trary space-time positions and arbitrary sizes. "
The most general form which has been found' en-
tails a total of 5n+4 parameters. An obvious ques-
tion concerns the number of parameters needed to
describe the most general configuration of n
pseudoparticles. A principal result of the present
paper is the demonstration that this number is
8n (or 8n —3 if the 3 parameters which character-
ize a global gauge rotation are not counted). That
there are 8n independent parameters should not be
unexpected. A single-pseudoparticle solution in-
volves 8 parameters: 4 parameters specify its
position, 1 parameter specifies its size, and 3
parameters specify its global gauge orientation.
A configuration of n pseudoparticles which are
widely separated from each other (relative to their
sizes) can be approximately described by a "dilute
gas" of n noninteracting pseudoparticles (with the
field strength being simply the sum of the field
strengths of n single pseudoparticles). Since each
of the single pseudoparticles is described by 8 pa-
rameters, the n-pseudoparticle solution in the
dilute-gas approximation is described by 8n pa-

rameters. Our result shows that this enumera-
tion of parameters is not altered when the pseudo-
particles become more closely spaced and an exact
solution is necessary.

We shall not attempt here to construct explicit
pseudoparticle solutions with a maximal number
of parameters. Instead, we shall consider small,
massless fluctuations of the vector potential about
a pseudoparticle field presumed to be known. The
response of a general pseudoparticle field to the
variation of one of its continuous parameters yields
such a small-fluctuation potential. Hence, the
number of independent massless excitations must
be at least as great as the number of parameters
that characterize a general pseudoparticle field.
On the other hand, given the vector potential of a
massless excitation, a new pseudoparticle field
can be constructed which differs from the old field
by an infinitesimal amount n. The full non-Abelian
field equations then determine the further correc-
tions of order o.', a', .. .„and one can formally
construct a complete solution for a finite param-
eter n. Thus, the number of independent param-
eters in the general pseudoparticle solution should
be equal to the number of independent modes of
massless excitations which it supports. We shall
prove that there are precisely 8n modes of inde-
pendent massless excitations in an n-pseudopar-
ticle field. ' %'e should note that each mode of
massless excitation (or each continuous param-
eter in the pseudoparticle field) requires the in-
troduction of a collective coordinate. ' Our work
thus enumerates the number of collective co-
ordinates required in any pseudoparticle calcula-
tion.

In the next section, we examine the vector field
equations for the small Quctuations about a pseudo-
particle field which is self-dual (or anti-self-dual).
We find that this vector field must yield a field
strength tensor which is itself self-dual (or anti-
self-dual). Moreover, we find that the vector field
equations are equivalent to the Dirac equation for
a spinor with unit isospin and with definite chiral-
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ity. The problem of counting the number of modes
of massless excitations of the vector field is thus
reduced to that of counting the number of massless
modes of the Dirac field. In the last section, we
present a simple derivation of a theorem' which
relates the number of massless modes of the Dirac
field to the winding number of the pseudoparticle
field.

tegrable and thus cannot change the winding num-
ber. We shall use a superscript cl to label a
pseudoparticle field solution to Eqs. (8) and (9).
The covariant derivative D„., [Eq. (4)] will hence-
forth always involve A", but for notational sim-
plicity the superscript cl will be deleted from this
operator. We shall adopt the background-field
gauge specified by

II. FIELD EQUATIONS: VECTORS AND SPINORS
~ uab uab ' (10)

We consider an SU(2) gauge theory in Euclidean
space-time. It has a field strength tensor'

and Lagrange function

(2)

where the second term is the one which fixes the
gauge. (We have omitted irrelevant "ghost" field
contributions. ) The operator 9 „„may depend upon
a classical solution to the field equations (the
"background field gauge"I} but such a field depen-
dence is not to be varied in deriving the field equa-
tions. Hence these equations are of the form

so that

cl
uva

= uva+fuva CuS~Sacfvc i

where

(12)

(13)

The general n-pseudoparticle fields which have
been found, ' and about which we shall perturb,
are either self-dual or anti-self-dual,

1
u ls u p 2 upklc jtK

where «„„„„is the completely antisymmetrical
symbol with «y2~ +1. The action for the small-
fluctuation field ft) „,is obtained by writing

(3) fu.a=Duasl. s- ~seas ~ (14)
where

(4)

Inserting these forms into the Lagrange function
(2) and identifying the quadratic pieces in Qu gives
the Euclidean action for the small fluctuations:

[D„D„]=F,„, (5)

where the field strength matrix F„„has the com-
ponents

Ful„q=Fu„, «aa (6)

Accordingly, if we take the gauge-covariant di-
vergence of Eq. (3), making use of the antisym-
metry F,„=—F„, and the commutator (5), we get

D.as9usc(9v~A. a) =o

In general, the operator D„„Q„~,is nonsingular
and Eq. (7) implies that the vector potential must
obey the gauge constraint

(7)

(8)

Thus the field equations (3) can be replaced by the
constraint (8) and

(9)Du.~F~.~ = o ~

We shall consider small fluctuations about
general pseudoparticle fields obeying Eqs. (8) and
(9). These fluctuation fields should be square in-

is the gauge-covariant derivative, and the precise
form of 9„„follows from the variation of the
Lagrangian (2) with respect to A„,. We shall often
suppress isospin indices, and treat them in a ma-
trix notation. Thus we have

(15)

Since this action is quadratic in the field Qu, it
vanishes when the field obeys its field equation,

g2W2=0 . (16)

On the other hand, if we make use of the self-
duality property of the pseudoparticle field, Eq.
(ll}, and the commutator (5), we get

d'x P„F'„'„y„=~ «„„d'xy„D„D„y„

d~+

where in the last equality we have performed a
partial integration and used the definition (14).
(The surface contribution at infinity vanishes be-
cause the fluctuation fields ft)„are square inte-
grable. ) These results imply that

(17)

ds& 8 uv
* u. '+~ u@u' = ~ (18)

Since a positive sum of squares appears here, we
learn that the fluctuation field strength f„„must
have the same duality property as the pseudopar-
ticle field F '„'„,
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D„y, =0. (20)

The self-dual (or anti-self-dual) character of the
field strength tensor f„„implies that it transforms
according to the irreducible (1,0) [ or (0, 1)] repre-
sentation of the Euclidean O(4) =SU(2)I81 SU(2)
group. " We can exploit this character if we in-
troduce the antisymmetric symbols

(19)

and that the field (II) must also obey the gauge con-
straint obeyed by the pseudoparticle vector poten-
tial,

which explicitly exhibits their role in representing
the SU(2) spins of the irreducible (-,', -', ) representa-
tion.

The gauge constraint (20) and the three duality
conditions (24) can be united into a single 2 x 2 ma-
trix equation. In the following development we
shall concentrate on the pseudoparticle case
(q„'„~f„„,= 0) in order to simplify the notation. (As
should become evident, the antipseudoparticle case
can be treated similarly. ) Thus, using Eqs. (30b)
and (14), Eqs. (24) and (20) are united into

iD„ tro„4o„=0

(a) (a)
nova ~voa

defined by

(21) for v = 1, 2, 3, 4. Since the o„are a complete set of
2 x 2 matrices, this requires that

okra ~klan ~ k4a ~ka ' (22)

The symbol g'„'„', (g,'„',) is self-dual (anti-self-dual)
md the two symbols are projection matrices for
antisymmetrical tensors into the irreducible sub-
spaces (1, 0) and (0, 1) since

(+) (a)~&,~) .= &~~&- —&~.&.~ ~ ~~.~« ~

Thus, we can replace the self-duality condition
(19) by

(v)
'Ssvsfyva = 0

&

which gives three equations (with b= 1, 2, 3) for
each value of the isospin index a.

The symbols g'„'„), not only play the role of pro-
jection matrices of antisymmetrical tensors into
irreducible SU(2)I8 SU(2) subspaces, they also
represent the two SU(2) spins in the vector [(-,', —,')J

representation. In order to exhibit this, we define
a 2 x 2 matrix from the vector (t)„,

iD„o„4=0 .
The matrix 4 must obey

o,C*o,=4

in order to produce a real field (t) „. The reality
constraint (33) is, of course, consistent with Eq.
(32) since

o,(io„)*o,= io„. (34)

iD„o„x=0 . (35)

To make this construction explicit, we note that
if

The colums of the 2x2 matrix 4 are not inter-
changed by its field equation (32). One of the
spinor labels in the (-,', —,') vector representation is
not affected by the field equation. We must be able
to construct matrix solutions from spinors y that
obey

~4+ Z+k 4k (25) (36)

where ok are the usual Hermitian Pauli matrices
and o4 = i. Explicitly, 4 has the form is a solution of the spinor field equation (35), then

so ls
( 44+'4's 42+~4i &

@=i
( —P2+ iP, Q4 —i/~)

Since

tro„.c'„=25„„,
Eq. (25) can be inverted to give

(27)

—ZO2X

Thus, the matrix

""-(:.':)

(37)

(38)

ft}„=——,itrcr„4 .
Using

(rk~r = ~kr+ i~kryo'e y

(28)

we now find that the action of the symbols g"' on

f ls given by

satisfies the field matrix equation (32). The
reality constraint (33) uniquely determines the
second column of this matrix from its first column
as is shown in Eq. (38). From this matrix solu-
tion a second, linearly independent solution is ob-
tained by replacing y by i":

+ iq'„„),Q„=—2 i tra„C 0, „

(30a)

(30b)

(ia ib+

E ib —ia*
(39)
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We conclude that for each of the linearly indepen-
dent solutions of the spinor field equation there
are precisely two linearly independent solutions
of the small-fluctuation, vector field equation.

[Incidentally, 4"'= 4 "'ia„and two other solu-
tions are obtained from 4"'io, and 4"'io', which
obey the reality constraint (33). The solution
4 "'io~ corresponds to a 4 "' solution constructed
from the spinor io, y*, and hence these solutions
for the vector field correspond to solutions al-
ready present in the spinor field equation. Simi-
larly, since io, = —io,io„ the solution 4"'io, cor-
responds to a 4"' solution constructed from
io, y+.]

The spinor wave equation (35) is equivalent to
the Dirac equation

Here in our Euclidean space-time y4=iy,

f y. , y„] = - 26„„,
and y, =y, y,y,y, . Smce

'4 = ioay4ys

with

op= z&&p]mygy~ y

(42)

(43)

(44)

we can write the Dirac equation (40) for a field of
the definite chirality (41) as

for a Dirac field g with unit isospin and definite
chir ality,

(41)

D„=&„—iT A (4V}

and the T, form the appropriate representation of
the isospin generators. We can establish a theo-
rem concerning the number of these modes by
examining the quantity

m'
T(m')=Tr, — „,y, .

ty Dj'+ m' (48)

Here we employ an operator notation, and the
trace is a diagonal sum over all indices, including
the space-time coordinates. The quantity T(m')
is the space-time volume integral of the vacuum
expectation value m(gty, g} of a Dirac field of mass
m, with the Dirac propagator rationalized and odd
powers of y„deleted since they vanish in the
trace The.difference [ T(m') —T(M')] is the
volume integral of the divergence~ of a well-de-
fined (Pauli-Villars-regulated) axial-vector cur-
rent, and hence this difference must vanish. The
M'- ~ limit of T(M') produces the triangle anoma-
ly" of the axial-vector current, while the m -0
limit of T(m. ') receives contributions only from
the massless modes. Thus, the number of mass-
less modes is related to the triangle anomaly.

Rather than following through the procedure
which we just described, it is much simpler to
examine the quantity T(m') directly. First we note
that D„obeys the commutation relation

[D, D„]= —iT,F„„, (49)

and hence by virtue of the anticommutation rela-
tion of the y matrices [Eq. (42)] and the definition

(&4 i&a Da}&—4& = 0 (45) o„„=2 i[r., y„], (50)

which is indeed identical in form to the spinor wave
equation (35}. We have written out the develop-
ment for the case of a pseudoparticle field. For
the case of an antipseudoparticle field, the de-
velopment is entirely similar except that the spinor
field is replaced by its adjoint. This replacement
yields a Dirac field with the opposite chirality.
We shall prove in the following section that the
Dirac equation (40) in an n-pseudoparticle field
has 4n linearly independent solutions. Thus there
are Bn linearly independent solutions of the small-
fluctuation, vector fieM equation.

we have

m'+ (y D)2 =m2 —D2 ——,'o„„T,F„„,. (51)

T(m2) =m2Tr ~ 2 ,oTF ~ 2 2o—TF'-D +m -a'+m'

Equation (48) is not well-defined as it stands, for
it involves potentially divergent high-energy con-
tributions. However, we can delete the first two
terms of the expansion of (m' D' —~aTF) -' in
powers of I" since they give vanishing contribu-
tions in the y-matrix trace. Hence Eq. (48) can
be replaced by the definition

III. COUNTING MASSLESS EXCITATIONS
1

-D'+ m' ——,'0TE (52)

y„D„/ =0,
where now

(46)

We consider the massless modes of excitation
of a Dirac field with arbitrary isospin in an ex-
ternal, classical gauge field. These Dirac fields
satisfy

which is well-behaved and which has formal prop-
erties that are identical to those which would be in-
ferred from Eq. (48).

The large-m' limit of T(m') follows quickly from
Eq. (52). Only large values of D' contribute to-
this limit and the --2o.TF term in the last denomina-
tor in Eq. (52) can be omitted. Moreover, in this
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limit -D' can be replaced by p', where the mo-
mentum p„has the differential-operator realiza-
zation -i &„. Thus,

lim T(m') = lim m'Tr, , ,'oTE—

where I'p is a projection operator into the sub-
space of massless modes, the subspace spanned
by the solutions to Eq. (46). Hence, if there are
n, massless modes with positive chirality (ye=+ 1)
and n massless modes with negative chirality
(y', = —1), we have

1 1x 2ggj' 2 2y5.p+m

(53)

T n» n

Comparing this with Eq. (58) yields

(62)

The commutator of E with (p'+ m') ' produces
terms of higher order in (p'+m') ' that do not
contribute to the limit, and we can evaluate the
trace in the coordinate representation to get

n, -n = ——,
' t(t+1)(2t+1)

x, (d4x)E„„.~E„„,.1

The integral which appears here is related' to
the winding number v,

ml
x lim x, , x), (54)

p +m')'

where tr refers to a diagonal sum over spinor and

isospin indices. Now

where v=+ n for a field with n pseudoparticles,
while v = -n for a field with n antipseudoparticles.
Thus we obtain the theorem'

m' (d'p) m'
(p'+ m'}' (2 5))4 (p'+ m')'

1 1
2 (4w)2 '

while the spin and isospin traces are given by

tro o) y, = —4&»

tr T.T, = ,'6.,t(t+ 1)(2—t+1),

(55)

(5V}

n, —n = ——,
' t(t+ 1)(2t+ 1)v . (65)

The pseudoparticle gauge fields about which we
perturb are characterized not only by a non-
vanishing winding number, but also by field
strengths which are either self-dual (with v&0}
or anti-self-dual (with v &0). We will now demon-
strate that n, = 0 for v ~& 0. To prove this we first
multiply the field equation (46) of the massless
mode functions g with -yD to get

where t is the magnitude of the total isospin repre-
sented by the Dirac field. Hence,

lim T(m') = ——,
' t(t+ 1)(2t+ 1)

hatt
~ oo

x
( }, (d4sx)E„„,*E „, . (58)

We remarked previously that T(m'} is, in fact,
independent of the value of m'. This is established
most easily from the formal expression (48) which
gives

(y D)'
, T(m')=Tr, y, . (59)

(y D}'+m 'j '
Since y, anticommutes with ya, we can use the
cyclic symmetry of the trace to conclude that

(D'+-,' o„„T,E„)/=0 . (66)

Here we may assume that g is a field of definite
chir ality,

y g=+g, (67)

since y, anticommutes with yD which has a zero
eigenvalue. jt is a simple exercise in y-matrix
algebra (similar to the work at the end of the pre-
ceding section) to show that for this field of definite
chirality

(68)

Recalling that g'„„',E„„,vanishes for a self-dual
field and q„'„',I"»~ vanishes for an anti-self-dual
field, we find that Eq. (66) implies

9 2 8
(60)

(69)

Thus, T(m') is a constant which can also be evalu-
ated by the small-m' limit

m

~2~p o DJ +m

=T S,y, ,

for a self-dual (or anti-self-dual) pseudoparticle
field E„„,and a Dirac field g with positive (or
negative) chirality. Multiplying Eq. (69) by (I),
integrating over all space-time and performing a
partial integration gives

dzx D„P 2=0 .
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(The square integrability of f permits this partial
integration. } Accordingly, Eq. (69} implies that

D„/=0,

i[D„,D„]P=E„„,T,/=0 .

The matrices q'„'„'~E„„,= C~ are generally non-
singular for v~&0. Hence g must vanish, and we
conclude that Eq. (69) admits no solution. There-

fore n, =0 if v=n&0 and n =0 if v=-n&0, and
the previous theorem becomes a statement for the
nonvanishing mode number,

n = —,'t(t+ 1)(2t+ 1)n .
Specializing to unit isospin gives

n, =4n, (74)

proving that there are 8n independent massless
modes of small fluctuations about the pseudopar-
ticle field.
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